A Generalization of the m-Topology on $C(X)$
Finer than the m-Topology

F. Azarpanah*, F. Manshoo*, R. Mohamadian*

*Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran
1Department of Mathematics, Abadan Branch, Islamic Azad University, Abadan, Iran

Abstract. It is well known that the component of the zero function in $C(X)$ with the m-topology is the ideal $C_0(X)$. Given any ideal $I \subseteq C_0(X)$, we are going to define a topology on $C(X)$ namely the m^I-topology, finer than the m-topology in which the component of 0 is exactly the ideal I and $C(X)$ with this topology becomes a topological ring. We show that compact sets in $C(X)$ with the m^I-topology have empty interior if and only if $X \setminus \cap I$ is infinite. We also show that nonzero ideals are never compact, the ideal I may be locally compact in $C(X)$ with the m^I-topology and every Lindelöf ideal in this space is contained in $C_0(X)$. Finally, we give some relations between topological properties of the spaces X and $C_m(X)$. For instance, we show that the set of units is dense in $C_m(X)$ if and only if X is strongly zero-dimensional and we characterize the space X for which the set $r(X)$ of regular elements of $C(X)$ is dense in $C_m(X)$.

1. Introduction

Throughout this paper we denote by $C(X)$ ($C^*(X)$) the ring of all (bounded) real-valued continuous functions on a completely regular Hausdorff space X. The m-topology on $C(X)$ is defined by taking the set of the form

$$B(f,u) = \{g \in C(X) : |f(x) - g(x)| < u(x), \forall x \in X\}$$

as a base for a neighborhood system at f, for each $f \in C(X)$ and $u \in U^*(X)$, where $U^*(X)$ is the set of all positive elements of $C(X)$. $C(X)$ endowed with the m-topology is denoted by $C_m(X)$ which is a Hausdorff topological ring. The m-topology is first introduced in the late 40s in [8] and later the research in this area became active over the last 20 years, for example, the works in [2], [3], [6] and [10].

Compact sets and connected sets in $C_m(X)$ are investigated in [2] and it is shown that the component of 0 in $C_m(X)$ is the ideal $C_0(X)$. Clearly the connected sets (component of 0) in $C(X)$ with a topology finer that the m-topology are also connected in $C_m(X)$ (is contained in $C_0(X)$). In this paper, for a given ideal I contained in $C_0(X)$, we define a topology on $C(X)$, namely the m^I-topology, in which the component of 0 is exactly the ideal I. This topology is finer than the m-topology and makes $C(X)$ a topological ring. We denote the space $C(X)$ with the m^I-topology by $C_{m^I}(X)$. More generally, if I is an arbitrary ideal in $C(X)$, the m^I-topology is defined similarly and we show that the component of 0 in the space $C_{m^I}(X)$ is $C_0(X) \cap I$. We

2010 Mathematics Subject Classification. Primary 54C35; Secondary 54C40

Keywords. m-topology, m^I-topology, component, Lindelöf, almost P-space, strongly zero-dimensional, μ-compact, cellularity

Received: 28 October 2015; Revised: 02 February 2016; Accepted: 04 February 2016

Communicated by Ljubiša D.R. Kočinac

Email addresses: azarpanah@ipm.ir (F. Azarpanah), Avazerood@yahoo.com (F. Manshoo), mohamadian_r@scu.ac.ir (R. Mohamadian)
also investigate compact sets in \(C(X) \) with the \(m^l \)-topology and it turns out that whenever \(I \not\subseteq C_p(X) \), every compact set in \(C_m(X) \) has an empty interior.

For each \(f \in C(X) \), the set zeros of \(f \) is called the zero-set of \(f \) and is denoted by \(Z(f) \), \(\text{coz} f = X \setminus Z(f) \) and \(\text{cl}_X \text{coz} f \) is called the support of \(f \). We also denote the sets \(\{ x \in X : f(x) > 0 \} \) and \(\{ x \in X : f(x) < 0 \} \) by \(\text{pos} f \) and \(\text{neg} f \) respectively. An ideal \(I \) in \(C(X) \) is called a \(z \)-ideal if whenever \(f \in I \), \(g \in C(X) \) and \(Z(f) \subseteq Z(g) \), then \(g \in I \). We recall that \(C_p(X) \) is a \(z \)-ideal in \(C(X) \) consisting of all functions with pseudocompact (compact) support and it is well-known that \(f \in C_p(X) \) if and only if \(X \setminus Z(f) \) is relatively pseudocompact, i.e., every function in \(C(X) \) is bounded on \(X \setminus Z(f) \), see Theorem 2.1 in [11]. It is well-known that \(C_p(X) = \gamma X \) and \(C_p(X) = M^X \), where \(\gamma X \) is the Stone-Čech compactification and \(vX \) is the Hewitt realcompactification of \(X \), see [5]. For terminology and notations, the reader is referred to [4] and [5].

