One Invariant of Intrinsic Shape

Nikita Shekutkovskia, Aneta Velkoskab

aInstitute of Mathematics, Faculty of Natural Sciences and Mathematics, University of St. Cyril and Methodius, Skopje, Republic of Macedonia
bUniversity of Information Science and Technology St.Paul the Apostle, Faculty of Communication Networks and Security, Ohrid, Republic of Macedonia

Abstract. Based on the intrinsic definition of shape by functions continuous over a covering and corresponding homotopy we will define proximate fundamental group. We prove that proximate fundamental group is an invariant of pointed intrinsic shape of a space.

1. Introduction

The notion of shape was introduced by K. Borsuk in 1968 as a more appropriate tool than homotopy, for study of spaces with a complicated local structure. In the past fifty years thousands of papers are published concerning shape theory. One of the most important invariants of (pointed) shape are shape groups. Main references about shape are the books of Borsuk [1] and of Mardešić and Segal [5]. The approaches in both books are using external elements for describing shape of a space: neighborhoods in some external space where the original space is embedded, or an inverse sequence (system) of ANRs or polyhedra.

From the early beginning of shape theory a question was raised regarding the intrinsic description of shape of a space,i.e., construction without using external spaces.

In Felt [3] is described intrinsically a shape morphism between two compact metric spaces. In the same paper is proved indirectly that this notion is the same with the original definition of [1]. The description of [1] uses external spaces, namely embedding of compact metric space in Hilbert cube and considering a sequence of continuous maps – fundamental sequence, between neighborhoods of the embedded metric compacta.

In order to achieve an intrinsic definition, in [3] are considered nets of functions (\(f_V\)) indexed by coverings, each function \(f_V\) being continuous over a covering \(V\). However, the composition is not defined and thus it is not formed category.

Using a slightly different approach, with \(\varepsilon\) - continuous functions, in Sanjurjo [6] is formed the category by intrinsic approach.

In Shekutkovski et al. [7], using the fact that in compact metric space there exists a cofinal sequence of finite coverings \(\mathcal{V}_1 > \mathcal{V}_2 > ...\) i.e., for every covering \(\mathcal{V}\) there exists \(\mathcal{V}_n\) such that \(\mathcal{V}_n < \mathcal{V}\), the intrinsic shape is described by sequence of \(\mathcal{V}_n\) - continuous functions \((f_n)\). This approach enables easy definition
of composition of shape morphisms and shape category, and for the first time intrinsic definition of strong shape.

In the same paper is proved that definition of shape morphism coincides with definition of [3]. In Shekutkovski et al. [12] and [13] is proved that categories of Sanjurjo and Shekutkovski coincide, and that are the same with original Borsuk category for compact metric spaces.

For noncompact spaces, we cannot work with sequences. Instead, nets of functions \(f_N\) are used which are indexed by coverings from the set of coverings \(\text{Cov}_X\).

A generalization for noncompact spaces is given in Kieboom [4] with actually the same approach as presented in this article, and it is shown that for paracompact spaces the obtained intrinsic shape coincides with the notion of [5]. There, shape of a space is obtained by external approach with an inverse system approximating original space. It is known that this approach and original Borsuk approach give the same result for metric compacta.

In this paper we form the pointed intrinsic shape category of paracompact topological spaces based on nets of functions indexed by all coverings. This category is playing the role of pointed homotopy category, and we construct the first invariant of this category called proximate fundamental group.

2. Pointed homotopy over a covering

First we present some notions about collections of subsets from a fixed set. Let \(U\) and \(V\) are some collections of subsets of the topological space \(X\), \(U < V\) means that \(U\) refines \(V\), i.e., for any set \(U \in U\) there exists a set \(V \in V\) such that \(U \subset V\).

If \(U \in U\), then the star of \(U\) is the set \(s(U, U) = \{x \in W \mid \forall W \in U, W \cap U \neq \emptyset\}\).

By \(s(U)\) is denoted the collection of all \(s(U, U), U \in U\), i.e., \(s(U) = \{s(U, U) \mid U \in U\}\).

By a covering we understand an open covering, and the set of all coverings we denote by \(\text{Cov}_X\).

Let consider two paracompact topological spaces \(X\) and \(Y\). First we recall the definition of \(V\) - continuous function in [7] and [9].

Definition 2.1. Let \(V\) is a covering of \(Y\). A function \(f : X \to Y\) is \(V\) - continuous at the point \(x \in X\) if there exists a neighborhood \(U_x\) of \(x\) and \(V \in V\) such that \(f (U_x) \subseteq V\).

A function \(f : X \to Y\) is \(V\) - continuous on \(X\) if it is \(V\) - continuous at every point \(x \in X\). In this case, the family of all neighborhoods \(U_x\) form a covering \(U\) of \(X\). By this, the function \(f : X \to Y\) is \(V\) - continuous on \(X\) if there exists a covering \(U\) of \(X\), such that for any \(x \in X\) there exists a neighborhood \(U \in U\) of \(x\), and \(V \in V\) such that \(f (U) \subseteq V\). We denote: there exists a covering \(U\) such that \(f (U) \subseteq V\).

Remark 2.1. When \(X\) and \(Y\) are paracompact, it is enough to take \(U\) and \(V\) to be locally finite coverings, since locally finite coverings are cofinal in the set of all coverings.

Now, we define the pointed \(V\) - homotopy.

Definition 2.2. Let \(f, g : (X, x_0) \to (Y, y_0)\) are \(V\) - continuous functions and \(f (x_0) = g (x_0) = y_0\). We say that \(f\) and \(g\) are pointed \(V\) - homotopic functions if there exists a function \(F : (X \times I, x_0 \times I) \to (Y, y_0)\) such that:

1. \(F\) is \(V\) - continuous, which is \(V\) - continuous on \(X \times \partial I, \partial I = \{0, 1\}\);
2. \(F (x, 0) = f (x)\) and \(F (x, 1) = g (x)\) for all points \(x \in X\);
3. \(F (x_0, s) = f (x_0) = g (x_0) = y_0\) for all points \(s \in I\).

When two \(V\) - continuous functions \(f\) and \(g\) are pointed \(V\) - homotopic we denote as \(f \sim_{V} g (\text{rel} \{x_0\})\).

Proposition 2.1. The relation of pointed \(V\) - homotopy \(f \sim_{V} g (\text{rel} \{x_0\})\) of \(V\) - continuous functions is an equivalence relation.

Proof. The proof is the same as the proof of the Proposition 2.4 in [7] about unpointed homotopy. □
Remark 2.2. The definition of \(\mathcal{V} \)-homotopy between two functions \(f, g : X \to Y \) in \cite{4} (Definition 1.4, p. 703) requires to exist only \(\mathcal{V} \)-continuous function \(F : X \times I \to Y \) such that \(F(x, 0) = f(x) \) and \(F(x, 1) = g(x) \) for all points \(x \in X \).

However, this is not an equivalence relation, since the usual concatenation of homotopies given by the formula in the proof of Proposition 2.4, of \cite{7} is not always a \(\mathcal{V} \)-continuous function!

