New Hybrid Conjugate Gradient Method as a Convex Combination of FR and PRP Methods

Snezana S. Djordjevic

Abstract. We consider a new hybrid conjugate gradient algorithm, which is obtained from the algorithm of Fletcher-Reeves, and the algorithm of Polak-Ribiére-Polyak. Numerical comparisons show that the present hybrid conjugate gradient algorithm often behaves better than some known algorithms.

1. Introduction

We consider the nonlinear unconstrained optimization problem

\[\min \{ f(x) : x \in \mathbb{R}^n \}, \tag{1.1} \]

where \(f : \mathbb{R}^n \to \mathbb{R} \) is a continuously differentiable function, bounded from below.

There are many different methods for solving the problem (1.1). We are interested in conjugate gradient methods, which have low memory requirements and strong local and global convergence properties.

For solving the problem (1.1), we consider the conjugate gradient method, which starts from an initial point \(x_0 \in \mathbb{R}^n \) and generates a sequence \(\{x_k\} \subset \mathbb{R}^n \) as follows

\[x_{k+1} = x_k + t_k d_k, \tag{1.2} \]

where \(t_k > 0 \) is a step size, received from the line search, and the directions \(d_k \) are given by [2], [4]

\[d_0 = -g_0, \quad d_{k+1} = -g_{k+1} + \beta_k s_k. \tag{1.3} \]

In the relation (1.3) \(\beta_k \) is the conjugate gradient parameter, \(s_k = x_{k+1} - x_k \), \(g_k = \nabla f(x_k) \).

Let the norm \(\| \cdot \| \) be the Euclidean norm.

The standard Wolfe line search conditions are frequently used in the conjugate gradient methods; these conditions are given by [30], [31]

\[f(x_k + t_k d_k) - f(x_k) \leq \delta t_k g_k^T d_k, \tag{1.4} \]

2010 Mathematics Subject Classification. 90C30.

Keywords. Hybrid conjugate gradient method; Convex combination; Conjugacy condition.

Received: 31 August 2014; Accepted: 16 September 2014

Communicated by Predrag Stanimirović

Email address: snezanadjordjevic1971@gmail.com (Snežana S. Djordjević)
where \(d_k \) is a descent direction and \(0 < \delta \leq \sigma < 1 \).

Strong Wolfe conditions consist of (1.4) and the next stronger version of (1.5)

\[
|g_{k+1}^T d_k| \leq -\sigma g_k^T d_k.
\]

(1.6)

In the generalized Wolfe conditions [12], the absolute value in (1.6) is replaced by a pair of inequalities:

\[
\sigma_1 g_k^T d_k \leq g_{k+1}^T d_k \leq -\sigma_2 g_k^T d_k, \quad 0 < \sigma_1 < 1, \quad \sigma_2 \geq 0.
\]

(1.7)

Now, let us denote

\[
y_k = g_{k+1} - g_k.
\]

(1.8)

There are many conjugate gradient methods; a great contribution in this sphere is given by Hager and Zhang [19]. Different conjugate gradient methods correspond to different values of the scalar parameter \(\beta_k \).

Hybrid conjugate gradient methods combine different conjugate gradient methods to improve the behavior of these methods and to avoid the jamming phenomenon.

In order to choose the parameter \(\beta_k \) for the method in the present paper, we mention the following choices of \(\beta_k \) [2]:

Fletcher and Reeves: [17] \(\beta_k^{\text{FR}} = \frac{\|g_{k+1}\|^2}{\|y_k\|^2} \).

(1.9)

Dai and Yuan: [11] \(\beta_k^{\text{DY}} = \frac{\|g_{k+1}\|^2}{y_k^T s_k} \).

(1.10)

Conjugate Descent, proposed by Fletcher: [16] \(\beta_k^{\text{CD}} = \frac{\|g_{k+1}\|^2}{-g_k^T s_k} \).

