Sequence Spaces of Fuzzy Numbers Defined by a Musielak-Orlicz Function

A. Alotaibia, M. Mursaleena,b, Sunil K. Sharmac, S.A. Mohiuddinea

\a Operator Theory and Applications Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
b Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
c Department of Mathematics, Model Institute of Engineering & Technology, Kot Bhalwal-181122, J&K, India

Abstract. The purpose of this paper is to introduce some sequence spaces of fuzzy numbers defined by a Musielak-Orlicz function. We also make an effort to study some topological properties and prove some inclusion relations between these spaces.

1. Introduction and Preliminaries

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [15] and subsequently several authors have discussed various aspects of the theory and applications of fuzzy sets such as fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming etc. Matloka [6] introduced bounded and convergent sequences of fuzzy numbers and studied some of their properties.

A fuzzy number is a fuzzy set on the real axis, i.e., a mapping \(X : \mathbb{R}^n \to [0, 1] \) which satisfies the following four conditions:

1. \(X \) is normal, i.e., there exist an \(x_0 \in \mathbb{R}^n \) such that \(X(x_0) = 1 \);
2. \(X \) is fuzzy convex, i.e., for \(x, y \in \mathbb{R}^n \) and \(0 \leq \lambda \leq 1 \), \(X(\lambda x + (1 - \lambda)y) \geq \min\{X(x), X(y)\} \);
3. \(X \) is upper semi-continuous;
4. the closure of \(\{x \in \mathbb{R}^n : X(x) > 0\} \), denoted by \([X]^0\), is compact.

Let \(C(\mathbb{R}^n) = \{A \subset \mathbb{R}^n : A \text{ is compact and convex} \} \). The space \(C(\mathbb{R}^n) \) has a linear structure induced by the operations

\[
A + B = \{a + b, a \in A, b \in B\}
\]

and

\[
\mu A = \{\mu a, \mu \in A\}
\]

2010 Mathematics Subject Classification. 40A05, 40C05, 40D25.

Keywords. Fuzzy number, Orlicz function, Musielak-Orlicz function, \(\Lambda \) convergence

Received: 15 December 2013; Accepted: 23 February 2014
Communicated by Hari M. Srivastava

Email addresses: mathker11@hotmail.com (A. Alotaibi), mursaleenm@gmail.com (M. Mursaleen), sunilksharma42@gmail.com (Sunil K. Sharma), mohiuddine@gmail.com (S.A. Mohiuddine)
for $A, B \in C(\mathbb{R}^n)$ and $\mu \in \mathbb{R}$. The Hausdorff distance between A and B of $C(\mathbb{R}^n)$ is defined as

$$\delta_\infty(A, B) = \max\{\sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\|\}$$

where $\|\cdot\|$ denotes the usual Euclidean norm in \mathbb{R}^n. It is well known that $(C(\mathbb{R}^n), \delta_\infty)$ is a complete (non separable) metric space. For $0 < \alpha \leq 1$, the α-level set

$$X^\alpha = \{x \in \mathbb{R}^n : X(x) \geq \alpha\}$$

is a non-empty compact convex, subset of \mathbb{R}^n, as is the support $[X]_0$. Let $L(\mathbb{R}^n)$ denote the set of all fuzzy numbers. The linear structure of $L(\mathbb{R}^n)$ induces addition $X + Y$ and scalar multiplication $\mu X, \mu \in \mathbb{R}$, in terms of α-level sets, by

$$[X + Y]^\alpha = [X]^\alpha + [Y]^\alpha$$

and

$$[\mu X]^\alpha = \mu[X]^\alpha$$

for each $0 \leq \alpha \leq 1$. Define for each $1 \leq q < \infty$

$$d_q(X, Y) = \left\{ \int_0^1 \delta_\infty(X^\alpha, Y^\alpha)^q \, da \right\}^{\frac{1}{q}}$$

and $d_\infty(X, Y) = \sup_{0 \leq \alpha \leq 1} \delta_\infty(X^\alpha, Y^\alpha)$. Clearly $d_\infty(X, Y) = \lim_{q \to \infty} d_q(X, Y)$ with $d_q \leq d_r$ if $q \leq r$. Moreover $(L(\mathbb{R}^n), d_\infty)$ is a complete metric space. We denote by $w(F)$ the set of all sequences $X = (X_k)$ of fuzzy numbers.