Proposition 2.2. Let \(X, Y, Z \) be topological spaces, \(x_0 \in X, y_0 \in Y, z_0 \in Z, g : (Y, y_0) \to (Z, z_0) \) is \(\mathcal{W} \)-continuous function and \(\mathcal{V} \) is a covering of \(Y \), such that \(g(\mathcal{V}) \prec \mathcal{W} \). If two \(\mathcal{V} \)-continuous functions \(f_1, f_2 : (X, x_0) \to (Y, y_0) \) are pointed \(\mathcal{V} \)-homotopic functions, i.e. \(f_1 \sim_{\mathcal{V}} f_2(\text{rel } x_0) \), then \(g \circ f_1 \sim_{\mathcal{W}} g \circ f_2(\text{rel } x_0) \).

Proof. By the conditions of the proposition, it follows that the compositions \(g \circ f_1, g \circ f_2 \) are also \(\mathcal{W} \)-continuous functions.

Since \(f_1, f_2 : (X, x_0) \to (Y, y_0) \) are pointed \(\mathcal{V} \)-homotopic, then there exists a function \(F : (X \times I, x_0 \times I) \to (Y, y_0) \) such that:

1. \(F \) is \(\text{st } (\mathcal{V}) \)-continuous, which is \(\mathcal{V} \)-continuous on \(X \times \partial I \);
2. \(F(x, 0) = f_1(x) \) and \(F(x, 1) = f_2(x) \) for all points \(x \in X \);
3. \(F(x_0, s) = f_1(x_0) = f_2(x_0) = y_0 \) for all points \(s \in I \).

Let consider a function \(K : (X \times I, x_0 \times I) \to (Z, z_0) \) defined by \(K(x, s) = (g \circ f)(x, s) \). Since \(g(\mathcal{V}) \prec \mathcal{W} \) implies \(g(\text{st } (\mathcal{V})) \prec \text{st } (\mathcal{W}) \). Also, \(F \) is \(\text{st } (\mathcal{V}) \)-continuous there exists an open covering \(\mathcal{U} \), such that \(F(\mathcal{U}) \prec (\text{st } (\mathcal{V})) \). We conclude that \((g \circ F)(\mathcal{U}) = g(F(\mathcal{U})) \prec g(\text{st } (\mathcal{V})) \prec \text{st } (\mathcal{W}) \). Therefore, the function \(K \) is \(\text{st } (\mathcal{W}) \)-continuous.

Since \(F \) is \(\mathcal{V} \)-continuous on \(X \times \partial I \), \(g(\mathcal{V}) \prec \mathcal{W} \) and \(g \) is \(\mathcal{W} \)-continuous function then it follows that \(K = g \circ F \) is \(\mathcal{W} \)-continuous on \(X \times \partial I \).

If \(x \in X \) is an arbitrary point, then \(K(x, 0) = (g \circ f)(x, 0) = g(F(x, 0)) = g(f_1(x)) = (g \circ f_1)(x) \) and \(K(x, 1) = (g \circ f)(x, 1) = g(F(x, 1)) = g(f_2(x)) = (g \circ f_2)(x) \).

Let \(s \in I \) is an arbitrary point, then \(K(x_0, s) = (g \circ f)(x_0, s) = g(F(x_0, s)) = g(f_1(x_0)) = (g \circ f_1)(x_0) = z_0 = (g \circ f_2)(x_0) \). Therefore, we showed that the functions \(g \circ f_1, g \circ f_2 \) are pointed \(\mathcal{W} \)-homotopic, i.e., \(g \circ f_1 \sim_{\mathcal{W}} g \circ f_2(\text{rel } x_0) \). \(\square \)

Proposition 2.3. Let \(G : (Y \times I, y_0 \times I) \to (Z, z_0) \) be a \(\text{st } (\mathcal{W}) \)-continuous function and \(\mathcal{W} \)-continuous on \(Y \times \partial I \). Then there exists a covering \(\mathcal{V} \) of \(Y \), such that for each \(\mathcal{V} \)-continuous function \(f : (X, x_0) \to (Y, y_0) \), the function \(G(f \times \text{id}) : (X \times I, x_0 \times I) \to (Z, z_0) \) is \(\text{st } (\mathcal{V}) \)-continuous, and \(\mathcal{W} \)-continuous on \(X \times \partial I \).

Proof. The unpointed version of this theorem is proved for compact metric case in \cite{7}, Theorem 3.0.5 and in noncompact case the proof actually remains the same. \(\square \)

3. Pointed proximate nets. Pointed intrinsic shape

Let consider two paracompact topological spaces \(X, Y, x_0 \in X, y_0 \in Y \). Now, we will define pointed proximate net from \((X, x_0) \) to \((Y, y_0) \).

Definition 3.1. A pointed proximate net from \((X, x_0) \) to \((Y, y_0) \) is a family \(f = (f_\mathcal{V} \mid \mathcal{V} \in \text{Cov } Y) \) of \(\mathcal{V} \)-continuous functions \(f_\mathcal{V} : (X, x_0) \to (Y, y_0) \), such that \(f_\mathcal{W} \sim_{\mathcal{V}} f_\mathcal{V}(\text{rel } x_0) \) whenever \(\mathcal{W} \prec \mathcal{V} \).

Definition 3.2. Two pointed proximate nets \(f \) and \(g \) from \((X, x_0) \) to \((Y, y_0) \) are pointed homotopic if \(f_\mathcal{V} \sim_{\mathcal{V}} g_\mathcal{V}(\text{rel } x_0) \) for all coverings \(\mathcal{V} \in \text{Cov } Y \). We denote by \(f \sim \overline{g}(\text{rel } x_0) \).

Proposition 3.1. The relation of pointed homotopy of pointed proximate nets is an equivalence relation. The pointed homotopy class of proximate net \(f \) from \((X, x_0) \) to \((Y, y_0) \) we will denote by \([f]_{x_0} \).
Proof. Let \(f = (f_V | V ∈ CovY) \) and \(g = (g_V | V ∈ CovY) \) be pointed homotopic pointed proximate nets from \((X, x_0)\) to \((Y, y_0)\). Therefore, for all coverings \(V ∈ CovY \) the \(V \)-continuous functions \(f_V \) and \(g_V \) are pointed \(V \)-homotopic. For all coverings \(V ∈ CovY \) by Proposition 2.1 the relation of pointed \(V \)-homotopy \(f_V \sim g_V \) of \(V \)-continuous functions is an equivalence relation. So, by the definition the relation of pointed homotopy of pointed proximate nets is an equivalence relation. \(\square \)

Now let introduce a notion of composition of pointed proximate nets \(f : (X, x_0) → (Y, y_0) \) and \(g : (Y, y_0) → (Z, z_0) \).

Let \(f = (f_V | V ∈ CovY) \) and \(g = (g_W | W ∈ CovZ) \).

Because \(g_W \) is \(W \)-continuous, then by the definition there exists an open covering \(\mathcal{V} \) of \(Y \) such that \(g_W(\mathcal{V}) \) is a pointed proximate net from \((Z, z_0)\).

We define \(h_W = g_W ∘ f_V : (X, x_0) → (Z, z_0) \). This function is \(W \)-continuous. Although the definition depends on the choice of \(\mathcal{V} \), the next Lemma shows that for two coverings \(\mathcal{V}, \mathcal{V}' ∈ CovY \) such that \(g_W(\mathcal{V}), g_W(\mathcal{V}') < W \) is true that \(g_W ∘ f_V ∼ g_W ∘ f_V'(rel \{x_0\}) \).

