An Inequality for Similarity Condition Numbers of Unbounded Operators with Schatten - von Neumann Hermitian Components

Michael Gil’

Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel

Abstract. Let H be a linear unbounded operator in a separable Hilbert space. It is assumed the resolvent of H is a compact operator and $H - H^*$ is a Schatten - von Neumann operator. Various integro-differential operators satisfy these conditions. Under certain assumptions it is shown that H is similar to a normal operator and a sharp bound for the condition number is suggested.

We also discuss applications of that bound to spectrum perturbations and operator functions.

1. Introduction and Statement of the Main Result

Let \mathcal{H} be a separable Hilbert space with a scalar product $(.,.)$, the norm $\|\cdot\| = \sqrt{(.,.)}$ and unit operator I. Two operators A and \tilde{A} acting in \mathcal{H} are said to be similar if there exists a boundedly invertible bounded operator T such that $\tilde{A} = T^{-1}AT$. The constant $\kappa_T = \|T^{-1}\|\|T\|$ is called the condition number. The condition number is important in applications. We refer the reader to [5], where condition number estimates are suggested for combined potential boundary integral operators in acoustic scattering and [23], where condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity of various operators to normal and selfadjoint ones were considered by many mathematicians, cf. [1, 4, 7], [14, 15], [17]-[21], and references given therein. In many cases, the condition number must be numerically calculated, e.g. [2, 20]. The interesting generalizations of condition numbers of bounded linear operators in Banach spaces were explored in the paper [13].

In the present paper we consider a class of unbounded operators in a Hilbert space with Schatten - von Neumann Hermitian components. Numerous integro-differential operators belong to that class. We suggest a sharp bound for the condition numbers of the considered operators. It generalizes and improves the bound for the condition numbers of operators with Hilbert-Schmidt Hermitian components from [11]. We also discuss applications of the obtained bound to spectrum perturbations and norm estimates for operator functions.

Introduce the notations. For a linear operator A in \mathcal{H}, $\text{Dom}(A)$ is the domain, A' is the adjoint of A; $\sigma(A)$ denotes the spectrum of A and A^{-1} is the inverse to A; $R_\lambda(A) = (A - I\lambda)^{-1}$ ($\lambda \notin \sigma(A)$) is the resolvent; $A_k := (A - A')/2i$; $\lambda_k(A)$ ($k = 1, 2, ...$) are the eigenvalues of A taken with their multiplicities and enumerated as $|\lambda_k(A)| \leq |\lambda_{k+1}(A)|$, and $\rho(A, \lambda) = \inf_k |\lambda - \lambda_k(A)|$. By SN_r ($1 \leq r < \infty$) we denote the Schatten - von Neumann ideal of compact operators K with the finite norm $N_r(K) := [\text{Trace}(KK^*)^{r/2}]^{1/r}$.
Everywhere below H is an invertible operator in \mathcal{S}, with the following properties: $\text{Dom}(H) = \text{Dom}(H^*)$, and there are an $r \in [1, \infty)$ and an integer $p \geq 1$, such that

$$H^{-1} \in SN_r$$ and $H_I \in SN_{2p}$. \hfill (1.1)

Note that instead of the condition $H^{-1} \in SN_r$, in our reasonings below, one can require the condition $(H - aI)^{-1} \in SN_r$ for some point $a \notin \sigma(H)$. Since H^{-1} is compact, $\sigma(H)$ is purely discrete. It is assumed that all the eigenvalues $\lambda_j(H)$ of H are different. For a fixed integer m put

$$\delta_m(H) = \inf_{j=1,2,...,j=m} |\lambda_j(H) - \lambda_m(H)|.$$

It is further supposed that

$$\zeta_q(H) := \left[\sum_{j=1}^{\infty} \frac{1}{\delta_j^q(H)} \right]^{1/q} < \infty \quad (\frac{1}{q} + \frac{1}{2p} = 1)$$ \hfill (1.2)

for an integer $p \geq 1$. Hence it follows that

$$\delta(H) := \inf_m \delta_m(H) = \inf_{j,k;j,k=1,2,...} |\lambda_j(H) - \lambda_k(H)| > 0.$$ \hfill (1.3)