For more details about fuzzy sequence spaces (see [1–4, 14]) and references therein. Recently, some double sequences spaces related to the concepts of Musielak-Orlicz functions, bounded-regular and invariant mean have been defined and studied in [8, 9].

Let C denote the space whose elements are the sets of distinct positive integers. Given any elements σ of C, we denote by $c(\sigma)$ the sequence $\{c_n(\sigma)\}$ which is such that $c_n(\sigma) = 1$ if $n \in \sigma$, $c_n(\sigma) = 0$ otherwise. Further

$$C_s = \left\{ \sigma \in C : \sum_{n=1}^{\infty} c_n(\sigma) \leq s \right\},$$

the set of those σ whose support has cardinality at most s, and

$$\Phi = \left\{ \varphi = \{\varphi_k\} \in \ell^0 : \varphi_1 > 0, \ \Delta \varphi_k \geq 0 \text{ and } \Delta_k(\varphi_k) \leq 0 \ (k = 1, 2, \cdots) \right\},$$

where $\Delta \varphi_k = \varphi_k - \varphi_{k-1}$, and $\{\varphi_k\}$ is a real sequences (see [6]). For $\varphi \in \Phi$, Sargent [13] define the following sequence space

$$m(\varphi) = \left\{ x = (x_k) \in \ell^0 : \sup_{s \geq 1} \sup_{a \in C} \left\{ \frac{1}{\varphi_k} \sum_{k \geq a} |x_k| \right\} < \infty \right\}.$$
The sequence \(x = (x_k) \in w \) is \(\lambda \)-bounded if \(\sup_m |\Lambda_m(x)| < \infty \). It is well known [8] that if \(\lim_m x_m = a \) in the ordinary sense of convergence, then

\[
\lim_{m} \frac{1}{\lambda_m} \left(\sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) |x_k - a| \right) = 0.
\]

This implies that

\[
\lim_m |\Lambda_m(x) - a| = \lim_m \frac{1}{\lambda_m} \sum_{k=1}^{m} (\lambda_k - \lambda_{k-1}) (x_k - a) = 0
\]

which yields that \(\lim_m \Lambda_m(x) = a \) and hence \(x = (x_k) \in w \) is \(\lambda \)-convergent to \(a \).

An Orlicz function \(M \) is a function, which is continuous, non-decreasing and convex with \(M(0) = 0, M(x) > 0 \) for \(x > 0 \) and \(M(x) \to \infty \) as \(x \to \infty \).

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the following sequence space. Let \(w \) be the space of all real or complex sequences \(x = (x_k) \), then

\[
\ell_M = \{ x \in w : \infty \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \}
\]

which is called as an Orlicz sequence space. The space \(\ell_M \) is a Banach space with the norm

\[
\|x\| = \inf \{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \leq 1 \}.
\]

It is shown in [5] that every Orlicz sequence space \(\ell_M \) contains a subspace isomorphic to \(\ell_p(p \geq 1) \). The \(\Delta_2 \)-condition is equivalent to \(M(Lx) \leq kLM(x) \) for all values of \(x \geq 0 \), and for \(L > 1 \).