2. \(m^l \)-Topology on \(C(X) \)

Let \(I \) be an ideal (not necessarily proper) of \(C(X) \). For each \(f \in C(X) \) and \(u \in U^+(X) \), we define the subset \(B(f, I, u) \) of \(C(X) \) as follows:

\[
B(f, I, u) = \{ g \in C(X) : |f - g| < u \text{ and } g \equiv f \text{ (mod} I\text{)} \}.
\]

We define the \(m^l \)-topology on \(C(X) \) by taking the family \(\{ B(f, I, u) : u \in U^+(X) \} \) as a base for a neighborhood system at \(f \) for each \(f \in C(X) \). The set \(C(X) \) endowed with the \(m^l \)-topology is denoted by \(C_m(X) \). To see that \(\{ B(f, I, u) : u \in U^+(X) \} \) is a base at \(f \), it is evident that \(f \in B(f, I, u) \), \(B(f, I, u \cap v) \subseteq B(f, I, u) \cap B(f, I, v) \), for all \(u, v \in U^+(X) \) and whenever \(g \in B(f, I, u) \) for some \(u \in U^+(X) \), then \(B(g, I, v) \subseteq B(f, I, u) \), where \(v = u - |f - g| < u \). If \(I = C(X) \), then the \(m^l \)-topology and the \(m \)-topology coincide and whenever \(f \in \bigcup I \) are two ideals in \(C(X) \), it is clear that the \(m^l \)-topology is finer than the \(m \)-topology. This implies that for each ideal \(I \) in \(C(X) \), the \(m^l \)-topology is finer than the \(m \)-topology.

Proposition 2.1. The space \(C_m(X) \) is a topological ring.

Proof. If \(u \in U^+(X) \) and \(B(f + g, I, u) \) is a neighborhood at \(f + g \), then we consider the neighborhoods \(B(f, I, \frac{u}{2}) \) and \(B(g, I, \frac{u}{2}) \) at \(f \) and \(g \) respectively. Now suppose that \(h \in B(f, I, \frac{u}{2}) \) and \(k \in B(g, I, \frac{u}{2}) \), then we have \(|h - f| < \frac{u}{2} \), \(|k - g| < \frac{u}{2} \), \(h - f \in I \) and \(k - g \in I \). Hence we have \(|h + k| - (f + g) \leq u \) and \(|h + k| - (f + g) \in I \), i.e., the function \(+ \) is continuous. For the continuity of \(\times \), let \(B(fg, I, u) \) be a neighborhood at \(fg \) and take \(v = \frac{u}{2|f|} \) and \(w = \frac{u}{2|g|} \). Now if \(h \in B(f, I, v) \) and \(k \in B(g, I, w) \), then \(|h| < u |f| \) and \(|k| < u |g| \) imply that \(|h| |k| |g| < \frac{u}{2} \) and \(|h| |k| |g| < \frac{u}{2} \). On the other hand \(f(k - g) \in I \) and \(k(h - f) \in I \) imply that \(k(k - g) \in I \) and we are through. \(\square \)

We need the following results in the sequel.

Proposition 2.2. The following statements hold.

(a) Every ideal containing \(I \) is a closed-open set in \(C_m(X) \).
(b) If \(I \) is a \(z \)-ideal and \(J \) is a closed ideal in \(C_m(X) \), then \(I \cap J \) is also a \(z \)-ideal.
(c) Every maximal ideal is closed in \(C_m(X) \).
(d) \(C^*(X) \cap I \) is a closed-open set in \(C_m(X) \).
(e) The closure of every proper ideal in \(C_m(X) \) is a proper ideal.

Proof. (a) Let \(I \subseteq J \) and \(f \in C_m(J) \), where \(C_m(J) \) means the closure of \(J \) in \(C_m(X) \). Hence there exists \(j \in J \) such that \(j \in B(f, I, J) \). Thus \(f - j \in I \subseteq J \), so \(f \in J \). This implies that \(J \) is closed. On the other hand if \(g \in J \), then \(B(g, I, u) \subseteq J \), for all \(u \in U^+(X) \), i.e., \(J \) is open.

(b) Let \(Z(g) \subseteq Z(f) \) and \(g \in I \cap J \). Since \(I \) is a \(z \)-ideal, it is enough to show that \(f \in J \). For each \(u \in U^+(X) \), we define
\[h(x) = \begin{cases} \frac{(x+u(x))}{g(x)} & f(x) \leq -u(x) \\ 0 & |f(x)| \leq u(x) \\ \frac{(x-u(x))}{g(x)} & u(x) \leq f(x). \end{cases} \]

Clearly \(h \in C(X) \) and \(|f - gh| < u \). Since \(|f - gh| \in I, f \in cl\m I \). But \(I \) is closed, hence \(f \in I \).

(c) In fact every closed ideal in \(C_m(X) \) is also closed in \(C_m^\ast(X) \).