Denote also

$$u_p(H) := \sqrt{2\zeta_2(H)} \sum_{m=0}^{p-1} \sum_{k=0}^\infty \beta_p \frac{\delta_j^{2p+m+1}(H)}{N_{2p}^{2p+m}(H)} \frac{1}{\sqrt{k!}},$$

where

$$\beta_p := 2 \left(1 + \frac{2p}{e^{2/\sqrt{2n}}}. \right).$$ \hfill (1.4)

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible operator T and a normal operator D acting in \mathcal{S}, such that

$$THx = DTx \quad (x \in \text{Dom}(H)).$$

Moreover,

$$\kappa_T := ||T^{-1}||||T|| \leq e^{2p(H)}.$$ \hfill (1.6)

The proof of this theorem is divided into a series of lemmas which are presented in the next three sections. The theorem is sharp: if H is selfadjoint, then $u_p(H) = 0$ and we obtain $\kappa_T = 1$.

As it is shown below, one can replace (1.6) by the inequality

$$\kappa_T \leq e^{2p(H)}.$$ \hfill (1.7)

where

$$\hat{u}_p(H) := \sqrt{2\zeta_2(H)} \sum_{m=0}^{p-1} \sum_{k=0}^\infty \beta_p^{2p+m+1}(H) \frac{1}{\delta_j^{2p+m}(A)} \frac{1}{\sqrt{k!}}.$$

In addition, below we show that in our considerations instead of β_p defined by (1.4) in the case

$$p = 2^m - 1, \quad m = 2, 3, ..., \quad \text{one can take } \hat{\beta}_p = 2(1 + \text{ctg}(\frac{\pi}{4p})) \text{ and } \hat{\beta}_1 = \sqrt{2}.$$ \hfill (1.8)

instead of β_1.

To illustrate Theorem 1.1, consider the operator $H = S + K$, where $K \in SN_{2p}$ and S is a positive definite selfadjoint operator with a discrete spectrum, whose eigenvalues are different and

$$\lambda_{j+1}(S) - \lambda_j(S) \geq b_0 f^a \quad (b_0 = \text{const} > 0; \alpha > 1/q = (2p - 1)/(2p); j = 1, 2, ...).$$ \hfill (1.9)
Since S is selfadjoint we have
\[\sup_k \inf_j |\lambda_k(H) - \lambda_j(S)| \leq ||K||, \]
cf. [16]. Thus, if
\[2||K|| < \inf_j(\lambda_{j+1}(S) - \lambda_j(S)), \]
then $\delta(H) \geq \inf_j(\lambda_{j+1}(S) - \lambda_j(S) - 2||K||)$ and (1.2) holds with
\[\zeta_q(H) \leq \zeta_q(S, K), \]
where $\zeta_q(S, K) := \left\{ \sum_{j=1}^{\infty} (\lambda_{j+1}(S) - \lambda_j(S) - 2||K||)^{-1/q} \right\}^{1/q} < \infty$.

Example 1.2. Consider in $L^2(0, 1)$ the spectral problem
\[u^{(4)}(x) + (Ku)(x) = \lambda u(x) \quad (\lambda \in \mathbb{C}, 0 < x < 1); \ u(0) = u(1) = u''(0) = u''(1) = 0, \]
where $K \in SN_{2p, p} \geq 1$ for an arbitrary $p \geq 1$. So H is defined by $H = d^4/dx^4 + K$ with
\[\text{Dom}(H) = \{ v \in L^2(0, 1) : \ v^{(4)} \in L^2(0, 1), \ v(0) = v(1) = v''(0) = v''(1) = 0 \}. \]
Take $S = d^4/dx^4$ with $\text{Dom}(S) = \text{Dom}(H)$. Then $\lambda_j(S) = \pi^4 j^4$ ($j = 1, 2, ...$) and $\lambda_{j+1}(S) - \lambda_j(S) \geq 4\pi^4 j^3$. If $||K|| < 2\pi^4$, then $\delta(H) \geq 4\pi^4 - 2||K||$ and
\[\zeta_q(H) \leq \sum_{j=1}^{\infty} (4\pi^4 j^3 - 2||K||)^{-q} < \infty. \]

Now one can directly apply Theorem 1.1.