A sequence \(M = (M_k) \) of Orlicz function is called a Musielak-Orlicz function [7, 12]. A sequence \(N = (N_k) \) defined by

\[
N_k(u) = \sup\{|v| : M_k(u) \geq 0 \}, \hspace{1cm} k = 1, 2, \cdots
\]

is called the complementary function of a Musielak-Orlicz function \(M \). For a given Musielak-Orlicz function \(M \), the Musielak-Orlicz sequence space \(t_M \) and its subspace \(h_M \) are defined as follows

\[
t_M = \{ x \in w : I_M(cx) < \infty \text{ for some } c > 0 \},
\]

\[
h_M = \{ x \in w : I_M(cx) < \infty \text{ for all } c > 0 \},
\]

where \(I_M \) is a convex modular defined by

\[
I_M(x) = \sum_{k=1}^{\infty} M_k(x_k), \hspace{1cm} x = (x_k) \in t_M.
\]

We consider \(t_M \) equipped with the Luxemburg norm

\[
\|x\| = \inf \{ k > 0 : I_M\left(\frac{x}{k}\right) \leq 1 \}
\]

or equipped with the Orlicz norm

\[
\|x\| = \inf \{ \frac{1}{k} (1 + I_M(kx)) : k > 0 \}.
\]
Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^k(n) = \sigma(\sigma^{k-1}(n))$, $k = 1, 2, 3, \cdots$, $M = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ be a bounded sequence of positive real numbers. In this paper we define the following classes of sequences of fuzzy numbers:

$$l^{\infty}_{M}(M, \Lambda, \sigma, p) = \left\{ X = (X_k) \in w(F) : \sup_{k, n} \left[M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\},$$

$$l^{F}_{M}(M, \Lambda, \sigma, p) = \left\{ X = (X_k) \in w(F) : \sup_{n} \sum_{k} \left[M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\}$$

and

$$m^{\infty}_{M}(M, \Lambda, \varphi, \sigma, p) = \left\{ X = (X_k) \in w(F) : \sup_{n \geq 1, \rho \in C, \varphi_k} \frac{1}{p_k} \sum_{k \in \mathbb{Z}} \left[M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\}.$$

When $\sigma(n) = n + 1$, we obtain the classes of sequences of fuzzy numbers as follows:

$$l^{\infty}_{M}(M, \Lambda, p) = \left\{ X = (X_k) \in w(F) : \sup_{k, n} \left[M_k \left(d\left(\frac{\Lambda_k X_{k+n}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\},$$

$$l^{F}_{M}(M, \Lambda, p) = \left\{ X = (X_k) \in w(F) : \sup_{n} \sum_{k} \left[M_k \left(d\left(\frac{\Lambda_k X_{k+n}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\}$$

and

$$m^{\infty}_{M}(M, \Lambda, \varphi, p) = \left\{ X = (X_k) \in w(F) : \sup_{n \geq 1, \rho \in C, \varphi_k} \frac{1}{p_k} \sum_{k \in \mathbb{Z}} \left[M_k \left(d\left(\frac{\Lambda_k X_{k+n}(0)}{\rho} \right) \right)^{p_k} \right] < \infty \right\}.$$

If we take $p = (p_k) = 1$, we obtain the classes of sequences of fuzzy numbers as follows:

$$l^{0}_{\infty}(M, \Lambda, \sigma) = \left\{ X = (X_k) \in w(F) : \sup_{k, n} M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right) < \infty \right\},$$

$$l^{0}_{F}(M, \Lambda, \sigma) = \left\{ X = (X_k) \in w(F) : \sup_{n} \sum_{k} M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right) < \infty \right\}$$

and

$$m^{0}_{\infty}(M, \Lambda, \varphi, \sigma) = \left\{ X = (X_k) \in w(F) : \sup_{n \geq 1, \rho \in C, \varphi_k} \frac{1}{p_k} \sum_{k \in \mathbb{Z}} M_k \left(d\left(\frac{\Lambda_k X_{\sigma^k(n)}(0)}{\rho} \right) \right) < \infty \right\}.$$

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $0 < p_k \leq \sup = H$ and let $D = \max\{1, 2^H\}$. Then for the factorable sequences $\{a_k\}$ and $\{b_k\}$ in the complex plane, we have

$$|a_k + b_k|^p \leq D(|a_k|^p + |b_k|^p). \quad (1)$$

The main aim of this paper is to study some topological properties and prove some inclusion relations between above defined sequence spaces.