(1.11)

The conjugate gradient methods with the choice of \(\beta_k \) taken in (1.9), (1.10) and (1.11), have strong convergence properties and, in the same time, they may have modest practical performance, due to jamming [2], [3].

On the other hand, methods of Polak-Ribiére [24] and Polyak (PRP) [25], Hestenes and Stiefel (HS) [20] and also Liu and Storey [22] in general may not be convergent, but usually they have better computer performances [2], [3]. The choices of \(\beta_k \) in these methods are, respectively [2]:

\[
\beta_k^{\text{PRP}} = \frac{g_{k+1}^T y_k}{\|y_k\|^2},
\]

(1.12)

\[
\beta_k^{\text{HS}} = \frac{g_{k+1}^T y_k}{y_k^T s_k},
\]

(1.13)

\[
\beta_k^{\text{LS}} = \frac{g_{k+1}^T y_k}{-g_k^T s_k}.
\]

(1.14)

We will use good convergence properties of the first group of methods and, in the same time, good computational performances of the second one; here we want to exploit choices of \(\beta_k \) in (1.9) and (1.12).
Touati-Ahmed and Storey [29] introduced one of the first hybrid conjugate gradient algorithms, calculating the parameter β_k as:

$$
\beta_{k}^{\text{TAS}} = \begin{cases}
\beta_{k}^{\text{PRP}} = \frac{g_{k+1}^T y_k}{\|g_{k+1}\|^2}, & \text{if } 0 \leq \beta_{k}^{\text{PRP}} \leq \beta_{k}^{\text{FR}}, \\
\beta_{k}^{\text{FR}} = \frac{\|g_{k+1}\|^2}{\|g_{k}\|^2}, & \text{otherwise.}
\end{cases}
$$

(1.15)

When the iterations jam, the method of Touati-Ahmed and Storey use PRP computational scheme, having in view that PRP method has a built-in restart feature that directly addresses to jamming. Namely, when s_k is small, then the factor y_k in the formula for β_{k}^{PRP} tends to zero, β_{k}^{PRP} becomes smaller and smaller, and the search direction d_{k+1} is very close to the steepest direction $-g_{k+1}$.

Hu and Storey [21] introduced another hybrid conjugate gradient method with the following choice of β_k:

$$
\beta_{k}^{\text{HuS}} = \max\{0, \min\{\beta_{k}^{\text{PRP}}, \beta_{k}^{\text{FR}}\}\}.
$$

(1.16)

Also, if the method of Hu and Storey jam, then PRP method is used.

The first global convergence result for FR method was given by Zoutendijk [33] in 1970. He proved that FR method converges globally when the line search is exact.

The first global convergence result of FR method for an inexact line search was given by Al-Baali [1] in 1985. Under the strong Wolfe conditions with $\sigma < \frac{1}{2}$, he proved that FR method generates sufficient descent directions. In fact, he proved that

$$
\frac{1 - 2\sigma + \sigma^{k+1}}{1 - \sigma} \leq \frac{-g_k^T d_k}{\|g_k\|^2} \leq \frac{1 - \sigma^{k+1}}{1 - \sigma},
$$

for all $k \geq 0$. As a consequence, global convergence is established. For $\sigma = \frac{1}{2}$, when d_k is a descent direction, this analysis didn’t establish sufficient descent.

In [23], the global convergence proof of Al-Baali is extended to the case $\sigma = \frac{1}{2}$.

Dai and Yuan analyzed this further, and showed that in consecutive FR iterations, at least one iteration satisfies the sufficient descent property.

In [26], it is observed that FR method with the exact line search may produce many small steps continuously. Precisely, if a small step is generated away from the solution, the subsequent steps may also be very short.

In that case, PRP method generates a search direction close to $-g_k$ to avoid the propensity of small steps. In [26] it is proved that, for a nonlinear function, if

(a) s_k tends to zero,
(b) the line search is exact,
(c) Lipschitz condition holds,
then PRP method is globally convergent.