2. Auxiliary Results

Let B_0 be a bounded linear operator in \mathcal{S} having a finite chain of invariant projections P_k ($k = 1, ..., n; \ n < \infty$):
\[0 \subset P_1 \mathcal{S} \subset P_2 \mathcal{S} \subset ... \subset P_n \mathcal{S} = \mathcal{S} \tag{2.1} \]
and
\[P_k B_0 P_k = B_0 P_k \quad (k = 1, ..., n). \tag{2.2} \]
That is, B_0 maps $P_k \mathcal{S}$ into $P_k \mathcal{S}$ for each k. Put
\[\Delta P_k = P_k - P_{k-1} \quad (P_0 = 0) \quad \text{and} \quad A_k = \Delta P_k B_0 \Delta P_k. \]

It is assumed that the spectra $\sigma(A_k)$ of A_k in $\Delta P_k \mathcal{S}$ satisfy the condition
\[\sigma(A_k) \cap \sigma(A_j) = \emptyset \quad (j \neq k; \ j, k = 1, ..., n). \tag{2.3} \]

Lemma 2.1. One has
\[\sigma(B_0) = \bigcup_{k=1}^{n} \sigma(A_k). \]
For the proof see [11].

Under conditions (2.1), (2.2) put
\[Q_k = I - P_k, \ B_k = Q_k B_0 Q_k \quad \text{and} \quad C_k = \Delta P_k B_0 Q_k. \]

Since B_j is a block triangular operator matrix, according to the previous lemma we have
\[\sigma(B_j) = \bigcup_{k=j+1}^{n} \sigma(A_k) \quad (j = 0, ..., n). \]

Under this condition, according to the Rosenblum theorem from [22], the equation
\[A_j X_j - X_j B_j = -C_j \quad (j = 1, ..., n - 1) \tag{2.4} \]
has a unique solution (see also [6, Section I.3] and [3]). We need also the following result proved in [11].
Lemma 2.2. Let condition (2.3) hold and X_j be a solution to (2.4). Then

$$(I - X_{n-1})(I - X_{n-2}) \cdots (I - X_1) B_0 (I + X_1)(I + X_2) \cdots (I + X_{n-1}) =$$

$$A_1 + A_2 + \ldots + A_n.$$ \hfill (2.5)

Take

$$T_n = (I + X_1)(I + X_2) \cdots (I + X_{n-1}).$$ \hfill (2.6)

It is simple to see that the inverse to $I + X_j$ is the operator $I - X_j$. Thus,

$$T_n^{-1} = (I - X_{n-1})(I - X_{n-2}) \cdots (I - X_1)$$

and (2.5) can be written as

$$T_n^{-1}B_0T_n = \text{diag} (A_k)_{k=1}^n.$$ \hfill (2.8)

By the inequalities between the arithmetic and geometric means we get

$$||T_n|| \leq \prod_{k=1}^{n-1} (1 + ||X_k||) \leq \left(1 + \frac{1}{n-1} \sum_{k=1}^{n-1} ||X_k||\right)^{n-1}$$

and

$$||T_n^{-1}|| \leq \left(1 + \frac{1}{n-1} \sum_{k=1}^{n-1} ||X_k||\right)^{n-1}.$$ \hfill (2.10)

Furthermore, we need the following result

Theorem 2.3. Let M be a linear operator in \mathcal{S}_p, such that $\text{Dom} (M) = \text{Dom} (M^*)$ and $M_i = (M - M^*)/2i \in \mathcal{S}_p$ for some integer $p \geq 1$. Then

$$||R_\lambda(M)|| \leq \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{(|\beta_p N_{2p}(M_i)|)^{m+p}}{p^m+1(M,\lambda) \sqrt{k!}} \quad (\lambda \notin \sigma(M)).$$ \hfill (2.11)

Moreover, one has

$$||R_\lambda(M)|| \leq \sqrt{p} \sum_{m=0}^{p-1} \frac{(|\beta_p N_{2p}(M_i)|)^{m}}{p^m+1(M,\lambda)} \exp \left[\frac{(\beta_p N_{2p}(M_i))^{2p}}{2p^{2p}(M,\lambda)}\right] \quad (\lambda \notin \sigma(M)).$$ \hfill (2.12)

For the proof in the case $p > 1$ see [8, Theorem 7.9.1]. The case $p = 1$ is proved in [8, Theorem 7.7.1]. Besides, β_p can be replaced by $\hat{\beta}_p$ according to (1.8).