2. Main Results

Theorem 2.1. Let $M = (M_k)$ be a Musielak-Orlicz function and $p = (p_k)$ be a bounded sequence of positive real numbers, then the spaces $l^{\infty}_{\infty}(M, \Lambda, \sigma, p)$, $l^{F}(M, \Lambda, \sigma, p)$ and $m^{\infty}(M, \Lambda, \varphi, \sigma, p)$ are linear spaces over the field of complex numbers C.

A. Alotaibi et al. Filomat 29:7 (2015), 1461–1468
Proof. Let \(X = (X_i), Y = (Y_i) \in m^r(\mathcal{M}, \Lambda, \varphi, \sigma, p) \) and \(\alpha, \beta \in \mathbb{C} \), then there exist positive numbers \(\rho_1, \rho_2 \) such that
\[
\sup_n \sup_{s \geq 1, \varphi \in \mathcal{G}} \frac{1}{\rho_1} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X, \varphi, 0)}{\rho_1} \right) \right]^{\varphi_i} < \infty
\]
and
\[
\sup_n \sup_{s \geq 1, \varphi \in \mathcal{G}} \frac{1}{\rho_2} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k Y, \varphi, 0)}{\rho_2} \right) \right]^{\varphi_i} < \infty.
\]
Define \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \((M_k) \) is non-decreasing, convex and so by using inequality (1), we have
\[
\sup_n \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k, \varphi, \sigma, 0)}{\rho_3} \right) \right]^{\varphi_i} \leq \frac{1}{2} \sup_n \frac{1}{\rho_1} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X, \varphi, 0)}{\rho_1} + \beta d(\Lambda_k Y, \varphi, 0) \right) \right]^{\varphi_i} \leq \frac{1}{2} \sup_n \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k Y, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i}.
\]
This proves that \(m^r(\mathcal{M}, \Lambda, \varphi, \sigma, p) \) is a linear space. Similarly, we can prove that \(l^p(\mathcal{M}, \Lambda, \sigma, p) \) and \(l^p_{\omega}(\mathcal{M}, \Lambda, \sigma, p) \) are linear spaces.

\[\tag{1} \]

Theorem 2.2. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function and \(p = (p_i) \) be a bounded sequence of positive real numbers, then the space \(m^r(\mathcal{M}, \Lambda, \varphi, \sigma, p) \) is a complete metric space, with the metric defined by
\[
g(X, Y) = \sup_n \sup_{s \geq 1, \varphi \in \mathcal{G}} \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i}.
\]

Proof. Let \((X^i) \) be a Cauchy sequence in \(m^r(\mathcal{M}, \Lambda, \varphi, \sigma, p) \). Then,
\[
g(X^i, X^j) = \sup_n \sup_{s \geq 1, \varphi \in \mathcal{G}} \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i} \rightarrow 0 \quad \text{as} \quad i, j \rightarrow \infty.
\]
Hence
\[
\left[M_k \left(\frac{d(\Lambda_k X^i, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i} \rightarrow 0 \quad \text{as} \quad i, j \rightarrow \infty, \quad \text{for all} \quad n.
\]
Therefore \((X^i) \) is a Cauchy sequence in \(L(\mathbb{R}^n) \). Since \(L(\mathbb{R}^n) \) is complete, it is convergent so that \(\lim_{i \to \infty} X^i_k = X_k \), for each \(k \in \mathbb{N} \). Since \((X^i) \) is a Cauchy sequence for each \(\epsilon > 0 \), there exists \(n_0 = n_0(\epsilon) \) such that
\[
g(X^i, X^j) < \epsilon, \quad \text{for all} \quad i, j \geq n_0.
\]
So, we have
\[
\limsup_i \sup_n \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X^i, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i} = \sup_n \sup_{s \geq 1, \varphi \in \mathcal{G}} \frac{1}{\rho_3} \sum_{k \in \sigma} \left[M_k \left(\frac{d(\Lambda_k X^i, \varphi, 0)}{\rho_3} \right) \right]^{\varphi_i} < \epsilon, \quad \text{for all} \quad i \geq n_0.
\]
This implies that \(g(X^i, X) < \epsilon, \) for all \(i \geq n_0, \) i.e. \(X^i \to X \) as \(i \to \infty, \) where \(X = (X_k). \) Since
\[
\sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} \left[M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), Y_{\sigma(n)})}{\rho} \right)^p \right]^{\frac{1}{p}} \leq \sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} \left[M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), 0)}{\rho} \right)^p \right]^{\frac{1}{p}} + \sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} \left[M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), X_0)}{\rho} \right)^p \right]^{\frac{1}{p}}
\]
then we obtain \(X = (X_k) \in \mathbb{F}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho). \) Therefore \(\mathbb{F}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho) \) is a complete metric space. This completes the proof of the theorem.