(d) For each \(f \in C^\ast(X) \cap I \), we have \(B\langle f, I, 1 \rangle \subseteq C^\ast(X) \cap I \). Now if \(h \in cl\m (C^\ast(X) \cap I) \), then there exists \(f \in B\langle f, I, 1 \rangle \cap C^\ast(X) \cap I \). Hence \(|f - h| < 1 \) and \(f - h \in I \), whence \(h \in C^\ast(X) \cap I \).

(e) If \(I \) is an ideal, \(f, g \in cl\m I \) and \(u \in U^\ast(X) \), then there are \(h, k \in C(X) \) such that \(h \in B\langle f, I, \frac{2}{3} \rangle \cap I \), \(k \in B\langle g, I, \frac{2}{3} \rangle \cap I \) and \(h - f, k - g \in I \). Hence it is clear that \(h + k \in B\langle f + g, I, u \rangle \cap I \) and hence \(f + g \in cl\m I \).

Whenever \(f \in cl\m I \), \(g \in C(X) \) and \(u \in U^\ast(X) \), then there exists \(h \in B\langle f, I, \frac{u}{1+u} \rangle \cap I \), i.e., \(|h - f| < \frac{u}{1+u} \) and \(h - f \in I \). Hence \(|gh - fg| < \frac{|u|}{1+u} < u \) and \(gh - fg \in I \) which means that \(B\langle fg, I, u \rangle \cap I \neq \emptyset \), so \(fg \in cl\m I \).

Remark 2.3. Whenever \(S \subseteq C(X) \) and \(C_m(X) \) is endowed with the \(m \)-topology (\(m^\ast \)-topology), then \(S \) may be considered as a subspace of \(C_m(X) \) with the relative topology. We should emphasize here that \(m \)-topology and \(m^\ast \)-topology on \(I \) coincide. In fact whenever \(u \in U^\ast(X) \) and \(f \in I \), we have \(B\langle f, I, u \rangle \cap I = B\langle f, I, u \rangle = B\langle f, u \rangle \cap I \).

3. Connectedness in \(C_m(X) \)

In this section we characterize the components of \(C_m(X) \) and investigate the disconnectedness of \(C_m(X) \). To this end, we need the following lemmas.

Lemma 3.1. \(f \in C_\psi(X) \cap I \), if and only if the function \(\varphi_f : \mathbb{R} \rightarrow C_m^\ast(X) \) defined by \(\varphi_f(r) = rf \), for all \(r \in \mathbb{R} \), is continuous.

Proof. Let \(u \in U^\ast(X) \). Since \(f \in C_\psi(X) \), \(u \) is bounded away from zero on \(X \setminus Z(f) \) for, \(\frac{1}{r} \) is bounded on \(X \setminus Z(f) \). Thus we may assume that \(u(x) > a > 0 \), for all \(x \in X \setminus Z(f) \). If \(|f| < M \), then \((r - \frac{1}{M}, r + \frac{1}{M}) \subseteq \varphi_f^{-1}(B(rf, I, u)) \). So whenever \(|r - s| < \frac{1}{M} \), then we have \(|rf - sf| < \frac{1}{M}|f| < a < u \). It is also evident that \(rf - sf \in I \) for, \(f \in I \), hence \(\varphi_f \) is continuous. Conversely suppose that \(\varphi_f \) is continuous. Hence for every \(u \in U^\ast(X) \), there exists \(\delta > 0 \) such that \((-\delta, \delta) \subseteq \varphi_f^{-1}(B(0, I, u)) \). This means that for each \(0 \neq s \in (-\delta, \delta) \), we have \(|sf| < u \) and \(sf \in I \), so \(f \in I \). Now whenever \(g \in C(X) \), by taking \(u = \frac{1}{1+|g|} \in U^\ast(X) \), we have \(|gf| < \frac{1}{1+|g|} |f| < \frac{1}{2} \), for each \(0 \neq s \in (-\delta, \delta) \). This implies that \(fg \in C(X) \), for all \(g \in C(X) \) and hence by Lemma 2.10 in [7], we have \(f \in C_\psi(X) \), therefore \(f \in C_\psi(X) \cap I \).

Corollary 3.2. \(f \in C_\psi(X) \), if and only if the function \(\varphi_f : \mathbb{R} \rightarrow C_m(X) \) defined by \(\varphi_f(r) = rf \) is continuous, for all \(r \in \mathbb{R} \).

Whenever every element of an ideal in \(C(X) \) is bounded, we call it a bounded ideal. The largest bounded ideal in \(C(X) \) exists by the following result, see Corollary 3.10 in [2] for its proof.

Lemma 3.3. The largest bounded ideal in \(C(X) \) is \(C_\psi(X) \).

The following theorem shows that the component of \(0 \) in \(C(X) \) with the \(m \)-topology is \(C_\psi(X) \), see also [2]. This theorem also shows that whenever \(I \subseteq C_\psi(X) \), then the component of \(0 \) in \(C_m(X) \) is \(I \).

Theorem 3.4. The component of \(0 \) in \(C_m(X) \) is \(C_\psi(X) \cap I \).