3. The Finite Dimensional Case

In this section we apply Lemma 2.3 to an $n \times n$-matrix A whose eigenvalues are different and are enumerated in the increasing way of their absolute values. We define

$$\delta(A) := \min_{j,k=1,\ldots,n:k\neq j} |\lambda_j(A) - \lambda_k(A)| > 0.$$ \hfill (3.1)

Hence, there is an invertible matrix $T_n \in \mathbb{C}^{n \times n}$ and a normal matrix $D_n \in \mathbb{C}^{n \times n}$, such that

$$T_n^{-1}A T_n = D_n.$$ \hfill (3.2)

Furthermore, for a fixed $m \leq n$ put

$$\delta_m(A) = \inf_{m=1,2,\ldots,n:k\neq j} |\lambda_j(A) - \lambda_m(A)|.$$
Let \(\{ e_k \} \) be the Schur basis (the orthogonal normal basis of the triangular representation) of matrix \(A \):

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 0 & a_{22} & a_{23} & \cdots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\]

with \(a_{jj} = \lambda_j(A) \). Take \(P_j = \sum_{k=1}^j (., e_k)e_k \). \(B_0 = A, \Delta P_k = (., e_k)e_k \),

\[
Q_j = \sum_{k=j+1}^n (., e_k)e_k, A_k = \Delta P_k A \Delta P_k = \lambda_k(A) \Delta P_k,
\]

\[
B_j = Q_j A Q_j = \begin{pmatrix}
 a_{j+1,j+1} & a_{j+1,j+2} & \cdots & a_{j+1,n} \\
 0 & a_{j+2,j+2} & \cdots & a_{j+2,n} \\
 \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix},
\]

\[
C_j = \Delta P_j A Q_j = \begin{pmatrix}
 a_{j+1,j+1} & a_{j+1,j+2} & \cdots & a_{j+1,n} \\
 0 & a_{j+2,j+2} & \cdots & a_{j+2,n} \\
 \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & \cdots & a_{nn}
\end{pmatrix}
\]

and

\[
D_n = \text{diag}(\lambda_k(A)).
\]

In addition,

\[
A = \begin{pmatrix}
 A_1(A) & C_1 \\
 0 & B_1
\end{pmatrix}, B_1 = \begin{pmatrix}
 A_2(A) & C_2 \\
 0 & B_2
\end{pmatrix}, \ldots, B_j = \begin{pmatrix}
 A_{j+1}(A) & C_{j+1} \\
 0 & B_{j+1}
\end{pmatrix}
\]

\((j < n)\). So \(B_j \) is an upper-triangular \((n-j) \times (n-j)\)-matrix. Equation (2.4) takes the form

\[
\lambda_j(A) X_j - X_j B_j = -C_j.
\]

Since \(X_j = X_j Q_j \), we can write \(X_j (A)(A) Q_j - B_j) = C_j \). Therefore

\[
X_j = C_j (\lambda_j(A) Q_j - B_j)^{-1}.
\]

The inverse operator is understood in the sense of subspace \(Q_j \mathbb{C}^n \). Hence,

\[
\| X_j \| \leq \| C_j \| \| (\lambda_j(A) Q_j - B_j)^{-1} \|.
\]

Besides, due to (2.11)

\[
\| (\lambda_j(A) Q_j - B_j)^{-1} \| \leq \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \left(\beta_{p}^m N_2(B_j)^{kp+m} / \delta_j^{kp+m}(A) \sqrt{k!} \right),
\]

where \(B_{ji} \) is the imaginary Hermitian component of \(B_j \).