On the other hand, in [27] it is proved, using a three-dimensional example, that PRP method with an exact line search, can diverge. So, the assumption that s_k tends to zero, is needed for convergence [19].

When a hybrid conjugate gradient method is built in which PRP method is presented, there is a possibility for some additional assumptions (see, for example, [2]).

In this paper we consider a convex combination of two methods. The first method is the method FR, which has strong convergence properties, and in the same time it may have modest practical performance, due to jamming. The second method is the method PRP, which in general may not be convergent, but it usually has good computer performances.

The paper is organized as follows. In Section 2 we construct a new hybrid method FRPRPCC (Fletcher-Reeves-Polak-Ribière-Polyak-conjugate-condition), using the convex combination of parameters from the
FR method and from the PRP method. In this section we also find the formula for computing the parameter $\theta_k \in [0, 1]$, which is relevant for our method. We also prove that under some assumptions the search direction of our method satisfies the sufficient descent condition. We use the inexact line search in order to determine the stepsize of the method. In Section 3 we present the algorithm FRPRPCC, which is developed in Section 2. In Section 4 we prove the global convergence theorem of the method FRPRPCC, assuming some conditions. Section 5 contains some numerical experiments.

2. A Convex Combination

In this paper we use another combination of PRP and FR methods. We use the following conjugate gradient parameter

$$\beta_{hyb}^k = (1 - \theta_k) \cdot \beta_{PRP}^k + \theta_k \cdot \beta_{FR}^k. \quad (2.1)$$

Hence, the direction d_k is given by:

$$d_{0}^{hyb} = -g_0, \quad d_{k+1}^{hyb} = -g_{k+1} + \beta_{hyb}^k s_k. \quad [2] \quad (2.2)$$

The parameter θ_k is the scalar parameter to be determined later.

We can see that, if $\theta_k = 0$, then $\beta_{hyb}^k = \beta_{PRP}^k$, and if $\theta_k = 1$, then $\beta_{hyb}^k = \beta_{FR}^k$. On the other hand, if $0 < \theta_k < 1$, then β_{hyb}^k is a proper convex combination of the parameters β_{PRP}^k and β_{FR}^k.

Theorem 2.1. *If the relations (2.1) and (2.2) hold, then*

$$d_{k+1}^{hyb} = \theta_k d_{k+1}^{FR} + (1 - \theta_k) d_{k+1}^{PRP}. \quad (2.3)$$

Proof. Having in view the relations (1.9) and (1.12), the relation (2.1) becomes:

$$\beta_{hyb}^k = (1 - \theta_k) \cdot \frac{g_{k+1}^T y_k}{\|g_k\|^2} + \theta_k \cdot \frac{\|g_{k+1}\|^2}{\|g_k\|^2}, \quad (2.4)$$

so, the relation (2.2) becomes

$$d_{0}^{hyb} = -g_0, \quad (2.5)$$

$$d_{k+1}^{hyb} = -g_{k+1} + (1 - \theta_k) \frac{g_{k+1}^T y_k}{\|g_k\|^2} \cdot s_k + \theta_k \cdot \frac{\|g_{k+1}\|^2}{\|g_k\|^2} \cdot s_k. \quad (2.6)$$

In further consideration of the relation (2.6), we can get

$$d_{k+1}^{hyb} = -(\theta_k g_{k+1} + (1 - \theta_k) g_{k+1}) + \beta_{hyb}^k s_k,$$

$$d_{k+1}^{hyb} = -((\theta_k g_{k+1} + (1 - \theta_k) g_{k+1}) + \beta_{FR}^k s_k = \theta_k (-g_{k+1} + \beta_{FR}^k s_k) + (1 - \theta_k) g_{k+1} + \theta_k \beta_{FR}^k s_k. \quad (2.7)$$

The last relation yields

$$d_{k+1}^{hyb} = \theta_k (-g_{k+1} + \beta_{FR}^k s_k) + (1 - \theta_k) g_{k+1} + \theta_k \beta_{FR}^k s_k. \quad (2.8)$$

From (2.7) we finally conclude

$$d_{k+1}^{hyb} = \theta_k d_{k+1}^{FR} + (1 - \theta_k) d_{k+1}^{PRP}. \quad (2.8)$$
Our way to find \(\theta_k \) is to make that the conjugacy condition

\[
y^T_k d^\text{hyb}_{k+1} = 0
\]

holds.