Lemma 3.1. If \(f \) is pointed proximate net and \(\mathcal{V}, \mathcal{V}' ∈ CovY \) such that \(g_W(\mathcal{V}), g_W(\mathcal{V}') < W \), \(W ∈ CovZ \). Then \(g_W ∘ f_V ∼ g_W ∘ f_V'(rel \{x_0\}) \).

Proof. Let \(\mathcal{V}' ∈ CovY \) be a common refinement of \(\mathcal{V} \) and \(\mathcal{V}' \), i.e., \(\mathcal{V}'' < \mathcal{V}, \mathcal{V}' \). Since \(f \) is pointed proximate net by the definition follows that \(f_{\mathcal{V}''} ∼ f_{\mathcal{V}}(rel \{x_0\}) \) and \(f_{\mathcal{V}''} ∼ f_{\mathcal{V'}}(rel \{x_0\}) \). By Proposition 2.2 it follows that \(g_W ∘ f_{\mathcal{V}''} ∼ g_W ∘ f_{\mathcal{V}}(rel \{x_0\}) \) and \(g_W ∘ f_{\mathcal{V}''} ∼ g_W ∘ f_{\mathcal{V'}}(rel \{x_0\}) \). From the transitivity of the pointed homotopy we conclude that \(g_W ∘ f_V ∼ g_W ∘ f_V'(rel \{x_0\}) \). \(\square \)

Now, we will show that the function \(h_W = g_W ∘ f_V : (X, x_0) → (Z, z_0) \) from the discussion above generates a pointed proximate net from \((X, x_0)\) to \((Z, z_0)\), i.e., we will show that for all \(W' < W \) is true that \(h_W = g_W ∘ f_V(rel \{x_0\}) \).

Let \(W' < W \) and since \(g \) is a pointed proximate net then \(g_W ∼ g_W'(rel \{y_0\}) \) by a pointed homotopy \(G \), which is \(st(\mathcal{W}) \)-continuous function and \(\mathcal{W} \)-continuous on \(Y \times \partial I \).

By Proposition 2.3 there exists a \(\mathcal{V}'' \) of \(Y \), such that for each \(\mathcal{V}'' \)-continuous function \(f_{\mathcal{V}''} : (X, x_0) → (Y, y_0) \), the function \(G(f_{\mathcal{V}''} × id) : (X × I, x_0 × I) → (Z, z_0) \) is \(st(\mathcal{W}) \)-continuous on \((X × I, x_0 × I)\), and \(\mathcal{W} \)-continuous on \(X × \partial I \).

It follows \(g_W ∘ f_{\mathcal{V}''} ∼ g_W ∘ f_V(rel \{x_0\}) \).

Now, consider \(h_W = g_W ∘ f_V \) and \(h_W = g_W ∘ f_V \) for some \(V' ∈ CovY, g_W(\mathcal{V'}) < W \) and a covering \(\mathcal{V} ∈ CovY, g_W(\mathcal{V}) < W \).

By Lemma 3.1, since \(g_W(\mathcal{V}), g_W(\mathcal{V'}) < W \) it follows that \(g_W ∘ f_{\mathcal{V}'} ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) \).

Now, consider a covering \(\mathcal{V}_1 \) of \(Y \), such that \(\mathcal{V}_1 < \mathcal{V}, \mathcal{V}' \). Since \(g_W(\mathcal{V}_1), g_W(\mathcal{V}') < W \), by Lemma 3.1, it follows that \(g_W ∘ f_{\mathcal{V}_1} ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) \).

Because \(\mathcal{V}' < W \) then \(g_W ∘ f_{\mathcal{V}_1} ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) \).

By Proposition 2.2 since \(f \) is a pointed proximate net i.e., \(f_{\mathcal{V}_1} ∼ f_{\mathcal{V}'}(rel \{x_0\}) \) and \(g_W(\mathcal{V}') < W \), then is true that \(g_W ∘ f_{\mathcal{V}_1} ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) \).

Therefore \(g_W ∘ f_{\mathcal{V}_1} ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) ∼ g_W ∘ f_{\mathcal{V}'}(rel \{x_0\}) \), i.e., we showed that \(h_W ∼ h_W(\{x_0\}) \).

Now we will give the following definition:

Definition 3.3. Let \([f]_{x_0} \) and \([g]_{y_0} \) are two pointed homotopy classes of pointed proximate nets. We define a composition of pointed homotopy classes \([f]_{x_0} \) and \([g]_{y_0} \) by \([g]_{y_0} ∘ [f]_{x_0} = [g ∘ f]_{x_0} \).
From the discussion above in order to show that this composition is well defined we have only to show that if \(\tilde{f} \sim f (\text{rel}\{x_0\}) \) and \(g \sim g (\text{rel}\{x_1\}) \) then \(h \sim h (\text{rel}\{x_0\}) \), where \(h \) and \(h \) are the compositions of pointed proximate nets \(f \) and \(g \), \(f \), respectively.

Since \(g \sim g (\text{rel}\{y_0\}) \) by a homotopy then for every \(W \in \text{CovZ} \) it is true that \(g \sim g (\text{rel}\{y_0\}) \) and by Proposition 2.3 there exists a covering \(U \in \text{CovY} \), \(g \sim W \), \(g \sim W \), \(\text{rel}\{\{y_0\}\} \) such that for \(\text{U} \) - continuous function \(f_U : (X, x_0) \rightarrow (Y, y_0) \) it is true that \(g \sim W \circ f_U \sim g \circ W \circ f_U (\text{rel}\{x_0\}) \).

From the definition of the composition of two pointed proximate nets there exist coverings \(V \) and \(V' \) of \(Y \) such \(g \sim W (V) \sim W \) and \(g \sim W (V') \sim W \) such \(h \sim W \sim g \circ W \sim W \) such \(h \sim W \sim g \circ W \sim W \) for all \(W \in \text{CovZ} \).

Therefore, \(h \sim h \sim (\text{rel}\{x_0\}) \).

By the definition of the composition of pointed proximate nets and \(\text{U} \) - continuous function the following Theorem is valid.

Theorem 3.1. Let \(\left[f_{x_0} \right] : (X, x_0) \rightarrow (Y, y_0) \), \(\left[g_{y_0} \right] : (Y, y_0) \rightarrow (Z, z_0) \) and \(\left[h_{z_0} \right] : (Z, z_0) \rightarrow (W, w_0) \) are three pointed homotopy classes of pointed proximate nets. Then \(\left[h_{z_0} \right] \circ \left[g_{y_0} \right] \circ \left[f_{x_0} \right] = \left[f_{x_0} \right] \circ \left[f_{x_0} \right] \circ \left[f_{x_0} \right] \).}

In this way we proved that the topological pointed spaces and pointed homotopy classes of pointed proximate nets form category of pointed intrinsic shape. We say that pointed topological spaces \((X, x_0) \) and \((Y, y_0) \) has same pointed intrinsic shape if they are isomorphic in this category.

4. Homotopy of \(\text{U} \) - paths

Let \(X \) be a topological space and \(I = [0, 1] \). Now, we recall some definitions introduced in Shekutkovski et al. [11].

Definition 4.1. Let \(\text{U} \) be an open covering of the space \(X \) and \(x_0, x_1 \in X \) are fixed points. The \(\text{st} (\text{rel}\{\text{U}\}) \) - continuous function \(k_{\text{U}} : I \rightarrow X \) which is \(\text{U} \) - continuous on \(\partial I = [0, 1] \) and \(k_{\text{U}}(0) = x_0, k_{\text{U}}(1) = x_1 \) is called \(\text{U} \) - path with endpoints \(x_0 \) and \(x_1 \).