But \(N_2(B_{ji}) = N_2(Q_j A_j Q_j) \leq N_2(A_j) (j \geq 1) \). So

\[
\| (\lambda_j(A) Q_j - B_j)^{-1} \| \leq \frac{\tau_j(A)}{\delta_j(A)}
\]

where

\[
\tau_j(A) = \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \left(\beta_{p}^m N_2(A_j)^{kp+m} / \delta_j^{kp+m}(A) \sqrt{k!} \right).
\]

Consequently,

\[
\| X_j \| \leq \tau_j(A) \frac{\| C_j \|}{\delta_j(A)}.
\]
Take $T_n = \hat{T}_n$ as in (2.6) with X_k defined by (3.5). Besides (2.9) and (2.10) imply
\[
\|T_n\| \leq \left(1 + \frac{1}{n-1} \sum_{j=1}^{n-1} \|X_j\|\right)^{n-1} \leq \left(1 + \frac{\tau(A)}{(n-1) \sum_{j=1}^{n-1} \|C_j\| \delta_j(A)}\right)^{n-1}
\] \hspace{1cm} (3.6)
and
\[
\|T_n^{-1}\| \leq \left(1 + \frac{\tau(A)}{(n-1) \sum_{j=1}^{n-1} \|C_j\| \delta_j(A)}\right)^{n-1} \cdot \hspace{1cm} (3.7)
\]
But by the H"older inequality,
\[
\sum_{j=1}^{n-1} \frac{\|C_j\|}{\delta_j(A)} \leq \left(\sum_{j=1}^{n-1} \|C_j\|^2 p\right)^{1/2p} \zeta_q(A) \left(1/(2p) + 1/q = 1\right), \hspace{1cm} (3.8)
\]
where
\[
\zeta_q(A) := \left(\sum_{k=1}^{n-1} \frac{1}{\delta_k^q(A)}\right)^{1/q}.
\]
In addition,
\[
\|C_j\|^2 \leq \sum_{k=j+1}^{n} |a_{jk}|^2, j < n; \ C_n = 0,
\]
and
\[
4\|A_1 e_j\|^2 = \|(A - A') e_j\|^2 = \|a_{jj} - a_{\tilde{j}j}\|^2 + 2 \sum_{k=j+1}^{n} |a_{jk}|^2 \geq 2\|C_j\|^2; j < n.
\]
Thus, $\|C_j\| \leq \sqrt{2}\|A_1 e_j\|, j \leq n$ and therefore
\[
\sum_{j=1}^{n-1} \|C_j\|^2 p \leq 2^p \sum_{j=1}^{n-1} \|A_1 e_j\|^2 p.
\]
But from Lemmas II.4.1 and II.3.4 [12], it follows that
\[
\sum_{j=1}^{n-1} \|A_1 e_j\|^2 p \leq N_{2p}^p(A_1).
\]
Therefore relations (3.6)-(3.8) with the notation
\[
\psi_{n,p}(A) = \left(1 + \frac{\tau(A) \sqrt{2}N_{2p}^p(A_1)\zeta_q(A)}{n-1}\right)^{n-1}
\]
imply $\|T_n\| \leq \psi_{n,p}(A)$ and $\|T_n^{-1}\| \leq \psi_{n,p}(A)$.

We thus have proved the following.

Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator T_n, such that (3.2) holds with $\kappa_{T_n} := \|T_n^{-1}\|/\|T_n\| \leq \psi_{n,p}^2(A)$.

According to (2.12) one can replace \(\tau(A) \) by

\[
\tau(A) := \sqrt[n]{\sum_{m=0}^{n-1} \frac{(\beta_p N_{2p}(A))^{m}}{\delta^m(A)}} \exp \left[\frac{(\beta_p N_{2p}(A))^{2p}}{2 \delta^{2p}(A)} \right]
\]

and therefore

\[
\kappa_{\tau} \leq \hat{\psi}^2_{r.p}(A), \quad (3.9)
\]

where

\[
\hat{\psi}_{r.p}(A) = \left(1 + \frac{\hat{\tau}(A) \sqrt{2} N_{2p}(A) \zeta_p(A)}{n-1} \right)^{n-1}.
\]

The previous lemma and (3.9) improve the bound from [9, 10] for the condition numbers of matrices with large \(n \).

4. Proof of Theorem 1.1

Recall the Keldysh theorem, cf. [12, Theorem V. 8.1].

Theorem 4.1. Let \(A = S(I + K) \), where \(S = S^* \in SN \), for some \(r \in [1, \infty) \) and \(K \) is compact. In addition, let from \(Af = 0 \) \((f \in \mathcal{S}) \) it follows that \(f = 0 \). Then \(A \) has a complete system of root vectors.