Multiplying (2.6) by \(y^T_k \) from the left and using (2.9), we get

\[
-y^T_k g_{k+1} + (1 - \theta_k)\frac{g^T_{k+1} y_k}{\|g_k\|^2} (y^T_k s_k) + \theta_k \frac{\|g_{k+1}\|^2}{\|g_k\|^2} (y^T_k s_k) = 0.
\]

So,

\[
\theta_k \left(\frac{\|g_{k+1}\|^2}{\|g_k\|^2} (y^T_k s_k) - \frac{g^T_{k+1} y_k}{\|g_k\|^2} (y^T_k s_k) \right) = y^T_k g_{k+1} - \frac{g^T_{k+1} y_k}{\|g_k\|^2} (y^T_k s_k),
\]

i.e.

\[
\theta_k \cdot \frac{g^T_{k+1} g_k}{\|g_k\|^2} (y^T_k s_k) = \frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{\|g_k\|^2}.
\]

Finally,

\[
\theta_k = \frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{(g^T_{k+1} g_k) (y^T_k s_k)}. \quad \text{(2.10)}
\]

It is possible that \(\theta_k \), calculated as in (2.10), has the values outside the interval \([0, 1]\).

So, we fix it:

\[
\theta_k = \begin{cases}
0, & \text{if } \frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{(g^T_{k+1} g_k) (y^T_k s_k)} \leq 0, \\
\frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{(g^T_{k+1} g_k) (y^T_k s_k)}, & \text{if } 0 < \frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{(g^T_{k+1} g_k) (y^T_k s_k)} < 1, \\
1, & \text{if } \frac{\|g_k\|^2 - y^T_k s_k (y^T_k g_{k+1})}{(g^T_{k+1} g_k) (y^T_k s_k)} \geq 1.
\end{cases} \quad \text{(2.11)}
\]

Either of the following assumptions is often utilized in convergence analysis for CG algorithms.

Boundedness Assumption: The level set \(S = \{ x \in \mathbb{R}^n \mid f(x) \leq f(x_0) \} \) is bounded, i.e. there exists a constant \(B > 0 \), such that

\[
\|x\| \leq B, \quad \text{for all } x \in S. \quad \text{(2.12)}
\]

Lipschitz Assumption: In a neighborhood \(\mathcal{N} \) of \(S \) the function \(f \) is continuously differentiable and its gradient \(\nabla f(x) \) is Lipschitz continuous, i.e. there exists a constant \(0 < L < \infty \) such that

\[
\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\| \quad \text{for all } x, y \in \mathcal{N}. \quad \text{(2.13)}
\]

Under these assumptions, there exists a constant \(\Gamma \geq 0 \), such that

\[
\|\nabla f(x)\| \leq \Gamma \quad \text{for all } x \in S \quad \text{[2]}. \quad \text{(2.14)}
\]
Theorem 2.2. Assume that (1.12) and (1.13) hold and let strong Wolfe conditions (1.4)-(1.6) hold with $\sigma < \frac{1}{2}$. Also, let $\|s_k\|$ tend to zero, and let there exist some nonnegative constants η_1, η_2 such that

\[
\|g_k\|^2 \geq \eta_1 \|s_k\|^2, \quad (2.15) \\
\|g_{k+1}\|^2 \leq \eta_2 \|s_k\|. \quad (2.16)
\]

Then d_k^{hyb} satisfies the sufficient descent condition for all k.

Proof. It holds $d_0 = -g_0$. So, for $k = 0$, it holds $g_T^0 d_0 = -\|g_0\|^2$.