Proof. For each \(f \in C_\psi(X) \cap I \), the function \(\varphi_f \) is continuous by Lemma 3.1. Hence \(\varphi_f(\mathbb{R}) \) is connected. But \(C_\psi(X) \cap I = \bigcup_{f \in C_\psi(X) \cap I} \varphi_f(\mathbb{R}) \) means that \(C_\psi(X) \cap I \) is also connected. Now suppose that \(I \) is a connected ideal in \(C_m(X) \). Since by (d) of Proposition 2.2, \(C^\ast(X) \cap I \) is a closed-open set in \(C_m(X) \), we have \(I \subseteq C^\ast(X) \cap I \). This implies that \(I \) is a bounded ideal and hence \(I \subseteq C_\psi(X) \) by Lemma 3.3. Therefore \(I \subseteq C_\psi(X) \cap I \), i.e., \(C_\psi(X) \cap I \) is the component of \(0 \).
Since the ideal I is an open-closed set in $C_m(X)$, by Proposition 2.2, the following corollary is evident.

Corollary 3.5. If I is an ideal in C(X) and $I \subseteq C_0(X)$, then the quasicomponent of 0 in $C_m(X)$ is I.

If $C_0(X) \neq \emptyset$, then $C_0(X) = M^M_{X\times X}$ is free and hence it is an essential ideal (i.e., intersects every nonzero ideal nontrivially) by Proposition 2.1 in [1]. Now if I is a nonzero ideal in C(X), then $C_0(X) \cap I \neq \emptyset$ and the following corollary is evident.

Corollary 3.6. The following statements hold.

(a) If $C_0(X)$ is a totally disconnected if and only if either $I = \emptyset$ or $C_0(X) = \{0\}$.

(b) If X is pseudocompact, then $C_0(X)$ is a totally disconnected space if and only if I = (0).

(c) Whenever I is a proper ideal in C(X), then $C_0(X)$ is never connected.

4. **Compactness in $C_m(X)$**

In this section we investigate compact subsets of $C_m(X)$. Using the next theorem, for an infinite space X, every compact subset of $C(X)$ with the m-topology has an empty interior. To prove the theorem, we first need the following lemma.

Lemma 4.1. Suppose that u is unit and I is an ideal in C(X).

(a) If $\{a_1, a_2, \ldots, a_k\} \subseteq X \setminus Z(I)$, for each $1 \leq i \leq k$, there exists $t_i \in I$ such that $|t_i| < u$, $t_i(a_i) = \frac{1}{2}u(a_i)$ and $t_i(a_j) = 0$, for all $j \neq i$.

(b) If $X \setminus Z(I)$ is finite, then the subspace I of $C_m(X)$ is homeomorphic to \mathbb{R}^k for some $k \in \mathbb{N}$.

Proof. (a) Since $\{a_1, a_2, \ldots, a_k\}$ and $I \subseteq X \setminus Z(I)$, for each $1 \leq i \leq k$, there exists $s_i \in I$ such that $s_i(a_i) \neq 0$ and $s_i(a_j) = 0$. Without loss of generality, let $s_i(a_i) = 1$ and $s_i \geq 0$. Now consider the function $t_i = \frac{s_i}{2s_i + u}$. Clearly we have $t_i \in I$, $t_i(a_i) = \frac{1}{2}u(a_i)$, $t_i(a_j) = 0$ and $|t_i| < \frac{1}{2}u < u$.

(b) Let $X \setminus Z(I) = \{a_1, a_2, \ldots, a_k\}$. Clearly, each a_i is an isolated point. First we show that $I = (e)$, where $e(a_1) = \cdots = e(a_k) = 1$ and $e(x) = 0$, otherwise. For each $1 \leq i \leq k$, there exists $f_i \in I$ such that $f_i(x) \neq 0$, for $x \in X \setminus Z(I)$. Now $h = f_1^2 + \cdots + f_k^2 \in I$ and $Z(h) = \bigcap Z[I]$. But $Z(h) = Z(e)$ is open, hence e is a multiple of h, by 1D in [5], i.e., $e \in I$. On the other hand, for each $f \in I$, we have $Z(e) \subseteq Z(f)$ which means that $f \in (e)$ by 1D in [5] again, i.e., $I = (e)$.

Now corresponding to each $b = (b_1, b_2, \ldots, b_k) \in \mathbb{R}^k$, the function f_b defined by $f_b(a_i) = b_i$, for all $i = 1, \ldots, k$ and $f_b(\bigcap Z[I]) = \{0\}$ belongs to I = (e). We define $\varphi : \mathbb{R}^k \rightarrow I \subseteq C_m(X)$ by $\varphi(b) = f_b$, for all $b \in \mathbb{R}^k$. Clearly, the function φ is one to one and onto. The function φ is also continuous. In fact for every $f_b \in I$, where $b = (b_1, \ldots, b_k) \in \mathbb{R}^k$ and for each positive unit u in C(X), we have $\varphi^{-1}(B(f_b, I, u) \cap I) = \prod_{i=1}^{k}(b_i - u(a_i), b_i + u(a_i))$.