We need the following result.

Lemma 4.2. Under the hypothesis of Theorem 1.1, operator \(H^{-1} \) has a complete system of root vectors.

Proof. We can write \(H = H_R + i H_I \) with the notation \(H_R = (H + H^*)/2 \). For any real \(c \) with \(-c \notin \sigma(H) \cup \sigma(H_R) \) we have

\[
(H + cl)^{-1} = (I + i(H_R + cl)^{-1}H_I)^{-1}(H + cl)^{-1}.
\]

But \((I + i(H_R + cl)^{-1}H_I)^{-1} - I = K_0 \), where \(K_0 = -i(H_R + cl)^{-1}H_I(I + i(H_R + cl)^{-1}H_I)^{-1} \) is compact. So

\[
(H + cl)^{-1} = (H_R + cl)^{-1}(I + K_0) \quad (4.1)
\]

Due to (1.1) \((H + cl)^{-1} = H^{-1}(I + cH^{-1})^{-1} \in SN_r \). Hence

\[
(H_R + cl)^{-1} = (I + i(H_R + cl)^{-1}H_I)(H + cl)^{-1} \in SN_r
\]

and therefore by (4.1) and the Keldysh theorem operator \((H + cl)^{-1} \) has a complete system of roots vectors. Since \((H + cl)^{-1} \) and \(H^{-1} \) commute, \(H^{-1} \) has a complete system of roots vectors, as claimed. \(\square \)

From the previous lemma it follows that there is an orthonormal (Schur) basis \(\{ \hat{e}_k \}_{k=1}^\infty \), in which \(H^{-1} \) is represented by a triangular matrix (see [12, Lemma I.4.1]). Denote \(\hat{P}_k = \sum_{j=1}^k \langle \cdot, \hat{e}_j \rangle \hat{e}_j \). Then

\[
H^{-1}\hat{P}_k = \hat{P}_k H^{-1}\hat{P}_k \quad (k = 1, 2, ...).
\]

Besides,

\[
\Delta\hat{P}_k H^{-1} \Delta\hat{P}_k = \lambda_k^{-1}(H)\Delta\hat{P}_k \quad (\Delta\hat{P}_k = \hat{P}_k - \hat{P}_{k-1}, \; k = 1, 2, ...; \hat{P}_0 = 0). \quad (4.2)
\]

Put

\[
D = \sum_{k=1}^\infty \lambda_k \Delta\hat{P}_k \quad (\Delta\hat{P}_k = \hat{P}_k - \hat{P}_{k-1}, \; k = 1, 2, ...) \text{ and } V = H - D.
\]

We have

\[
H\hat{P}_k f = \hat{P}_k H\hat{P}_k f \quad (k = 1, 2, ...; \; f \in Dom(H)). \quad (4.3)
\]
Indeed, $H^{-1}\hat{P}_k$ is an invertible $k \times k$ matrix, and therefore, $H^{-1}\hat{P}_k \mathcal{S}$ is dense in $\hat{P}_k \mathcal{S}$. Since $\Delta \hat{P}_k = 0$ for $j > k$, we have $0 = \Delta \hat{P}_k H H^{-1} \hat{P}_k = \Delta \hat{P}_k H \hat{P}_k H^{-1} \hat{P}_k$. Hence $\Delta \hat{P}_k H f = 0$ for any $f \in \hat{P}_k H$. This implies (4.3).

Furthermore, put $H_n = H P_n$. Due to (4.3) we have

$$||H_n f - H f|| \to 0 \quad (f \in \text{Dom}(H)) \quad \text{as} \quad n \to \infty.$$ \hfill (4.4)

From Lemma 3.1 and (4.4) with $A = H_n$ it follows that in $\hat{P}_n \mathcal{S}$ there is an invertible operator T_n such that $T_n H_n = \hat{P}_n D T_n$ and

$$||T_n|| \leq \psi_{n,p}(H_n) := (1 + \frac{\tau(H_n) \sqrt{2N_{2p}(H_n)}}{n})^{p-1}$$

where

$$\tau(H_n) = \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{(\beta_p N_{2p}(H_n))^k}{\delta^{p+m}(H_n) \sqrt{k}}.$$

It is clear, that

$$\tau(H_n) \sqrt{2N_{2p}(H_n)} \zeta_q(H_n) \leq \tau(H) \sqrt{2N_{2p}(H)} \zeta_q(H) = u_p(H)$$

and therefore

$$||T_n|| \leq (1 + \frac{u_p(H)}{n})^{p-1} \leq e^{\psi_{n,H}}.$$

Similarly, $||T_n^{-1}|| \leq e^{\psi_{n,H}}$.