Multiplying (2.8) by g_{k+1}^T from the left, we get

\[
g_{k+1}^T d_k^{hyb} = \theta_k g_{k+1}^T d_k^{PRP} + (1 - \theta_k) g_{k+1}^T d_k^{PRP}. \quad (2.17)
\]

If $\theta_k = 0$, the relation (2.17) becomes

\[
g_{k+1}^T d_k^{hyb} = g_{k+1}^T d_k^{PRP}.
\]

So, if $\theta_k = 0$, the sufficient descent holds for the hybrid method, if it holds for PRP method. We can prove the sufficient descent for PRP method under the conditions of Theorem 2.2. It holds

\[
d_k^{PRP} = -g_k + \beta_k^{PRP} s_k. \quad (2.18)
\]

Multiplying (2.18) by g_{k+1}^T from the left, we get

\[
g_{k+1}^T d_k^{PRP} = -\|g_{k+1}\|^2 + \beta_k^{PRP} g_{k+1}^T s_k.
\]

Using (1.12), we get

\[
g_{k+1}^T d_k^{PRP} = -\|g_{k+1}\|^2 + \frac{(g_{k+1}^T y_k)(g_{k+1}^T s_k)}{\|g_k\|^2}. \quad (2.19)
\]

From (2.19), we get

\[
g_{k+1}^T d_k^{PRP} \leq -\|g_{k+1}\|^2 + \frac{\|g_{k+1}\|^2 \|y_k\| \|s_k\|}{\|g_k\|^2}. \quad (2.20)
\]

From Lipschitz condition we have $\|y_k\| \leq L \|s_k\|$, so

\[
g_{k+1}^T d_k^{PRP} \leq -\|g_{k+1}\|^2 + \frac{\|g_{k+1}\|^2 L \|s_k\|^2}{\|g_k\|^2}. \quad (2.21)
\]

But, using (2.16), we get

\[
g_{k+1}^T d_k^{PRP} \leq -\|g_{k+1}\|^2 + \frac{L \|s_k\|^3}{\|g_k\|^2}. \quad (2.22)
\]

Using (2.15), we get

\[
g_{k+1}^T d_k^{PRP} \leq -\|g_{k+1}\|^2 + \frac{L \|s_k\|^2}{\eta_1}. \quad (2.23)
\]

But, because of the assumption $\|s_k\| \to 0$, the second summand in (2.23) tends to zero, so there exists a number $0 < \delta \ll 1$, such that

\[
\frac{L \|s_k\|^2}{\eta_1} \leq \delta \|g_{k+1}\|^2. \quad (2.24)
\]
Now, (2.23) becomes
\[g_{k+1}^T d_{k+1}^{PRP} \leq -\|g_{k+1}\|^2 + \delta\|g_{k+1}\|^2, \]
(2.25)
i.e.
\[g_{k+1}^T d_{k+1}^{PRP} \leq -(1-\delta)\|g_{k+1}\|^2. \]
(2.26)

On the other hand, for \(\theta_k = 1 \), the relation (2.17) becomes
\[g_{k+1}^T d_{k+1}^{hyb} = g_{k+1}^T d_{k+1}^{FR}. \]

But, under the strong Wolfe line search, FR method satisfies the sufficient descent condition [19].
Now, let \(0 < \theta_k < 1 \). So, we can write \(0 < \mu_1 \leq \theta_k \leq \mu_2 < 1 \).

Now, from (2.17), we get
\[g_{k+1}^T d_{k+1}^{hyb} \leq \mu_1 g_{k+1}^T d_{k+1}^{FR} + (1 - \mu_2) g_{k+1}^T d_{k+1}^{PRP}. \]

We obviously can conclude now that there exists a number \(K > 0 \), such that
\[g_{k+1}^T d_{k+1}^{hyb} \leq -K\|g_{k+1}\|^2. \]
(2.27)

Recall that in [26], it is shown that for general functions PRP method is globally convergent if \(s_k = x_{k+1} - x_k \) tend to zero, i.e. \(||s_k|| \leq ||s_{k-1}|| \) is a sufficient condition for convergence.