Theorem 2.3. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function and \(p = (p_k) \) be a bounded sequence of positive real numbers, then we have the following
(i) the space \(\mathbb{F}(\mathcal{M}, \Lambda, \sigma, \rho) \) is a complete metric space, with the metric defined by
\[
g(X, Y) = \sup_{k,n} \sum_{m \geq 0} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), Y_{\sigma(n)})}{\rho} \right)^p.
\]
(ii) the space \(\mathbb{F}_\infty(\mathcal{M}, \Lambda, \sigma, \rho) \) is a complete metric space, with the metric defined by
\[
g(X, Y) = \sup_{k,n} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), Y_{\sigma(n)})}{\rho} \right)^p.
\]

Proof. It is easy to prove in view of Theorem 2.2, so we omit the details.

Theorem 2.4. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function and \(p = (p_k) \) be a bounded sequence of positive real numbers, then \(m^{\infty}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho) \subset m^{\infty}(\mathcal{M}, \Lambda, \psi, \sigma, \rho) \) if and only if \(\sup_{s \geq 1} \frac{\varphi_s}{\psi_s} < \infty. \)

Proof. Let \(\sup_{s \geq 1} \frac{\varphi_s}{\psi_s} < \infty \) and \((X_k) \in m^{\infty}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho). \) Then
\[
\sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), 0)}{\rho} \right)^p < \infty,
\]
\[
\Rightarrow \sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), 0)}{\rho} \right)^p \leq \left(\sup_{s \geq 1} \frac{\varphi_s}{\psi_s} \right) \sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), 0)}{\rho} \right)^p < \infty.
\]
Therefore \((X_k) \in m^{\infty}(\mathcal{M}, \Lambda, \psi, \sigma, \rho). \) Hence \(m^{\infty}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho) \subset m^{\infty}(\mathcal{M}, \Lambda, \psi, \sigma, \rho). \)

Conversely, let \(m^{\infty}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho) \subset m^{\infty}(\mathcal{M}, \Lambda, \psi, \sigma, \rho). \) Suppose that \(\sup_{s \geq 1} \frac{\varphi_s}{\psi_s} = \infty, \) then there exists a sequence of natural numbers \((s_i) \) such that \(\lim_{i \to \infty} \frac{\varphi_{s_i}}{\psi_{s_i}} = \infty. \) Let \((X_k) \in m^{\infty}(\mathcal{M}, \Lambda, \varphi, \sigma, \rho). \) Then,
\[
\sup_n \sup_{s \geq 1, \sigma \in \mathbb{C}} \frac{1}{\psi_s} \sum_{k \geq 0} M_k \left(\frac{d(\Lambda_k(X^i_{\sigma(n)}), 0)}{\rho} \right)^p < \infty.
\]
Now, we have
\[
\sup_n \sup_{x \in C} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) \geq \left(\sup_{i \geq 1} \frac{\psi_n}{\psi_i} \right) \left(\sup_n \sup_{x \in C} \frac{1}{\varphi_n} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) \right) = \infty.
\]