So there is a weakly convergent subsequence T_n, whose limit we denote by T. It is simple to check that $T_n = P_n T$. Since projections P_n converge strongly, subsequence $\{T_n\}$ converges strongly. Thus $T_n H_n f \to TH f$ strongly and, therefore $\hat{P}_n D T_n f = T_n H_n f \to TH f$ strongly. Letting $n_i \to \infty$ hence we arrive at the required result. \hfill \Box

Inequality (1.7) follows from (3.9) according to the above arguments.

5. Operators with Hilbert - Schmidt Components

In this section in the case $p = 1$ we slightly improve Theorem 1.1. Besides, the misprint in the main result from [11] is corrected.

Denote

$$g(H) := \sqrt{2} [N_2^2(H)] - \sum_{k=1}^{\infty} \{ \text{Im} \lambda_k(H)^2 \}^{1/2} \leq \sqrt{2} N_2(H),$$

and

$$\tau_2(H) := \sum_{k=0}^{\infty} \frac{g^{k+1}(H)}{\sqrt{k!} \delta^{k}(H)}.$$

Theorem 5.1. Let conditions (1.1) and (1.2) be fulfilled with $p = 1$. Then there are an invertible operator T and a normal operator D acting in \mathcal{S}, such that (1.5) holds. Moreover,

$$k_T \leq 2 \zeta_2(H) \tau_2(H).$$ \hfill (5.1)

Proof. Let A be an $n \times n$-matrix whose eigenvalues are different. Define $\delta(A)$, $\delta_n(A)$ and $\zeta_2(A)$ as in Section 3. We have

$$g(A) := \sqrt{2} [N_2^2(A)] - \sum_{k=1}^{n} \{ \text{Im} \lambda_k(A)^2 \}^{1/2}.$$

Put

$$\tau_2(A) := \sum_{k=0}^{n-2} \frac{g^{k+1}(A)}{\sqrt{k!} \delta^{k}(A)} \quad \text{and} \quad \gamma_n(A) := \left(1 + \frac{\zeta_2(A) \tau_2(A)}{n-1}\right)^{2(n-1)}.$$
Due to Lemma 3.1 from [11], there are an invertible matrix $M_n \in \mathbb{C}^{m \times m}$ and a normal matrix $D_n \in \mathbb{C}^{m \times m}$, such that $M_n^{-1}AM_n = D_n$, and
\begin{equation}
||M_n^{-1}|| = \gamma_n(A).
\end{equation}

Now take H_n and \hat{P}_n as in the proof of Theorem 1.1 from which it follows that in $\hat{P}_n\hat{S}$ there is an invertible operator T_n such that $T_nH_n = \hat{P}_nDT_n$. Besides, according to (5.2)
\begin{equation}
||T_n^{-1}|| = \left(1 + \frac{\tilde{\varepsilon}_2(H_n)\tau_2(H_n)}{\rho_n - 1} \right)^{2(n-1)}
\end{equation}

with
\begin{equation}
\tau_2(H_n) = \sum_{k=0}^{\infty} \frac{g^{k+1}(H_n)}{\sqrt{k!}g_k(H_n)}.
\end{equation}

It is simple to see that $\varepsilon_2(H_n) \leq \varepsilon_2(H)$, $\tau_2(H_n) \leq \tau_2(H)$ and thus
\begin{equation}
||T_n^{-1}|| \leq e^{2\varepsilon_2(H)\tau_2(H)}.
\end{equation}

Hence taking into account (4.4) and that a subsequence of $\{T_n\}$ strongly converges (see the proof of Theorem 1.1), we arrive at the required result. \Box

6. Applications of Theorem 1.1

Rewrite (1.5) as $Hx = T^{-1}DTx$. Let ΔP_k be the eigenprojections of the normal operator D and $E_k = T^{-1}\Delta P_kT$. Then
\begin{equation}
Hx = \sum_{k=1}^{\infty} \lambda_k(H)E_kx \quad (x \in \text{Dom}(H)).
\end{equation}

Let $f(z)$ be a scalar function defined and bounded on the spectrum of H. Put
\begin{equation}
f(H) = \sum_{k=1}^{\infty} f(\lambda_k(H))E_k
\end{equation}

and
\begin{equation}
\gamma_p(H) = e^{2\varepsilon_p(H)}.
\end{equation}

Theorem 1.1 immediately implies.