Finally, φ is open for, $\varphi(\overline{\{e_i\}}(b_i - \epsilon_i, b_i + \epsilon_i)) = \{f \in I : |f(a_i) - b_i| < \epsilon_i\}$ is open in I for each $i = 1, \ldots, k$ and $\epsilon_i > 0$. Therefore, I is homeomorphic to \mathbb{R}^k. □

Theorem 4.2. If I is an ideal in C(X), then every compact subset of $C_m(X)$ has an empty interior if and only if $X \setminus Z[I]$ is infinite.

Proof. Let $X \setminus Z[I]$ be infinite and F be a compact subset of $C_m(X)$. Suppose that $f \in \text{int}_{m}(F)$, then there exists $u \in U^*(X)$ such that $B(f, I, u) \subseteq F$. Since F is compact, there are $g_1, g_2, \ldots, g_n \in F$ such that $F \subseteq \bigcup_{i=1}^{n} B(g_i, I, \frac{\epsilon}{4})$. Since $X \setminus Z[I]$ is an infinite set, we may produce a set $\{x_1, x_2, \ldots, x_{n+1}\} \subseteq X \setminus Z[I]$ with distinct elements. Now by invoking Lemma 4.1, for $i \in \{1, 2, \ldots, n+1\}$, we define the function $t_i \in I$ with $|t_i| < u$, where $t_i(x_i) = \frac{1}{2}u(x_i)$ and $t_i(x_j) = 0$, for all $j \neq i$. If we take $h_i = f_i + t_i$, then we have $h_i - f = t_i \in I$ and $|h_i - f| = |t_i| < u$, for all $i = 1, 2, \ldots, n+1$. Therefore $h_i \in B(f, I, u) \subseteq \bigcup_{i=1}^{n} B(g_i, I, \frac{\epsilon}{4})$, for all $k = 1, \ldots, n+1$. This means that for some $1 \leq s \leq n+1$, $B(g_s, I, \frac{\epsilon}{4})$ contains at least two of h_i's. Let $h_i, h_j \in B(g_s, I, \frac{\epsilon}{4})$, for $i \neq j$. Thus we have $|h_i - h_j| < \frac{\epsilon}{2}$ which implies that $|h_i - t_j| < \frac{\epsilon}{2}$. But $t_i(x_j) = 0$ implies that $\frac{1}{4}u(x_j) < \frac{1}{2}u(x_j)$, a contradiction. Conversely, suppose that $X \setminus Z[I]$ is a finite set, say $\{a_1, a_2, \ldots, a_k\}$. By what we have already shown in the proof of Lemma 4.1, the function $\varphi : \mathbb{R}^k \rightarrow I \subseteq C_m(X)$, defined by $\varphi(b) = f_b$, for all $b \in \mathbb{R}^k$ is continuous. Now consider $S = \{f \in I : |f| \leq 1\}$. Clearly $B(0, I, 1) \subseteq S$, implies that $\text{int}_{m}(S) = \emptyset$ and $\varphi([1_{i=1}^{k}(-1, 1)]) = S$ implies that S is compact and the proof is complete. □
Proposition 4.3. If I is an ideal in $C(X)$, then I is a locally compact subspace of $C_m(X)$ if and only if $X \setminus \bigcap Z[I]$ is finite.

Proof. If I is locally compact, then by Proposition 2.2 and Theorem 4.2, $X \setminus \bigcap Z[I]$ is finite. On the other hand, whenever $X \setminus \bigcap Z[I]$ is finite, then by Lemma 4.1, I as a subspace of $C_m(X)$ is homeomorphic to \mathbb{R}^k for some $k \in \mathbb{N}$, so I is locally compact. \qed

By Lemma 3.3 and Theorem 4.2, the following result is evident. We note that whenever $f \in I \setminus C_\psi(X)$, then f is unbounded, by Lemma 3.3 and hence $X \setminus \bigcap Z[I]$ must be infinite.

Corollary 4.4. If $I \not\subseteq C_\psi(X)$, then every compact subset of $C_m(X)$ has an empty interior.

The following result is also an immediate consequence of our Theorem 4.2 and Proposition 2.1 in [1], see also Proposition 3.2 in [12] for more general case.

Corollary 4.5. If I is an essential ideal in $C(X)$, then every compact subset of $C_m(X)$ has an empty interior.

We conclude this section by the following proposition which investigates the compactness and Lindelöfness of ideals in $C_m(X)$. For an example of a Lindelöf ideal in $C_m(X)$ (which coincides with $C_m(X)$, where $I = C(X)$), see Example 4.7 in [2].

Proposition 4.6. Let I be an ideal in $C(X)$.

(a) I is never compact in $C_m(X)$,

(b) If I is Lindelöf in $C_m(X)$, then $I \subseteq C_\psi(X)$.