Definition 4.2. Let \(\text{U} \) be an open covering of the space \(X \) and \(k_{\text{U}}, l_{\text{U}} : I \rightarrow X \) are \(\text{U} \) - paths with endpoints \(x_0 \) and \(x_1 \). We say that the \(\text{U} \) - paths \(k_{\text{U}} \) and \(l_{\text{U}} \) are \(\text{U} \) - homotopic paths if there exists a function \(F : I \times I \rightarrow X \) such that:

- (I) \(F \) is \(\text{st}^2 (\text{U}) \) - continuous;
- (II) \(F \) is \(\text{st} (\text{rel}\{\text{U}\}) \) - continuous on \(\partial I = [0, 1] \);
- (III) \(F \) is \(\text{U} \) - continuous on \(\partial I \); and satisfies the usual conditions for homotopy of paths relative endpoints

\[F (t, 0) = k_{\text{U}}(t) \text{ and } F (t, 1) = l_{\text{U}}(t) \text{ for all points } t \in I; \]
\[F (0, s) = k_{\text{U}}(0) = l_{\text{U}}(0) = x_0 \text{ and } F (s, 0) = k_{\text{U}}(1) = l_{\text{U}}(1) = x_1 \text{ for all elements } s \in I. \]

When two \(\text{U} \) - paths \(k_{\text{U}} \) and \(l_{\text{U}} \) with same endpoints are \(\text{U} \) - homotopic we denote as \(k_{\text{U}} \sim l_{\text{U}} \), i.e., \(k_{\text{U}} \sim l_{\text{U}} \).

Proposition 4.1. The relation of \(\text{U} \) - homotopy \(k_{\text{U}} \sim l_{\text{U}} (\text{rel}\{0, 1\}) \) of \(\text{U} \) - paths is an equivalence relation.
Proof. It is enough to prove transitivity of the relation. Let $k_{u}, l_{u}, p_{u}: I \to X$ are \mathcal{U} - paths in X such that $k_{u} \sim_{u} l_{u}$ (rel $[0,1]$) and $l_{u} \sim_{u} p_{u}$ (rel $[0,1]$). Then there exist U - homotopies relative endpoints $K: I \times I \to X$ and $L: I \times I \to X$ connecting the U - paths k_{u} and l_{u}, l_{u} and p_{u}, respectively.

We define a function $H: I \times I \to X$ by:

$$H(t,s) = \begin{cases} K(t,2s) = K \circ f(t,s), & 0 \leq s \leq \frac{1}{2} \\ L(t,2s-1) = L \circ g(t,s), & \frac{1}{2} \leq s \leq 1 \end{cases},$$

where the continuous functions f and g are defined by:

$$f: I \times \left[0, \frac{1}{2}\right] \to I \times I, f(t,s) = (t,2s) \text{ and } g: I \times \left[\frac{1}{2}, 1\right] \to I \times I, g(t,s) = (t,2s-1).$$

By Theorem 2.2 [7], since the compositions $K \circ f$ and $L \circ g$ are $st^2(U)$ - continuous on $I \times \left[0, \frac{1}{2}\right]$ and $I \times \left[\frac{1}{2}, 1\right]$, respectively and $st(U)$ - continuous on $I \times \left\{\frac{1}{2}\right\}$ the function H is $st^2(U)$ - continuous on $I \times I$.

By the definition of the function H and the facts that K and L are $st(U)$ - continuous on ∂I it follows that the function H is $st(U)$ - continuous on ∂I. Also, considering the definition of the function H since K and L are U - continuous at the points $(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$ then the function H is also U - continuous at these points.

Furthermore, $H(t,0) = K(t,0) = k_{u}(t)$ and $H(t,1) = L(t,1) = p_{u}(t)$ for all $t \in I$ and

$$H(0,s) = \begin{cases} K(0,2s), & 0 \leq s \leq \frac{1}{2} \\ L(0,2s-1), & \frac{1}{2} \leq s \leq 1 \end{cases} = \begin{cases} k_{u}(0), & 0 \leq s \leq \frac{1}{2} \\ l_{u}(0), & \frac{1}{2} \leq s \leq 1 \end{cases} = x_{0},$$

So, $k_{u} \sim_{u} p_{u}$ (rel $[0,1]$), i.e., the relation of U - homotopy relative endpoints is transitive. □

Let consider an open covering \mathcal{U} of the space X, and two \mathcal{U} - paths $k_{u}, l_{u}: I \to X$ such that $k_{u}(1) = l_{u}(0)$. We define a concatenation by:

$$(k_{u} \ast l_{u})(t) = \begin{cases} k_{u}(2t), & 0 \leq t \leq \frac{1}{2} \\ l_{u}(2t-1), & \frac{1}{2} \leq t \leq 1 \end{cases}.$$

By Theorem 2.2 in [7] the concatenation is well defined and $st(U)$ - continuous function. Also by the definition of U - paths $k_{u}, l_{u}: I \to X$ the concatenation $k_{u} \ast l_{u}$ is U - continuous on $\partial I = [0,1]$. Therefore, $k_{u} \ast l_{u}$ is U - path.

The proofs of the following two theorems are presented in [11].

Theorem 4.1. Let $k_{u}^{0}, k_{u}^{1}: I \to X$, $l_{u}^{0}, l_{u}^{1}: I \to X$ are \mathcal{U} - paths such that $k_{u}^{0} \sim_{u} k_{u}^{1}$ (rel $[0,1]$), $l_{u}^{0} \sim_{u} l_{u}^{1}$ (rel $[0,1]$) and the concatenations $k_{u}^{0} \ast_{u} l_{u}^{0}$ and $k_{u}^{1} \ast_{u} l_{u}^{1}$ are defined. Then $k_{u}^{0} \ast_{u} l_{u}^{0} \sim_{u} k_{u}^{1} \ast_{u} l_{u}^{1}$ (rel $[0,1]$).

Theorem 4.2. Let $k_{u}, l_{u}, p_{u}: I \to X$ are \mathcal{U} - paths in X and the concatenations $k_{u} \ast l_{u}$ and $l_{u} \ast p_{u}$ are defined, $k_{u}(1) = l_{u}(0)$ and $l_{u}(1) = p_{u}(0)$. Then $(k_{u} \ast l_{u}) \ast l_{u} \ast (l_{u} \ast p_{u})$ (rel $[0,1]$).

Let X be a topologic space and $x_{0} \in X$. The constant \mathcal{U} - path $c_{x_{0}}: I \to X$ is defined by $c_{x_{0}}(t) = x_{0}$, for all $t \in I$.

Definition 4.3. Let X be a topologic space and $k_{u}: I \to X$ is \mathcal{U} - path in X. The \mathcal{U} - path in X, $k_{u}^{-1}: I \to X$, defined by $k_{u}^{-1}(t) = k_{u}(1-t)$ is called inverse \mathcal{U} - path of the \mathcal{U} - path k_{u}. Notice that $(k_{u}^{-1})^{-1} = k_{u}$.
The proofs of the following three theorems follow the line of construction of the standard fundamental group (for example Shekutkovski [10]).

