The Non-Equivalence of τ-Ultracompactness and τ-Boundedness

Buras Boljiev

Institute of mathematics and CS, University of Latvia, Raina Bulv. 29, Riga LV-1459, Latvia

Abstract. The main result presented here is a solution to the following problem of V. Saks: Does there exist $\mathfrak{M} > \aleph_0$ and a Hausdorff \mathfrak{M}-ultracompact space which is not \mathfrak{M}-bounded? The main result is given in a stronger form than the problem suggests itself: For each infinite cardinal τ there is a Hausdorff τ-ultracompact not τ-bounded space of density τ.

In [1] A. Bernstein introduced the following definitions: let $p \in \beta\omega \setminus \omega$ be a free ultrafilter on ω, the (discrete space) of positive integers. Now let $(x_n : n \in \omega)$ (for short (x_n)) be a sequence of points in a topological space X and $x \in X$. Then x is a p-limit point of (x_n) provided that for each neighborhood U of x the set $\{n \in \omega : x_n \in U\}$ belongs to p, in this case we write $x = p - \lim x_n$. If every sequence in X has a p-limit point then X is called p-compact. Each infinite cardinal is identified with the initial ordinal of the same cardinality.

V. Saks [2] generalizes the notion of a p-limit point to transfinite sequences in the following way: let τ be an infinite cardinal; if $p \in \beta\tau \setminus \tau$ is a free ultrafilter on τ (with the discrete topology) and $(x_\alpha : \alpha \in \tau)$ (for short (x_α)) is a τ-sequence in a space X, then $x \in X$ is a p-limit point of (x_α), denoted by $x = p - \lim x_\alpha$, if for each neighborhood U of x, $\{\alpha : x_\alpha \in U\} \in p$ and we can say, in this case, that (x_α) p-converges to x. Saks further extends p-compactness for any ultrafilter $p \in \beta\tau \setminus \tau$ where a space X is p-compact if any τ-sequence in X has a p-limit point. He proves there that in the class of regular spaces the notions of τ-boundedness and τ-ultracompactness are equivalent for any infinite cardinal τ, where τ-boundedness means that the closure of any subset of cardinality not exceeding τ is compact and τ-ultracompactness means that X is τ-compact for any $p \in \beta\tau \setminus \tau$. In case of $\tau = \aleph_0$ we obtain the notions of ultracompactness and \aleph_0-boundedness which are not equivalent in the class of Hausdorff spaces as demonstrates an example in [2] but the space in this example is not separable so V. Saks asks there: Does there exist a separable Hausdorff ultracompact space which is not compact? The positive answer to the problem is in [4] and the theorem 3 in the present article covers not only this result but also give a positive answer in a stronger form to another question of V. Saks [2]: Does there exist $\mathfrak{M} > \aleph_0$ and a Hausdorff \mathfrak{M}-ultracompact space which is not \mathfrak{M}-bounded?

A. P. Kombarov introduced in [3] the notion of a p-sequential space for $p \in \beta\omega \setminus \omega$ and this notion was extended for any $p \in \beta\tau \setminus \tau$ by L. Kočinac [5] in the context of chain-net spaces but for our goals we prefer here to use the name which offered A. P. Kombarov: a space X is p-sequential if for any nonclosed $A \subset X$ there are some τ-sequence $(x_\alpha) \subset A$ and a point $x \notin A$ such that $x = p - \lim x_\alpha$. In this case we can say that (x_α) p-converges to x.

2010 Mathematics Subject Classification. 54A10, 54A30.
Keywords. p-compact; p-sequential; τ-ultracompact; τ-bounded spaces.
Received: 14 September 2014; Accepted: 16 December 2014
Communicated by Dragan Djurcic
Email address: boljievb@mail.ru, buras.boljiev@lumii.lv (Buras Boljiev)
Let \((X, \gamma)\) be a topological space, \(O \subset X\) and \(p \in \beta \tau \setminus \tau\), then \(O\) is said to be \(p\)-sequentially open if \(x = p - \lim x_n\) for some \(x \in O\) and some \(\tau\)-sequence \((x_n)\) imply \(|x : x_n \in O| \in p\).

Let \(\gamma_p\) be the set of all \(p\)-sequentially open sets in \((X, \gamma)\). It is clear that the union of any number of \(p\)-sequentially open sets is again \(p\)-sequentially open and the intersection of a finite number of \(p\)-sequentially open sets is \(p\)-sequentially open. Obviously, each open set is \(p\)-sequentially open so we get the following statement.

Proposition 1. Let \((X, \gamma)\) be a topological space, then the family \(\gamma_p\) forms a topology on \(X\) and \(\gamma \subset \gamma_p\).