Therefore \((X_k) \notin m^F(M, \Lambda, \psi, \sigma, p)\), which is a contradiction. Therefore, \(\sup_{s \geq 1} \frac{\psi_s}{\psi_i} < \infty\). This completes the proof of the theorem. \(\square\)

Theorem 2.5. Let \(M = (M_k)\) be a Musielak-Orlicz function and \(p = (p_k)\) be a bounded sequence of positive real numbers, then \(m^F(M, \Lambda, \psi, \sigma, p) = m^F(M, \Lambda, \psi, \sigma, p)\) if and only if \(\sup_{s \geq 1} \frac{\psi_s}{\psi_i} < \infty\) and \(\sup_{s \geq 1} \frac{\psi_s}{\psi_i} < \infty\).

Proof. The proof directly follows from Theorem 2.4. \(\square\)

Theorem 2.6. Let \(M = (M_k)\) be a Musielak-Orlicz function and \(p = (p_k)\) be a bounded sequence of positive real numbers, then \(l^F(M, \Lambda, \sigma, p) \subset m^F(M, \Lambda, \psi, \sigma, p) \subset l^{\infty}_{\psi} (M, \Lambda, \sigma, p)\).

Proof. Let \((X_k) \notin l^F(M, \Lambda, \sigma, p)\), then we have
\[
\sup_n \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \infty.
\]
Since \((\varphi_n)\) is monotonic increasing, so we have
\[
\frac{1}{\varphi_k} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \frac{1}{\varphi_k} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \infty.
\]
Hence
\[
\sup_n \sup_{x \in C} \frac{1}{\varphi_k} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \infty.
\]
Thus \((X_k) \notin m^F(M, \Lambda, \psi, \sigma, p)\). Therefore \(l^F(M, \Lambda, \sigma, p) \subset m^F(M, \Lambda, \psi, \sigma, p)\). Next, let \((X_k) \in m^F(M, \Lambda, \psi, \sigma, p)\). Then, we have
\[
\sup_n \sup_{x \in C} \frac{1}{\varphi_k} \sum_{k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \infty.
\]
Thus,
\[
\sup_{k,n} \frac{1}{\varphi_k} M_k \left(\frac{d(A_k \psi_k^0, \bar{0})}{\rho} \right) < \infty, \quad \text{(on taking cardinality of } \sigma \text{ to be 1)}.
\]
Thus \((X_k) \notin l^F(M, \Lambda, \sigma, p)\). Hence \(m^F(M, \Lambda, \psi, \sigma, p) \subset l^{\infty}_{\psi} (M, \Lambda, \sigma, p)\). This completes the proof of the theorem. \(\square\)

Theorem 2.7. Let \(M = (M_k)\) be a Musielak-Orlicz function and \(p = (p_k)\) be a bounded sequence of positive real numbers, then \(m^F(M, \Lambda, \psi, \sigma, p) = l^F(M, \Lambda, \sigma, p)\) if and only if \(\sup_{s \geq 1} \frac{\psi_s}{\psi_i} < \infty\).
Proof. It is clear that $m^F(M,\Lambda,\varphi,\sigma,p) = l^p_1(M,\Lambda,\sigma,p)$ when $\psi_s = 1$ for all $s \in \mathbb{N}$. By Theorem 2.4, $m^F(M,\Lambda,\varphi,\sigma,p) \subset m^F(M,\Lambda,\psi,\sigma,p)$ if and only if $\sup_{s \geq 1} \frac{\varphi_s}{\psi_s} < \infty$, i.e. $\sup_{s \geq 1} \varphi_s < \infty$. Therefore by Theorem 2.6, $m^F(M,\Lambda,\varphi,\sigma,p) = l^p_1(M,\Lambda,\sigma,p)$ if and only if $\sup_{s \geq 1} \varphi_s < \infty$.

Acknowledgment. The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

References