Theorem 4.3. Let $k_U : I \rightarrow X$ is U - path with endpoints x_0 and x_1. Then

1. $k_U \ast c_{x_0} \sim k_U (\text{rel} \{1, 0\})$
2. $c_{x_0} \ast k_U \sim k_U (\text{rel} \{1, 0\})$.

Proof.

a) First let represent the square $I \times I$ as union of two closed sets A_1 and A_2, i.e. $I \times I = A_1 \cup A_2$, where $A_1 = \{(t, s) \mid s \in I, 0 \leq t \leq \frac{s+1}{2}\}$, $A_2 = \{(t, s) \mid s \in I, \frac{s+1}{2} \leq t \leq 1\}$.

Let consider the following function defined by $a(t, s) = k_U \circ f(t, s)$, where $f(t, s) = \frac{2t}{s+1}$.

Now, we define a function $H : I \times I \rightarrow X$ by:

$$H(t, s) = \begin{cases} a(t, s), & (t, s) \in A_1 \\ x_1, & (t, s) \in A_2. \end{cases}$$

The function f defined on A_1 is continuous. The U - path k_U is $st(U)$ - continuous. So the function $a = k_U \circ f$ is $st(U)$ - continuous on A_1.

If $(t, s) \in A_1 \cap A_2 = \left\{ \left(\frac{s+1}{2}, s \right) \mid s \in I \right\}$, then $a(t, s) = k_U(1) = x_1$.

By Theorem 2.2 [7] since a and constant U - path c_{x_1} are $st(U)$ - continuous and equal on $A_1 \cap A_2$. The function H is $st^2(U)$ - continuous on $I \times I$.

The U - path k_U and constant U - path are U - continuous on $\partial l = [0, 1]$. By the definition of the function a and constant U - path c_{x_1} are 'U' - continuous functions at the vertices of the sets A_1 and A_2, respectively.

By the definition of the function H and the fact that a and constant U - path c_{x_1} are $st(U)$ continuous on ∂A_1 and ∂A_2, and U - continuous at the vertices of the sets A_1 and A_2, it follows that the function H is $st(U)$ - continuous on ∂l^2.

Considering the definition of the function H since a and constant U - path c_{x_1} are U - continuous at the points $(0, 0), (0, 1)$ and $(1, 0), (1, 1)$, respectively, the function H is U - continuous on

$$\partial l^2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}.$$

If $s = 0$

$$H(t, 0) = \begin{cases} k_U(2t), & 0 \leq t \leq \frac{1}{2} \\ x_1, & \frac{1}{2} \leq t \leq 1 \end{cases} = (k_U \ast c_{x_1})(t) \text{ for all } t \in I.$$

If $s = 1$

$$H(t, 1) = \begin{cases} k_U(t), & 0 \leq t \leq 1 \\ x_1, & 1 \leq t \leq 1 \end{cases} = k_U(t) \text{ for all } t \in I.$$

Let $s \in I$ is an arbitrary point. If $t = 0$ then $H(0, s) = k_U(0) = x_0$. If $t = 1$ then $H(1, s) = x_1$. Therefore, we showed that $k_U \ast c_{x_0} \sim k_U (\text{rel} \{0, 1\})$, as required.

b) First let represent the square $I \times I$ as union of two closed sets B_1 and B_2, i.e., $I \times I = B_1 \cup B_2$, where

$$B_1 = \{(t, s) \mid s \in I, 0 \leq t \leq \frac{1-s}{2}\}, B_2 = \{(t, s) \mid s \in I, \frac{1-s}{2} \leq t \leq 1\}.$$
Let consider the following function defined by $b(t,s) = k_U \circ g(t,s)$ where $g(t,s) = \frac{2t - 1 + s}{s + 1}$.

Now, we define a function $K : I \times I \to X$ by:

$$K(t,s) = \begin{cases} x_1, & (t,s) \in B_1 \\ b(t,s), & (t,s) \in B_2. \end{cases}$$

With similar discussion as in a) can be obtained that the function K is pointed \mathcal{U} - homotopy relative endpoints connecting the \mathcal{U} - paths $c_x \ast k_U$ and k_U. □

Theorem 4.4. Let $k_U, l_U : I \to X$ be \mathcal{U} - paths in X such that $k_U \sim l_U (\text{rel} \{0,1\})$. Then $k_U^{-1} \sim l_U^{-1} (\text{rel} \{0,1\})$.

Proof. Because $k_U \sim l_U (\text{rel} \{0,1\})$ there exists a function $K : I \times I \to X$ connecting the \mathcal{U} - paths k_U and l_U.

Let define a function $H : I \times I \to X$ by: $H(t,s) = K(1 - t, s)$.

All conditions (I) - (III) from the Definition 4.2 are valid for the function H by its definition.

Now, if $s = 0$ then $H(t,0) = K(1 - t, 0) = k_U(1 - t) = k_U^{-1}(t)$ for all $t \in I$; if $s = 1$ then $H(t,1) = H(t, 1) = K(1 - t, 1) = l_U(1 - t) = l_U^{-1}(t)$ for all $t \in I$

Let $s \in I$ is an arbitrary point. If $t = 0$ then $H(0,s) = K(1 - 0, s) = K(1,s) = k_U(1) = k_U^{-1}(0)$. If $t = 1$ then $H(1,s) = K(1 - 1, s) = K(0,s) = l_U(0) = l_U^{-1}(1)$.

Therefore, we showed that $k_U^{-1} \sim l_U^{-1} (\text{rel} \{0,1\})$ as required. □

Theorem 4.5. Let $k_U : I \to X$ is \mathcal{U} - path in X such that $k_U(0) = x_0$ and $k_U(1) = x_1$. Then is true that $k_U \ast k_U^{-1} \sim c_x (\text{rel} \{0,1\})$.

Proof. By the definition of concatenation:

$$\left(k_U \ast k_U^{-1} \right) (t) = \begin{cases} k_U(2t), & 0 \leq t \leq \frac{1}{2} \\ k_U^{-1}(2t - 1), & 0 \leq t \leq \frac{1}{2} \end{cases} = \begin{cases} k_U(2t), & 0 \leq t \leq \frac{1}{2} \\ k_U^{-1}(2 - 2t), & 0 \leq t \leq \frac{1}{2}. \end{cases}$$

Let represent the square $I \times I$ as union of two closed sets A and B, i.e $I \times I = A \cup B$, where

$$A = \{(t,s) \mid s \in I, 0 \leq t \leq \frac{1}{2}\}, B = \{(t,s) \mid s \in I, \frac{1}{2} \leq t \leq 1\}.$$

We consider the following functions defined by:

$a(t,s) = k_U \circ f(t,s)$, where $f(t,s) = 2t(1 - s)$ and $b(t,s) = k_U \circ g(t,s)$, where $g(t,s) = (2 - 2t)(1 - s)$.

Now define a function $H : I \times I \to X$ by:

$$H(t,s) = \begin{cases} a(t,s), & (t,s) \in A \\ b(t,s), & (t,s) \in B. \end{cases}$$

We can verify all conditions (I) - (III) from the Definition 4.2 for the function H with similar discussion as the proof of the Theorem 4.3.