Corollary 6.1. Let conditions (1.1) and (1.2) hold. Then $||f(H)|| \leq \gamma_p(H) \sup_{\lambda \in \sigma(H)} |f(\lambda_k(H))|$.

In particular, we have
\begin{equation}
||e^{-tH}|| \leq \gamma_p(H)e^{-\beta(H)t} \quad (t \geq 0),
\end{equation}

where $\beta(H) = \inf_k \Re \lambda_k(H)$ and
\begin{equation}
||R_t(H)|| \leq \frac{\gamma_p(H)}{\rho(H, \lambda)} \quad (\lambda \notin \sigma(H)).
\end{equation}

Let A and \hat{A} be linear operators. Then the quantity
\begin{equation}
sv(A) := \sup_{t \in \sigma(\hat{A})} \inf_{s \in \sigma(A)} |t - s|
\end{equation}
is said to be the variation of \hat{A} with respect to A.

Now let \hat{H} be a linear operator in \hat{S} with $\text{Dom}(H) = \text{Dom}(\hat{H})$ and
\begin{equation}
\xi := ||\hat{H} - \hat{H}|| < \infty.
\end{equation}

From (6.1) it follows that $\lambda \notin \sigma(\hat{H})$, provided $\xi \gamma_p(H) < \rho(H, \lambda)$. So for any $\mu \in \sigma(\hat{H})$ we have $\xi \gamma_p(H) \geq \rho(H, \mu)$. This inequality implies our next result.
Corollary 6.2. Let conditions (1.1), (1.2) and (6.2) hold. Then $sv_{tH} (\tilde{H}) \leq \xi_{t\gamma_p} (H)$.

Now consider unbounded perturbations. To this end put

$$H^{-\nu} = \sum_{k=1}^{\infty} \lambda_k^{-\nu}(H) E_k \ (0 < \nu \leq 1).$$

Similarly H^ν is defined. We have

$$\|H^\nu R\lambda (H)\| \leq \frac{\gamma(H)}{\phi_\nu (H, \lambda)} \ (\lambda \notin \sigma(H)),$$

where

$$\phi_\nu (H, \lambda) = \inf_k (\lambda - \lambda_k (H)) \lambda_k^{-\nu}(H).$$

Now let \tilde{H} be a linear operator in \mathfrak{H} with $\text{Dom}(H) = \text{Dom}(\tilde{H})$ and

$$\xi_{\nu} := \| (H - \tilde{H}) H^{-\nu} \| < \infty.$$ (6.4)

Take into account that

$$R\lambda (H) - R\lambda (\tilde{H}) = R\lambda (H) (\tilde{H} - H) R\lambda (H) = R\lambda (\tilde{H}) (\tilde{H} - H) H^{-\nu} H R\lambda (H).$$

Thus, $\lambda \notin \sigma(\tilde{H})$, provided the conditions (6.4) and $\xi_{\nu} \gamma_p (H) < \phi_\nu (H, \lambda)$ hold. So for any $\mu \in \sigma(\tilde{H})$ we have

$$\xi_{\nu} \gamma_p (H) \geq \phi_\nu (H, \mu).$$ (6.5)

The quantity

$$\nu - \text{rsv}_{tH} (\tilde{H}) := \sup \inf \ |t - s|^{-\nu}$$

is said to be the $\nu -$ relative spectral variation of operator \tilde{H} with respect to H. Now (6.5) implies.

Corollary 6.3. Let conditions (1.1), (1.2) and (6.4) hold. Then $\nu - \text{rsv}_{tH} (\tilde{H}) \leq \xi_{\nu} \gamma_p (H)$.

References