A descent property is very important for the global convergence of an iterative method, especially if it is the conjugate gradient method [1].

From (2.15) and (2.16), we see that in the aim to realize a sufficient descent property, the gradient \(g_k \) must be bounded, i.e., it holds:
\[\eta_1 ||s_k||^2 \leq ||g_k||^2 \leq \eta_2 ||s_{k-1}||. \]

If the Powell condition is satisfied, i.e. \(||s_k|| \) tends to zero, then \(||s_k||^2 \ll ||s_{k-1}|| \) and therefore the norm of gradient can satisfy (2.15) and (2.16) [2].

The conditions (2.15) and (2.16) are used, for example, in [2].

Now we give the corresponding algorithm.

Algorithm 2.1. (Algorithm FRPRPCCC)

Step 1. Initialization. Select the initial point
\(x_0 \in \text{dom}(f), \epsilon > 0 \) and select the parameters
\(0 < \rho \leq \sigma < 1 \). Set \(k = 0 \).
Compute \(f(x_k), g_k = \nabla f(x_k) \). Set \(d_k = -g_k \).
Set the initial guess \(t_k = \frac{1}{||g_k||} \).

Step 2. Test for continuation of iterations. If \(||g_k|| \leq \epsilon \) then STOP.

Step 3. Line search. Compute \(t_0 > 0 \) satisfying the strong Wolfe line search conditions (1.4)-(1.6) and update the variables
\(x_{k+1} = x_k + t_0d_k \).
Compute \(f(x_{k+1}), g_{k+1} = \nabla f(x_{k+1}), s_k = x_{k+1} - x_k, \)
\(y_k = g_{k+1} - g_k \).

Step 4. \(\theta_k \) parameter computation. If \((g_{k+1}^T g_k)(y_k^T s_k) = 0 \), then set \(\theta_k = 0 \), else set \(\theta_k \) as in (2.11).
Step 5. Compute β_k as in (2.1).

Step 6. Compute $d = -g_{k+1} + \beta_k s_k$.

Step 7. If the restart criterion of Powell

$$|g_{k+1}^T g_k| \geq 0.2 |g_{k+1}|^2$$

is satisfied, then set $d_{k+1} = -g_{k+1}$, else let $d_{k+1} = d$.

Step 8. Calculate the initial guess

$$t_k = t_{k-1} ||d_{k-1}/||d_k||.$$ \hspace{1cm} (2.29)

Step 9. Set $k = k + 1$ and go to Step 2.

In every iteration $k \geq 1$ of Algorithm FRPRPCC, the starting value of the step size t_k is calculated as in (2.29); the selection (2.29) is considered for the first time in CONMIN [28] by Shanno and Phua.

Also, this selection is used by Birgin and Martinez in [9], in the package SCG, and in SCALCG by Andrei, [5], [6], [7].

In our algorithm, when the Powell restart condition is satisfied, we restart the algorithm, with the negative gradient $-g_{k+1}$.

3. Convergence Analysis

For the purpose of this section we remind to the next theorem.

Theorem 3.1. [19] Consider any iterative method of the form (1.2)-(1.3), where d_k satisfies a descent condition $g_k^T d_k < 0$ and t_k satisfies strong Wolfe conditions (1.4)-(1.6). If the Lipschitz condition holds, then either

$$\liminf_{k \to \infty} ||g_k|| = 0,$$ \hspace{1cm} (3.1)

or

$$\sum_{k=1}^{\infty} \frac{||g_k||^4}{||d_k||^2} < \infty.$$ \hspace{1cm} (3.2)

Now we give the next theorem.