Now, if $s = 0$ then

$$H(t,0) = \begin{cases} k_U(2t), & 0 \leq t \leq \frac{1}{2} \\ k_U(2 - 2t), & \frac{1}{2} \leq t \leq 1 \end{cases} = \left(k_U \ast k_U^{-1} \right) (t) \text{ for all } t \in I.$$

If $s = 1$ then

$$H(t,1) = k_U(0) = x_0 \text{ for all } t \in I.$$

Let $s \in I$ is an arbitrary point. If $t = 0$ then $H(0,s) = k_U(0) = x_0$, and if $t = 1$ then $H(1,s) = k_U(0) = \left(k_U \ast k_U^{-1} \right) (1)$.

Therefore, we showed that $k_U \ast k_U^{-1} \sim c_x (\text{rel} \{0,1\})$, as required. □
5. Proximate fundamental group

Proximate fundamental group is defined in [11]. Now, we recall the definition and prove that it is invariant of pointed shape category.

Definition 5.1. Let \(\mathcal{U} \) is an open covering of the space \(X \) and \(x_0 \in X \) is a fixed point. The \(\mathcal{U} \)-path \(k_\mathcal{U} : I \to X \) such that \(k_\mathcal{U}(0) = k_\mathcal{U}(1) = x_0 \) is called \(\mathcal{U} \)-loop in \(x_0 \).

The homotopy class of \(\mathcal{U} \)-loops in \(x_0 \), \(k_\mathcal{U} : I \to X \) we will denote by \([k_\mathcal{U}]_{x_0}\).

Definition 5.2. A proximate loop in \(x_0 \) (over \(\text{Cov}X \)) is a family \(k = (k_\mathcal{U} \mid \mathcal{U} \in \text{Cov}X) \) such that \(k_\mathcal{U} \sim k_{\mathcal{U}} \) (rel \(\{0,1\} \)) for all \(\mathcal{V} < \mathcal{U} \).

We can denote the proximate loop also by \(k = (k_\mathcal{U})_{\mathcal{U} \in \text{Cov}X} \).

Definition 5.3. Two proximate loops \(k \) and \(l \) in \(x_0 \) are homotopic over all coverings if \(k_\mathcal{U} \sim l_\mathcal{U} \) (rel \(\{0,1\} \)) for all \(\mathcal{U} \in \text{Cov}X \). We denote that by \(k \sim l \) (rel \(\{0,1\} \)).

Proposition 5.1. The relation \(k \sim l \) (rel \(\{0,1\} \)) is an equivalence relation. The homotopy class of proximate loop \(k \) in \(x_0 \) is denoted by \([k]_{x_0} \).

Proof. Let \(k = (k_\mathcal{U} \mid \mathcal{U} \in \text{Cov}X) \) and \(l = (l_\mathcal{U} \mid \mathcal{U} \in \text{Cov}X) \) be two homotopic proximate loops in \(x_0 \). Therefore, \(k_\mathcal{U} \sim l_\mathcal{U} \) (rel \(\{0,1\} \)) for all coverings \(\mathcal{U} \in \text{Cov}X \). For all coverings \(\mathcal{U} \in \text{Cov}X \) by Proposition 4.1 the relation of \(\mathcal{U} \)-homotopy relative endpoints \(k_\mathcal{U} \sim l_\mathcal{U} \) (rel \(\{0,1\} \)) of \(\mathcal{U} \)-loops is an equivalence relation. So, the relation of homotopy of proximate loops is an equivalence relation.

We consider the following set:

\[
\text{prox}_1(X, x_0) = \left\{ [k]_{x_0} \mid k \text{ is proximate loop in } x_0 \right\}.
\]

In this set we define an operation “\(*\)” by: \([k]_{x_0} \ast [l]_{x_0} = [k \ast l]_{x_0} \), where \(k \ast l \) is defined as: \(k \ast l = (k_\mathcal{U} \ast l_\mathcal{U} \mid \mathcal{U} \in \text{Cov}X) \).

We will show that this operation is well defined.

First we will find that \(k \ast l \) is proximate loop in \(x_0 \). By the definition of the composition of two \(\mathcal{U} \)-loops for all \(\mathcal{U} \in \text{Cov}X \) the function \(k_\mathcal{U} \ast l_\mathcal{U} \) is \(\mathcal{U} \)-loop in \(x_0 \). Now, let consider any \(\mathcal{V} < \mathcal{U} \). Since \(k \) and \(l \) are proximate loops then \(k_\mathcal{V} \sim k_\mathcal{U} \) (rel \(\{0,1\} \)) and \(l_\mathcal{V} \sim l_\mathcal{U} \) (rel \(\{0,1\} \)), so by Proposition 1.3 (iii) [4] and Theorem 4.1 it is true that \(k_\mathcal{V} \ast l_\mathcal{V} \sim k_\mathcal{U} \ast l_\mathcal{U} \) (rel \(\{0,1\} \)). Therefore, \(k \ast l \) is proximate loop in \(x_0 \).

Now, by Theorem 4.1 if \(k_\mathcal{U}^0 \ast k_\mathcal{U}^1 : I \to X \), \(l_\mathcal{U}^0 \ast l_\mathcal{U}^1 : I \to X \) are \(\mathcal{U} \)-loops in \(x_0 \) such that \(k_\mathcal{U}^0 \sim k_\mathcal{U}^1 \) (rel \(\{0,1\} \)), \(l_\mathcal{U}^0 \sim l_\mathcal{U}^1 \) (rel \(\{0,1\} \)) then is true that \(k_\mathcal{U}^0 \ast l_\mathcal{U}^0 \sim k_\mathcal{U}^1 \ast l_\mathcal{U}^1 \) (rel \(\{0,1\} \)).

Therefore, the operation “\(*\)” in the set \(\text{prox}_1(X, x_0) \) is well defined.

Theorem 5.1. The set \(\text{prox}_1(X, x_0) \) with the operation “\(*\)” is group. This group \(\text{prox}_1(X, x_0) \) is called proximate fundamental group.

Proof. Associativity: Let \([k]_{x_0} \ast [l]_{x_0} \) and \([p]_{x_0} \) are homotopy class of proximate loops in \(x_0 \). We should show that:

\[
([k]_{x_0} \ast [l]_{x_0}) \ast [p]_{x_0} = [k]_{x_0} \ast ([l]_{x_0} \ast [p]_{x_0})
\] (1)
For the left side of the equation (1) is true the following identity:

\[
(\left[k \right]_{x_0} \ast \left[l \right]_{x_0}) \ast \left[p \right]_{x_0} = \left[k \ast l \right]_{x_0} \ast \left[p \right]_{x_0} = \left[(k \ast l) \ast p \right]_{x_0},
\]

and for the right side of (1) is true:

\[
\left[k \right]_{x_0} \ast \left(\left[l \right]_{x_0} \ast \left[p \right]_{x_0} \right) = \left[k \ast (l \ast p) \right]_{x_0} = \left[k \ast (l \ast p) \right]_{x_0}.
\]

So, to show that the equation (1) is true is enough to show that \(\left[(k \ast l) \ast p \right]_{x_0} = \left[k \ast (l \ast p) \right]_{x_0} \), i.e., that the proximate loops \((k \ast l) \ast p\) and \(k \ast (l \ast p)\) are homotopic over all coverings.