It is important to note that \(x = p - \lim x_n\) in \(\gamma\) implies \(x = p - \lim x_n\) in \(\gamma_p\). Really, if we have \(x \neq p - \lim x_n\) in \(\gamma_p\) for some \(x\) and some \(\tau\)-sequence \((x_n)\), then there exists some \(W \in \gamma_p\) such that \(x \in W\) and \(|x : x_n \in W| \notin p\). Obviously that \(x \neq p - \lim x_n\) in \(\gamma\) too, otherwise for the sequentially open set \(W\) we would get that \(|x : x_n \in W| \in p\) which is in contradiction with \(|x : x_n \in W| \notin p\).

Proposition 2. Topological space \((X, \gamma_p)\) is \(p\)-sequential.

Proof. Let \(A\) be a nonclosed subset in \((X, \gamma_p)\), then \(O = X\setminus A\) is not open in \((X, \gamma_p)\), i.e. \(O\) is not \(p\)-sequentially open in \((X, \gamma_p)\). \(X\) which implies that there are some point \(z \in O\) and some \(\tau\)-sequence \((z_n)\) \(p\)-converging to \(z\) such that \(|x : x_n \in O| \notin p\) which implies that \(|x : x_n \in A| \in p\). We put \(x_1 = z_1\) for \(z_1 \in A\) and \(x_n = y\) for some \(y \in A\) if \(z_n \notin A\). Now it is easy to verify that \(z = p - \lim x_n\) for a \(\tau\)-sequence \((x_n)\) \(\subset A\). So \((X, \gamma_p)\) is a \(p\)-sequential space. \(\Box\)

As usually by symbol \(t(X, \gamma)\) we denote the tightness of a topological space \((X, \gamma)\)

Proposition 3. The intersection of any family of topologies each of tightness not greater than \(\tau\) has the tightness not greater than \(\tau\) too.

Proof. Let \(\gamma = \cap \{\gamma_\alpha : \alpha < k\}\) where each \(\gamma_\alpha\) is a topology on a set \(X\) such that \(t(X, \gamma_\alpha) \leq \tau\) for any \(\alpha < k\). For each \(A \subset X\) we put \(A_1 = \cup \{[A]_\alpha : \alpha < k\}\). Suppose we have constructed \(A_\alpha\) for any ordinal \(\alpha < \beta\) where \(\beta < \tau^+\). Now we construct \(A_\beta\) and there are two cases:

1. \(\beta = \alpha_0 + 1\) for some \(\alpha_0\) then
 \[A_\beta = (A_\alpha_0)_1\]
2. \(\beta\) is a limit ordinal then \(A_\beta = \cup \{A_\alpha : \alpha < \beta\}\).

Finally we put \(A_{\tau^+} = \cup \{A_\alpha : \alpha < \tau^+\}\)

Using the fact that \(\tau \cdot \tau = \tau\) we can state that \([A]_\tau = A_\tau\), and applying transfinite induction on ordinals \(\alpha < \tau^+\) one can see that for any \(z \in [A]_\gamma\) there is \(B \subset A\) such that \(|B| \leq \tau\) and \(z \in [B]_\gamma\). \(\Box\)

Proposition 4. The tightness of a \(p\)-sequential space is not greater than \(\tau\).

Proof. For each subset \(A\) of \(X\) let \(A_1 = \{x : x = p - \lim x_n\} \subset A\).

Like in the proof of the previous proposition we put \(A_\beta = (A_\alpha)_1\) for \(\beta = \alpha_0 + 1\) and for a limit ordinal \(\beta\) let \(A_\beta = \cup \{A_\alpha : \alpha < \beta\}\). It is easily seen that \(A_{\tau^+} = (A_1)_1\) and thus \([A] = A_{\tau^+}\) which due to the \(\tau \cdot \tau = \tau\) imply the required result. \(\Box\)

The topology \(\gamma_p\) is called a \(p\)-sequential leader of \(\gamma\). Let \(\gamma_\tau = \cap \{\gamma_\beta : p \in \beta \tau \setminus \tau\}\) i.e. \(\gamma_\tau\) is the intersection of all \(p\)-sequential leaders in \((X, \gamma)\). The following theorem is a corollary of the propositions 3 and 4.

Theorem 1. The tightness of a topological space \((X, \gamma_\tau)\) does not exceed \(\tau\).