Theorem 3.2. Consider the iterative method of the form (1.2), (2.1), (2.2), (2.11). Let all conditions of Theorem 2.2 hold. Then either $g_k = 0$ for some k, or

$$\liminf_{k \to \infty} ||g_k|| = 0.$$ \hspace{1cm} (3.3)

Proof. Let $g_k \neq 0$ for all k. Then, we are going to prove (3.3).

Suppose, on the contrary, that there exists a number $c > 0$, such that

$$||g_k|| \geq c, \text{ for all } k.$$ \hspace{1cm} (3.4)

From (2.8), we get

$$||d_{k+1}^{hyb}|| \leq ||d_{k+1}^{FR}|| + ||d_{k+1}^{PRP}||.$$ \hspace{1cm} (3.5)

Next, it holds

$$||d_{k+1}^{FR}|| \leq ||g_k|| + \beta_k ||s_k||.$$
Further,
\[|\beta_{FR}^{k+1}| = \frac{\|g_{k+1}\|^2}{\|g_k\|^2} \leq \frac{\Gamma^2}{c^2}, \]
where \(\Gamma \) is given by (2.14). Now,
\[\|d_{FR}^{k+1}\| \leq \Gamma + \frac{\Gamma^2}{c^2} \cdot D, \]
where \(D \) is a diameter of the level set \(S \).

Also,
\[|\beta_{PRP}^{k+1}| = \frac{\|g_{k+1}\|^2}{\|g_k\|^2} \leq \frac{1}{c^2} \|g_{k+1}\| \|y_k\| \leq \frac{2\Gamma^2}{c^2}, \]
because of
\[\|y_k\| = \|g_{k+1} - g_k\| \leq \|g_{k+1}\| + \|g_k\| \leq 2\Gamma. \]

Now,
\[\|d_{PRP}^{k+1}\| \leq \Gamma + \frac{\Gamma^2}{c^2} \cdot D. \]
(3.7)

So, using (3.5), (3.6) and (3.7), we get
\[\|d_{hyb}^{k+1}\| \leq \Gamma + \frac{\Gamma^2}{c^2} \cdot D + \Gamma + \frac{2\Gamma^2}{c^2} \cdot D, \]
i.e.
\[\|d_{hyb}^{k+1}\| \leq 2\Gamma + \frac{3\Gamma^2}{c^2} \cdot D. \]
(3.8)

But, now we can get
\[\frac{\|g_{k+1}\|^4}{\|d_{k+1}\|^2} \geq \frac{c^4}{\left(\frac{2\Gamma + \frac{3\Gamma^2}{c^2} \cdot D}{2}\right)^2}, \]
wherefrom
\[\sum_{k=0}^{\infty} \frac{\|g_{k+1}\|^4}{\|d_{k+1}\|^2} = \infty. \]

Using Theorem 3.1, we conclude that this is a contradiction. So, we finish the proof. \(\Box \)

4. Numerical Experiments

In this section we present the computational performance of a Mathematica implementation of FRPRPCC algorithm on a set of unconstrained optimization test problems from [8]. Each problem is tested for a number of variables: \(n = 50, n = 60, n = 70, n = 90, n = 100, n = 120. \) We present comparisons with CCOMB from [2], HYBRID from [3], denoted on the pictures by HSDY, then with the algorithm of Touati-Ahmed and Storey (ToAhS) from [29], the algorithm of Hu and Storey (HuS) from [21] and the algorithm (GN) of Gilbert and Nocedal from [18], using the performance profiles of Dolan and More [15]. The criterion of comparison is CPU time. The stopping criterion of all algorithms is \(\|g_k\| < 10^{-6}. \) From the figures below, we can conclude that FRPRPCC algorithm behaves similar to or better than CCOMB, HYBRID, ToAhS, HuS and GN.
Figure 1. (n=50)
Figure 2. (n=60)
Figure 3. (n=70)
Figure 4. (n=90)
Figure 5. (n=90)
Figure 6. (n=100)
Figure 7. (n=100)
Figure 8. (n=120)

References