Let \(k_U \), \(l_U \) and \(p_U \) are \(U \)-loops in \(x_0 \) for an arbitrary covering \(U \in CovX \). Then by Theorem 4.3 \(k_U \ast l_U \sim k_U \ast (l_U \ast p_U) (rel \{0, 1\}) \) for any covering \(U \in CovX \). Therefore, \((k \ast l) \ast p \sim k \ast (l \ast p) (rel \{0, 1\}) \)

i.e., \(\left[(k \ast l) \ast p \right]_{x_0} = \left[k \ast (l \ast p) \right]_{x_0} \).

Therefore the associative law for the operation “\(*\)” in the set \(prox\pi_1(X, x_0) \) is true.

Identity element: It is the homotopy class \(\left[c_{x_0} \right]_{x_0} \) of the constant proximate loop in \(x_0 \) defined by the constant \(U \)-loop \(c_{x_0} \) in \(x_0 \).

Let \(k_U \) is \(U \)-loop in \(x_0 \) for an arbitrary covering \(U \in CovX \). Then for an arbitrary covering \(U \in CovX \) by Theorem 4.3 \(k_U \ast c_{x_0} \sim k_U (rel \{0, 1\}) \) and \(c_{x_0} \ast k_U \sim k_U (rel \{0, 1\}) \).

Therefore, \(k \ast c_{x_0} \sim k (rel \{0, 1\}) \) and \(c_{x_0} \ast k \sim k (rel \{0, 1\}) \), i.e., \(\left[k \ast c_{x_0} \right]_{x_0} = \left[k \right]_{x_0} \) and \(\left[c_{x_0} \ast k \right]_{x_0} = \left[k \right]_{x_0} \).

By the definition of the operation “\(*\)” in the set \(prox\pi_1(X, x_0) \) the following identities are true:

\[
\left[k \right]_{x_0} \ast \left[c_{x_0} \right]_{x_0} = \left[k \ast c_{x_0} \right]_{x_0} = \left[k \right]_{x_0} \) and \(\left[c_{x_0} \ast k \right]_{x_0} = \left[c_{x_0} \ast k \right]_{x_0} = \left[k \ast c_{x_0} \right]_{x_0} = \left[k \right]_{x_0} \).
\]

Inverse element: An inverse element of a homotopy class \(\left[k \right]_{x_0} \) of a proximate loop in \(x_0 \) is the homotopy class \(\left[k^{-1} \right]_{x_0} \) of the proximate loop \(k^{-1} = (k^{-1}_U \mid U \in CovX) \) defined by the inverse \(U \)-loop of the \(U \)-loop \(k_U \) in \(x_0 \). For any covering \(U \in CovX \) by Theorem 4.5 \(k_U \ast k_U^{-1}_U \sim c_{x_0} (rel \{0, 1\}) \) and \(k_U^{-1}_U \ast k_U \sim c_{x_0} (rel \{0, 1\}) \).

So, \(\left[k \right]_{x_0} \ast \left[k^{-1} \right]_{x_0} = \left[k \ast k^{-1} \right]_{x_0} = \left[c_{x_0} \right]_{x_0} \) and \(\left[k^{-1} \right]_{x_0} \ast \left[k \right]_{x_0} = \left[k^{-1} \ast k \right]_{x_0} = \left[c_{x_0} \right]_{x_0} \).

Therefore, the set \(prox\pi_1(X, x_0) \) with the operation “\(*\)” is a group.

Let \(X \) and \(Y \) be topological spaces, and \(f = (f_V \mid V \in CovY) \) is a pointed proximate net from \((X, x_0)\) to \((Y, y_0)\).

Now, to the proximate net \(f \) we can associate an **induced function** \(f_{prox} : prox\pi_1(X, x_0) \to prox\pi_1(Y, y_0) \) defined in the following way:

Let \(\left[k \right]_{x_0} \in prox\pi_1(X, x_0) \), where \(k = (k_U \mid U \in CovX) \) is a proximate loop in \(x_0 \). Since the proximate loop is a proximate net, if we define a proximate net \(p = (p_V \mid V \in CovY) \) as a composition of proximate nets \(k = (k_U \mid U \in CovX) \) and \(f = (f_V \mid V \in CovY) \), i.e., \(p = f \circ k = p_V \circ k_U \mid V \in CovY \), we obtain a proximate loop in \(y_0 \). Finally, we define:

\[
f_{prox}(\left[k \right]_{x_0}) = [p]_{y_0}.
\]

Let \(k^0 \) and \(k^1 \) are proximate loops in \(x_0 \) from the same homotopy class of proximate loop \(\left[k \right]_{x_0} \). So there exists a homotopy \(K \) between the proximate loops \(k^0 \) and \(k^1 \). Then the proximate loops \(f \circ k^0 \) and \(f \circ k^1 \) are homotopic by a homotopy \(f \circ K \). Therefore the induced function \(f_{prox} \) is well defined.

Theorem 5.2. Let \(X \) and \(Y \) are topological spaces, \(f = (f_V \mid V \in CovY) \) is a pointed proximate net from \((X, x_0)\) to \((Y, y_0)\). Then the induced function \(f_{prox} : prox\pi_1(X, x_0) \to prox\pi_1(Y, f(x_0)) \) is homomorphism.
Proof. Let $[k]_{x_0}$, $[l]_{x_0} \in \prox \pi_1 (X, x_0)$. We should show that:

$$f_{\text{prox}}([k]_{x_0} \ast [l]_{x_0}) = f_{\text{prox}}([k]_{x_0}) \ast f_{\text{prox}}([l]_{x_0})$$

Because

$$f_{\text{prox}}([k]_{x_0} \ast [l]_{x_0}) = f_{\text{prox}}([k \ast l]_{x_0}) = f_{\text{prox}}(kU \ast lU)_{U \in \text{covering}}|_{x_0} = [(f_V \circ kU) \ast (f_V \circ lU)]_{V \in \text{covering}}|_{y_0}$$

and

$$f_{\text{prox}}([k]_{x_0}) \ast f_{\text{prox}}([l]_{x_0}) = [(f_V \circ kU)_{V \in \text{covering}}|_{y_0} \ast (f_V \circ lU)_{V \in \text{covering}}|_{y_0}] = [(f_V \circ kU) \ast (f_V \circ lU)]_{V \in \text{covering}}|_{y_0},$$

we should show that $[(f_V \circ kU) \ast (f_V \circ lU)]_{V \in \text{covering}}|_{y_0} = [(f_V \circ kU) \ast (f_V \circ lU)]_{V \in \text{covering}}|_{y_0}$.

The equality follows since $(f_V \circ kU) \ast (f_V \circ lU))(t) = f_V(kU(2t)), \ 0 \leq t \leq \frac{1}{2}$ and $f_V(lU(2t-1)), \ \frac{1}{2} \leq t \leq 1$.

Since the proximate loop is a proximate net by Theorem 3.1 the following Theorem is valid:

Theorem 5.3. Let $f = (f_V \mid V \in \text{covering})$, $f_V : (X, x_0) \to (Y, y_0)$ is V - continuous, and $g = (g_W \mid W \in \text{covering})$, $g_W : (Y, y_0) \to (Z, z_0)$ is W - continuous, are two proximate nets. For any $[k]_{x_0} \in \prox \pi_1 (X, x_0)$ is true that:

$$(g \circ f)_{\text{prox}}([k]_{x_0}) = g_{\text{prox}}(f_{\text{prox}}([k]_{x_0}))$$

Theorem 5.4. Let $f = (f_V \mid V \in \text{covering})$, $f_V : (X, x_0) \to (Y, y_0)$ is V - continuous, and $f' = (f'_V \mid V \in \text{covering})$, $f'_V : (X, x_0) \to (Y, y_0)$ is V' - continuous, are two proximate nets. For any proximate loop in x_0 if f and f' are homotopic then proximate loops in y_0, $f \circ k$ and $f' \circ k$ are homotopic.