Proof. (a) Let I be compact and $u \in U^*(X)$. Since $I \subseteq \bigcup_{f \in I} B(f, I, u)$, there are $f_1, f_2, \ldots, f_n \in I$ such that $I \subseteq \bigcup_{j=1}^n B(f_j, I, u)$. Suppose that $x_0 \notin \bigcap_{j \in I} Z(f)$ and let $\alpha = \sup \{|f_1(x_0)| + u(x_0), \ldots, |f_n(x_0)| + u(x_0)|$. Take $f \in I$ such that $f(x_0) = \alpha$ (if $g \in I$ with $g(x_0) \neq 0$, consider $f = \alpha \frac{g}{\sup I} \in I$). Thus $f \in B(f, I, u)$ for some $1 \leq k \leq n$. Hence $|f| < |f_k| + u$ implies that $\alpha = |f(x_0)| < f_k(x_0) + u(x_0)$, a contradiction.

(b) Let $I \not\subseteq C_\psi(X)$. To prove that I is not Lindelöf, it is enough to show that every open cover of I is uncountable. Suppose that $I \subseteq \bigcup_{n=1}^\infty B(f_n, I, u_n)$, where $f_n \in C(X)$ and $u_n \in U^*(X)$, for all $n \in \mathbb{N}$. Since $I \not\subseteq C_\psi(X)$, there is an unbounded $f \in I$. Now using 1.20 in [5], there exists a copy of \mathbb{N}, say a sequence $\{x_n\}$ in X, C-embedded in X on which f is unbounded. Without loss of generality, we suppose that $|f(x_n)| > 1$, for all $n \in \mathbb{N}$. But $\{x_n\}$ is C-embedded, so a function $g \in C(X)$ exists such that $g(x_n) = |f(x_n)| + u(x_n)$. Now $fg \in I \subseteq \bigcup_{n=1}^\infty B(f_n, I, u_n)$ implies that $fg \in B(f_m, I, u_m)$ for some $m \in \mathbb{N}$. Therefore $|g(x_n)| < |f(x_n)||g(x_m)| < |f_m(x_m)| + u_m(x_m)$, a contradiction. \qed

5. Characteristics of the Space X via Properties of Some Subspaces of $C_m(X)$

We devote this section to the special case $I = C(X)$ of m^I-topology on $C(X)$, i.e., to the m-topology on $C(X)$. In this section we investigate some relations between topological spaces X and $C_m(X)$. The set $U(X)$ of units, the set $D(X)$ of zero-divisors, the set $r(X)$ of regulars (nonzerodivisors) and ideals of $C(X)$ are important subspaces of $C_m(X).$ We show that some properties of these subspaces completely determine the space X. For example, we show that $U(X)$ is dense in $C_m(X)$ if and only if X is strongly zero-dimensional and $D(X)$ is closed in $C_m(X)$ if and only if X is an almost P-space. First we recall that a space X is strongly zero-dimensional if for every pair A, B of completely separated subsets of the space X, there exists an open-closed set G such that $A \subseteq G \subseteq X \setminus B$, see Theorem 6.2.5 in [4]. We also recall that a space X is called an almost P-space if every nonempty \mathcal{G}_0-set (zero-set) in X has a nonempty interior. Characterization of the space X for which $r(X)$ ($C_X(X)$) is dense (closed) in $C_m(X)$ is also given in this section.

Proposition 5.1. $U(X)$ is dense in $C_m(X)$ if and only if X is strongly zero-dimensional.

Proof. Let X be strongly zero-dimensional, $f \in C(X)$ and u be a positive unit in $C(X)$. Suppose that
Since G and H are two disjoint zero-sets and X is strongly zero-dimensional, there exists an open-closed set K in X such that $G \subseteq K \subseteq X \setminus H$. Now define

$$v(x) = \begin{cases}
 f(x) + \frac{1}{2} u(x) & x \in K \\
 f(x) - \frac{1}{2} u(x) & x \notin K.
\end{cases}$$

Clearly v is unit, in fact if $x \in K$, then $x \notin H$ and hence $f(x) > -\frac{1}{2} u(x)$, i.e., $v(x) = f(x) + \frac{1}{2} u(x) > 0$ and if $x \notin K$, then $x \notin G$, so $f(x) - \frac{1}{2} u(x) = v(x) < 0$. Moreover, $|f - v| = \frac{1}{2} u < u$, i.e., $U(X)$ is dense in $C_m(X)$.

Conversely, let $U(X)$ be dense in $C_m(X)$ and Z_1 and Z_2 be two disjoint zero-sets. Suppose that $f \in C(X)$ such that $f(Z_1) = [-1]$ and $f(Z_2) = [1]$. Consider $u = \frac{1}{2}$, then there exists a unit $v \in B(f, \frac{1}{2})$, i.e., $|f - v| < \frac{1}{2}$. Let $K = \{x \in X : v(x) < 0\}$. Since v is unit, K is open-closed. Clearly $Z_1 \subseteq K \subseteq X \setminus Z_2$ which means that X is strongly zero-dimensional. \(\square\)

Proposition 5.2. The set $D(X)$ of zerodivisors of $C(X)$ is closed in $C_m(X)$ if and only if X is an almost P-space.