Theorem 2. For a topological space \((X, \gamma)\) \(t(X, \gamma) \leq \tau\) iff \(\gamma = \gamma_\tau\).
Proof. We need only to prove the necessity, i.e. that the condition \(t(X, \gamma) \leq \tau \) implies \(\gamma = \gamma_\tau \). It is sufficient to demonstrate that \(\gamma_\tau \subseteq \gamma \). To this end we take any nonopen set in the topology \(\gamma \), say \(M \). Then \(A = X \setminus M \) is a nonclosed set in \(\gamma \) and there are some subset \(B \subseteq A \) with \(|B| \leq \tau \) and some point \(y \in M \) such that \(y \in [B]_\gamma \). Considering \(B \) as a \(\tau \)-sequence \((x_n) \) one can find some \(q \in \beta \tau \setminus \tau \) such that \((x_n) \) \(q \)-converges to \(y \) in \(\gamma \). Then \((x_n) \) \(q \)-converges to \(y \) too. Since \(\gamma_\tau \subseteq \gamma_q \) it follows that \((x_n) \) \(q \)-converges to \(y \) in \(\gamma_\tau \). Thus \(M \) is not open in \(\gamma_\tau \), implying \(\gamma_\tau \subseteq \gamma \). \(\Box \)

Theorem 3. Let \((X, \gamma) \) be a Hausdorff compact topological space of density \(\tau \) with tightness greater than \(\tau \). Then \((X, \gamma_\tau) \) is a Hausdorff \(\tau \)-ultracompact not a \(\tau \)-bounded space of density \(\tau \).

Proof. Let \(X_0 \) be a dense subset in \(X \) of power \(\tau \). From the proof of the theorem 2 it is clear that two closure operators \([__]\) and \([__]_\gamma \) coincide on subsets of power no more than \(\tau \). So we can see that \((X, \gamma_\tau)\) is a \(\tau \)-ultracompact space and it contains \(X_0 \) as its dense subset. Since \(t(X, \gamma_\tau) \leq \tau \) then the topology \(\gamma_\tau \) is strictly stronger than \(\gamma \) and hence \((X, \gamma_\tau)\) is not a compact space which in its turn implies that it is not \(\tau \)-bounded. Thus \((X, \gamma_\tau)\) is a \(\tau \)-ultracompact not a \(\tau \)-bounded space of density \(\tau \). \(\Box \)

It is known that the Stone-Čech compactification of any discrete space of power \(\tau \geq \aleph_0 \) has a tightness more than \(\tau \) so we get the following result.

Corollary 1. For every infinite cardinal \(\tau \) there is a Hausdorff \(\tau \)-ultracompact not a \(\tau \)-bounded space of density \(\tau \).

Corollary 2. The notions of \(\tau \)-ultracompactness and \(\tau \)-boundedness are not equivalent in the class of Hausdorff spaces.

Proposition 5. The topology \(\gamma_\tau \) is the least one among all topologies of tightness not greater than \(\tau \) and each containing the given topology \(\gamma \).

Proof. Let \(\sigma \) be any topology with tightness not greater than \(\tau \) and containing \(\gamma \). Assume that \(A \) is a nonclosed set in \(\sigma \). Then it is nonclosed in \(\gamma \). Fix \(x \in [X] \setminus X \) then there is some \(B \subseteq A \) with \(|B| \leq \tau \) such that \(x \in [B]_\gamma \), and consequently \(x \in [B]_\gamma \). Now we can represent \(B \) as a \(\tau \)-sequence \(q \)-converging in \(\gamma \) to \(x \) for some \(q \in \beta \tau \setminus \tau \) and hence \(q \)-converging to \(x \) in \(\gamma_\tau \). So this \(\tau \)-sequence \(q \)-converges to \(x \) in \(\gamma_\tau \) implying that \(A \) is a nonclosed set in \(\gamma_\tau \) which proves that \(\gamma_\tau \subseteq \sigma \). \(\Box \)

The closure operator in the topological space \((X, \gamma_\tau) \) can be described more clearly using the following \(\tau \)-closure operator on \((X, \gamma) \): let \(A \subseteq X \) then we put \([A]_\tau = \{x : \exists B \subseteq A \text{ such that } |B| \leq \tau \text{ and } x \in [B]_\gamma\} \). This operator is well-known and generates some topology, say \(\gamma_{\tau, \tau} \), of tightness not greater than \(\tau \) with \(\gamma_{\tau, \tau} \supsetneq \gamma \) and coinciding with the origin topology \(\gamma \) provided the tightness of the space \((X, \gamma)\) does not exceed \(\tau \).

Proposition 6. In any topological space \((X, \gamma)\) the topologies \(\gamma_{\tau} \) and \(\gamma_{\tau, \tau} \), coincide.

Proof. From the previous proposition we get that \(\gamma_{\tau} \subseteq \gamma_{\tau, \tau} \), but the converse inclusion can be obtained using the same arguments as in the proof of the proposition 5. \(\Box \)

References