Proof. If f and f' are homotopic there exists a homotopy F connecting f and f'. For a covering V of Y we choose a covering \mathcal{U} of X as in Proposition 2.3. Then $L = (L_V)$, where $L_V = F_V(kU \times id) : I \times I \to Y$ is a proximate net. Since $L_V(t, 0) = F_V(kU(t))$ and $L_V(1, t) = F_V(kU(t))$ for all $t \in I$, and $L_V(0, 0) = F_V(x_0, s) = y_0$ and $L_V(1, 1) = F_V(x_0, s) = y_0$ for all $s \in I$, we have only to check the conditions (I), (II), (III) of Definition 4.2.

(I) By Proposition 2.3 the function $kU \times id : I \times I \to X \times I$ is $st'(\mathcal{U})$ - continuous. And $F_V : X \times I \to Y$ is $st'(V)$ - continuous. It follows L_V is $st^2(V)$ - continuous.

(II) For $(0, s)$ from $\partial I^2 = \partial (I \times I)$, since $kU \times id \in \mathcal{U}$ - continuous at point $(0, s)$ and F_V is $st'(V)$ - continuous at $(x_0, s) = (kU \times id)(0, s)$, it follows L_V is $st'(V)$ - continuous at point $(0, s)$. Similar for $(1, s)$.

For $(t, 0)$ from $\partial I^2 = \partial (I \times I)$, since $kU \times id \in \mathcal{U}$ - continuous at point $(t, 0)$ and F_V is $st'(V)$ - continuous at $(kU(t), 0) = (kU \times id)(t, 0)$ it follows L_V is $st'(V)$ - continuous at point $(t, 0)$. Similar for $(1, s)$.

(III) For $(0, 0)$ from ∂I^2, since $kU \times id \in \mathcal{U}$ - continuous at point $(0, 0)$ and F_V is V' - continuous at $(x_0, 0) = (kU \times id)(0, 0)$, it follows L_V is V' - continuous at $(0, 0)$. Similar for all other points $(1, 0), (0, 1)$ and $(1, 1)$ from ∂I^2.

We proved that $L = (L_V)$ is homotopy connecting $f \circ k$ and $f' \circ k$ as required.

By Theorems 5.2, 5.3 and 5.4 we obtain the following result

Theorem 5.5. Associating $\prox \pi_1 (X, x_0)$ to a pointed topological space (X, x_0) and associating to a proximate net $[f]_s$, the homomorphism $f_{\text{prox}} : \prox \pi_1 (X, x_0) \to \prox \pi_1 (Y, f(x_0))$ we obtain a functor from category of pointed intrinsic shape to category of groups.
Proof. Let consider the functor defined above from the category of pointed intrinsic shape to the category of groups.

By Theorems 5.2 and 5.4 this functor is well defined. By Theorem 5.3 it preserves composition of morphisms.

At last, we have to show that it preserves the identity morphisms.

Let \([f] \) be an arbitrary morphism in the category of pointed intrinsic shape from \((X, x_0)\) to \((Y, y_0)\). We consider the pointed homotopy class \([1_X]_{x_0} \) of pointed proximate net \(1_X \) defined with the identity function \(1_X \). By Definition 3.3 the following identities are true:

\[
[f] \circ [1_X]_{x_0} = [f \circ 1_X]_{x_0} = [f]_{x_0},
\]

So, an identity morphism in the category of pointed intrinsic shape is the pointed homotopy class of \([1_X]_{x_0}\) pointed proximate net \(1_X\) defined with the identity function \(1_X\) in the topological space \(X\).

The induced function \(1_{\text{prox}} : \text{prox}(X, x_0) \to \text{prox}(X, x_0)\) associated to the identity morphism is defined in the following way: \(1_{\text{prox}}([k]_{x_0}) = [1_X \circ k]_{x_0}\), where \([k]_{x_0}\) is the homotopy class of the proximate loop \(k = (k_U | U \in \text{Cov}X)\) in \(x_0\). Since \(1_{\text{prox}}([k]_{x_0}) = [1_X \circ k]_{x_0} = [k]_{x_0} = 1_{\text{prox}}(1)\), we conclude that the function from the category of pointed intrinsic shape to category of groups preserves the identity morphisms. □

By this theorem we proved that \(\text{prox}(X, x_0)\) is an invariant of pointed intrinsic shape of a pointed space \((X, x_0)\). If \((X, x_0)\) and \((Y, y_0)\) have same pointed intrinsic shape then their proximate fundamental groups are isomorphic.

Example 5.1. The proximate fundamental group of a circle and Warsaw circle are isomorphic to additive group of integers.

Proof. Notions of shape and homotopy for finite polyhedra coincide. So, there is \(1 - 1\) correspondence between homotopy classes of pointed maps \((S^1, 1) \to (S^1, 1)\) and homotopy classes of pointed proximate nets \((S^1, 1) \to (S^1, 1)\).

We consider the unit circle \(S^1\) in the complex plain and define maps \(f^n : (S^1, 1) \to (S^1, 1)\) by \(f^n(z) = z^n, n \in \mathbb{Z}\).

Then, the only classes of pointed homotopy of maps \((S^1, 1) \to (S^1, 1)\) are \([f^n]\), \(n \in \mathbb{Z}\), and these are exactly the elements of the fundamental group of the circle, i.e., \(\pi_1(S^1) = \{[f^n] | n \in \mathbb{Z}\}\).

Since there is \(1 - 1\) correspondence between homotopy classes of pointed maps \((S^1, 1) \to (S^1, 1)\) and homotopy classes of pointed proximate nets \((S^1, 1) \to (S^1, 1)\), the only pointed homotopy classes of pointed proximate nets \((S^1, 1) \to (S^1, 1)\) are \([f^n]\), \(n \in \mathbb{Z}\), where the proximate net \((f^n)\) is defined by \(f^n = f^n\) for all coverings \(V\). The pointed homotopy classes of pointed proximate nets \([f^n]\), \(n \in \mathbb{Z}\), are exactly the elements of the proximate fundamental group of the circle, i.e., \(\text{prox}(S^1) = \{[f^n] | n \in \mathbb{Z}\}\).

The operation “*” in fundamental group of a circle is defined by concatenation of paths. It is well known that the definition leads to \([f^n] * [f^m] = [f^{n+m}]\), i.e., the fundamental group of a circle is isomorphic to additive group of integers (for example, see [10]).

Since the operation “*” in proximate fundamental group of a circle is defined also by concatenation of paths then the operation in \(\text{prox}(S^1)\) is given by

\[
[(f^n)] * [(f^m)] = [(f^{n+m})].
\]

Then, with \([f^n] \to [(f^n)]\) is defined a natural isomorphism \(\pi_1(S^1) \to \text{prox}(S^1)\), between fundamental group and proximate fundamental group of the circle.

Finally, by Theorem 5.5 the proximate fundamental group is an invariant of pointed intrinsic shape. Since a circle and Warsaw circle have the same shape, they also have the same intrinsic shape and isomorphic proximate fundamental groups. □
References