Proof. It is enough to show that $cl_m D(X) = C_m(X) \setminus U(X)$. Clearly $U(X)$ is open in $C_m(X)$ for, if $u \in U(X)$, then $B(u, \pi) \subseteq U(X)$, where $\pi = \frac{u|}{\pi}$. In fact if $f \in B(u, \pi)$, then $|f - u| < \frac{u}{2}$ implies that $Z(f) = \emptyset$, i.e., $f \in U(X)$. Thus $C_m(X) \setminus U(X)$ is closed and hence $cl_m D(X) \subseteq C_m(X) \setminus U(X)$. Now suppose that $f \in C_m(X) \setminus U(X)$ and π is positive unit. We show that $B(f, \pi) \cap D(X) \neq \emptyset$. Define

$$h(x) = \begin{cases}
 f(x) + \frac{1}{2} \pi(x) & f(x) \leq -\frac{1}{2} \pi(x) \\
 0 & |f(x)| < \frac{1}{2} \pi(x) \\
 f(x) - \frac{1}{2} \pi(x) & |f(x)| \geq \frac{1}{2} \pi(x).
\end{cases}$$

Clearly $h \in C(X)$ and $|f - h| < \pi$, i.e., $h \in B(f, \pi)$. On the other hand $G = \{x \in X : |f(x)| < \frac{1}{2} \pi(x)\}$ is a nonempty open set in X, for $\emptyset \neq Z(f) \subseteq G$. Since $G \subseteq Z(h)$, the interior of $Z(h)$ is nonempty and hence $h \in D(X)$, i.e., $B(f, \pi) \cap D(X) \neq \emptyset$. \(\square\)

In the following proposition we characterize spaces X for which the subset $r(X)$ of $C(X)$ is dense in $C_m(X)$. This proposition shows that for space $X = \mathbb{R}$ and more generally for a perfectly normal space X, the set $r(X)$ is dense in $C_m(X)$. First we prove the following lemma.

Lemma 5.3. Let A and B be two disjoint sets. A and B can be separated by disjoint cozero-sets whose union is dense if and only if there exists $g \in r(X)$ such that $A \subseteq posg$ and $B \subseteq negg$.

Proof. If there is such $g \in r(X)$, then $posg$ and $negg$ are cozero-sets whose union is dense for, $int_X Z(g) = \emptyset$. Conversely, suppose that A and B are separated by disjoint cozero-sets $cozh$ and $cozk$ respectively whose union is dense. Define

$$g(x) = \begin{cases}
 |h(x)| & x \in cozh \\
 0 & x \in Z(h) \cap Z(k) \\
 -|k(x)| & x \in cozk.
\end{cases}$$

Clearly $g \in C(X)$, $int_X Z(g) = \emptyset$ (i.e., $g \in r(X)$), $A \subseteq posg$ and $B \subseteq negg$. \(\square\)

Proposition 5.4. $r(X)$ is dense in $C_m(X)$ if and only if disjoint zero-sets in X can be separated by disjoint cozero-sets whose union is dense in X.

Proof. Suppose that $r(X)$ is dense in $C_m(X)$ and $Z(f) \cap Z(g) = \emptyset$. Consider $h \in C(X)$ such that $|h| \leq a$, $a > 0$ and $h(Z(f)) = [a]$, $h(Z(g)) = [-a]$. Since $r(X)$ is dense, there exists $k \in r(X) \cap B(h, a)$. Hence $h - a < k < h + a$ and $int_X Z(k) = \emptyset$. If $x \in Z(f)$, then $k(x) > h(x) - a = -a = 0$ and if $x \in Z(g)$, then $k(x) < h(x) + a = -a + a = 0$, i.e., $Z(f) \subseteq posk$, $Z(g) \subseteq negk$. Now by our lemma, we are through.
Conversely, suppose that disjoint zero-sets can be separated by disjoint cozero-sets whose union is dense in X. Let $f \in C(X)$ and π be a positive unit in $C(X)$. By our lemma, there exists $g \in r(X)$ such that $\{x \in X : f(x) \geq \frac{-\pi}{2}(x)\} \subseteq posg$ and $\{x \in X : f(x) \leq -\frac{\pi}{2}(x)\} \subseteq negg$ and we consider $|g| \leq \frac{\pi}{2}$. Now define $h = \{(f + \frac{\pi}{2}) \land g\} \lor (f - \frac{\pi}{2})$. Clearly $h \geq f - \frac{\pi}{2}$. Hence for each $x \in X$, either $h(x) = f(x) - \frac{\pi(x)}{2} \leq f(x) + \frac{\pi(x)}{2}$ or $h(x) = \{(f(x) + \frac{\pi(x)}{2}) \land g\} \leq f(x) + \frac{\pi(x)}{2}$. Therefore $f - \frac{\pi}{2} \leq h \leq f + \frac{\pi}{2}$ and hence $h \in B(f, \pi)$. On the other hand, if $h(x) = 0$, then $f(x) \neq \frac{\pi(x)}{2}$. Whenever $f(x) = -\frac{\pi}{2}(x)$, then $g(x) < 0$, so $h(x) = g(x) \lor (f(x) - \frac{\pi}{2}(x)) = g(x) \lor -\pi(x) = g(x) < 0$ (note that $g(x) \geq -\frac{\pi}{2}(x)$). If $f(x) = \frac{\pi}{2}(x)$, then $g(x) > 0$, $f(x) + \frac{\pi}{2}(x) = \pi(x) > -\frac{\pi}{2}(x) \geq g(x)$ and hence $h(x) = g(x) \lor (f(x) - \frac{\pi}{2}(x)) = g(x) \lor 0 = g(x) > 0$. Also, $f(x) < -\frac{\pi}{2}(x) \land f(x) > \frac{\pi}{2}(x)$ do not happen. In fact $f(x) < -\frac{\pi}{2}(x)$ implies $g(x) < 0$, hence $h(x) < 0$ and $f(x) > \frac{\pi}{2}(x)$ implies $g(x) > 0$, so $h(x) > 0$. Therefore $f(x) - \frac{\pi(x)}{2} \leq h(x) < f(x) + \frac{\pi(x)}{2}$ and this means that $g(x) = 0$. Consequently, $Z(h) \subseteq Z(g)$ and hence $\text{int}_X Z(h) = \emptyset$, since $g \in r(X)$. This implies that $B(f, \pi) \cap r(X) \neq \emptyset$, i.e., $r(X)$ is dense in $C_m(X)$. \qed

In the following result, we observe that for any space X satisfying countable chain condition, i.e., for any space X with countable cellularity χ, the set $r(X)$ is also dense in $C_m(X)$. The smallest cardinal number $a \geq N_\omega$ such that every family of pairwise disjoint nonempty open subsets of X has cardinality less than or equal to a, is called the cellularity of the space X and is denoted by $\chi(X)$. If $\chi(X) = N_\omega$, we say X satisfies the countable chain condition.

Proposition 5.5. If $\chi(X) = N_\omega$, then $r(X)$ is dense in $C_m(X)$.

Proof. Let $f \in C(X)$ and π be a positive unit in $C(X)$. For every $a \in (0,1)$, we define $Z_a = \{x \in X : f(x) = a\}$. Clearly $Z_a \cap Z_b = \emptyset$, for all $a, b \in (0,1)$ and $a \neq b$. Since $C(X) = N_\omega$, then $\text{int}_X Z_a = \emptyset$ for some $a \in (0,1)$. Now we consider $h = f - a\pi$. Since $Z(h) = Z_a$, then $h \in r(X)$ and $|h - f| = a\pi < \pi$, i.e., $h \in B(f, \pi) \cap r(X)$. \qed

We conclude the paper with the following result which characterizes the space X for which the ideal $C_K(X)$ is closed in $C_m(X)$. We recall that a space X is called μ-compact if $C_K(X) = I(X) := \bigcap_{f \in C(X)} M^\mu$, see [9] for more details of such spaces.

Proposition 5.6. The ideal $C_K(X)$ is closed in $C_m(X)$ if and only if X is μ-compact.

Proof. It is enough to show that $\text{cl}_m C_K(X) = I(X)$. Since $C_K(X) = \bigcup_{f \in C(X)} M^\mu$, we have $C_K(X) \subseteq \bigcup_{f \in C(X)} M^\mu = I(X)$. But $I(X)$ is closed, so $\text{cl}_m C_K(X) \subseteq I(X)$. Now suppose that $f \in I(X)$, then $\beta X \setminus X \subseteq \text{cl}_m Z(f)$. For every positive unit π in $C(X)$, we must show that $B(f, \pi) \cap C_K(X) = \emptyset$. Consider the function h defined in the proof of Proposition 5.2 and the zero-set $H = \{x \in X : f(x) \geq \frac{\pi(x)}{2}\}$, so $H = Z(g)$, for some $g \in C(X)$. Clearly $Z(f) \subseteq X \setminus Z(g) \subseteq Z(h)$, for if $f(x) = 0$, then $x \notin H$, hence $x \in X \setminus Z(g)$ and this implies that $|f(x)| < \frac{\pi(x)}{2}$, so $x \notin Z(h)$. Now $\text{cl}_m Z(h)$ is a neighborhood of $\text{cl}_m Z(f)$ and we have $\beta X \setminus X \subseteq \text{cl}_m Z(f) \subseteq \text{int}_X \text{cl}_m Z(h)$, therefore $h \in \bigcup_{f \in C(X)} M^\mu = C_K(X)$. On the other hand $|f - h| < \pi$, i.e., $h \in B(f, \pi)$ which means that $h \in B(f, \pi) \cap C_K(X)$. \qed

References

