Approximation of the Block Numerical Range of Block Operator Matrices

Jiahui Yua, Alatancang Chenb,∗, Junjie Huanga, Jiaojiao Wuc

aSchool of Mathematical Science, Inner Mongolia University, Hohhot, 010021, P.R. China
bDepartment of Mathematics, Hohhot minzu college, Hohhot, 010051, P.R. China
cSchool of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot, 010070, P.R. China

Abstract. In this paper we obtain an approximation of the block numerical range of bounded and unbounded block operator matrices by projection methods.

1. Introduction

Let \mathcal{H} be a Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the space of all bounded linear operators from \mathcal{H} to \mathcal{H}. The spectra of linear operators play quite a relevant role in many branches of mathematics and in numerous applications. The classical tool to enclosed the spectrum of a linear operator $\mathcal{A} \in \mathcal{B}(\mathcal{H})$ is the numerical range (see [1, 2]). In [4, 7], the notion of quadratic numerical range was introduced and it may give a better localization of the spectrum than the usual numerical range. In [5], the quadratic numerical range of a (finite) block matrix was approximated by projection methods.

This concept was generalized to block numerical range in [8]. Using the refinement of the decomposition of the space, it was shown that there exists a decreasing sequence of compact sets $\{\overline{\mathcal{W}}_k(\mathcal{A})\}_{k=1}^{\infty}$, such that $\sigma(\mathcal{A}) \subseteq \bigcap_{k=1}^{\infty} \overline{\mathcal{W}}_k(\mathcal{A})$ (see [8]). A total decomposition of \mathcal{H} and an estimable decomposition of \mathcal{H} for $\sigma(\mathcal{A})$ were introduced in [6]. By an estimable decomposition, one can approximate the spectrum of \mathcal{A} by block numerical ranges of \mathcal{A}, i.e., there exist a decreasing sequence $\{\mathcal{W}_k(\mathcal{A})\}_{k=1}^{\infty}$, such that $\sigma(\mathcal{A}) = \bigcap_{k=1}^{\infty} \mathcal{W}_k(\mathcal{A})$. But, the existence on the estimable decomposition is, in general, hard to obtain and numerical approximations for the spectra may not be reliable, in particular, if the operator is not self-adjoint or normal. This paper arose from an attempt to gain a better understanding of the block numerical range. In contrast with the quadratic numerical range, we consider how to compute $\mathcal{W}_n(\mathcal{A})$ by projection methods, which reduce the problem to that of computing the block numerical range of a (finite) block matrix. When \mathcal{A} is unbounded, we do assume either that \mathcal{A} is diagonally dominant or off-diagonally dominant.

The organization of this paper is as follows: In section 2 we are going to introduce the related definition and lemma. In section 3 we will give an approximation of the block numerical range of bounded block
operator matrices. In section 4 we obtain the approximations of the block numerical range of unbounded block operator matrices which are diagonally (off-diagonally) dominant.

2. Preliminaries

The following notion of block numerical range for the bounded block operator matrix is due to Tretter and Wagenhofer [8].

Let \(\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n \) where \(\mathcal{H}_1, \ldots, \mathcal{H}_n \) are Hilbert spaces. With respect to this decomposition, the bounded linear operator \(A \) on \(\mathcal{H} \) has a block operator matrix representation:

\[
A := \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{bmatrix},
\]

(1)

where \(A_{ij} \in B(\mathcal{H}_j, \mathcal{H}_i), i, j = 1, \ldots, n. \)

Definition 2.1. Let \(S^n := \{(x_1, \ldots, x_n)^t \in \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n : \|x_1\| = \cdots = \|x_n\| = 1\}. \) For \(x = (x_1, \ldots, x_n)^t \in S^n, \) define the \(n \times n \) matrix \(A_x \) as follows:

\[
A_x := \begin{bmatrix}
(A_{11}x_1, x_1) & \cdots & (A_{1n}x_n, x_1) \\
\vdots & \ddots & \vdots \\
(A_{n1}x_1, x_n) & \cdots & (A_{nn}x_n, x_n)
\end{bmatrix}.
\]

(2)

Let \(W^n(A) := \{ \lambda \in \mathbb{C} : \lambda \in \sigma(A_x), x \in S^n \} \) be block numerical range of the block operator matrix \(A \), which is defined by (1).

Remark 2.2. For \(n = 1 \), the block numerical range is just the usual numerical range, for \(n = 2 \), it is the quadratic numerical range.

In the following Lemma we state some properties for block numerical range of the bounded block operator matrix. (For details see [7, 8].)

Lemma 2.3. Let \(A \) as in (1) be a block operator matrix on \(\mathcal{H} \). Then

1. \(\sigma_p(A) \subseteq W^n(A) \), where \(\sigma_p(A) \) is the point spectrum of \(A \).
2. \(\sigma(A) \subseteq W^n(A) \), where \(\sigma(A) \) is the spectrum of \(A \).
3. \(W^n(A) \subseteq W(A) \).
4. \(W^n(A^*) := \{ \overline{\lambda} : \lambda \in W^n(A) \} \).
5. \(W^n(\mathcal{A}) \subseteq W^n(A), \) where \(\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n \) is a refinement (see [7], Definition 1.11.12) of \(\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n \).

3. Convergence Theorems for Bounded Operator

Theorem 3.1 (For bounded operator). Let

\[
\mathcal{A} := \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{bmatrix},
\]
be a bounded operator in $H = H_1 \oplus \cdots \oplus H_n$. For $i = 1, \ldots, n$, let $(U_i^\alpha)_{\alpha = 1}^\infty$ be nested families of space in H_α, given by $U_i^\alpha := \text{span}[a_i^1, \ldots, a_i^{\alpha}]$, where $(a_i^\alpha)_{\alpha = 1}^\infty$ is orthonormal. Let $\mathbb{N}_+ := \{1, 2, 3, \cdots \}$, and multi-index $k := (k_1, \ldots, k_n) \in \mathbb{N}_+^n$. Consider

$$A_k := \begin{bmatrix} A_{k_1} & \cdots & A_{k_1} \\ & \ddots & \vdots \\ A_{k_n} & \cdots & A_{k_n} \end{bmatrix},$$

where $(A_{k_i})_{s,t} := (A_{k_i}^s a_i^t, a_i^t)$, $s = 1, \ldots, k_i; t = 1, \ldots, k_i$. Then $W^n(A_k) \subseteq W^n(\mathcal{A}).$

Proof. Let $\lambda \in W^n(A_k)$, there then exists $\beta := (\beta_1, \ldots, \beta_n)^t$, where $\beta_i \in \mathbb{C}^{k_i}$, with $\|\beta_i\| = 1, i = 1, \ldots, n$, such that λ is an eigenvalue of

$$\begin{bmatrix} (A_{k_1} \beta_1, \beta_1) & \cdots & (A_{k_1} \beta_n, \beta_1) \\ \vdots & \ddots & \vdots \\ (A_{k_n} \beta_1, \beta_n) & \cdots & (A_{k_n} \beta_n, \beta_n) \end{bmatrix}$$

Define isometries $\pi_i^k : U_i^\alpha \to \mathbb{C}^{k_i}$, by $\pi_i^k(\beta_1 a_i^1 + \cdots + \beta_n a_i^n) := (\beta_1, \ldots, \beta_n)^t := \beta_i$, for $i = 1, \ldots, n$.

Choose $x = (x_1, \ldots, x_n)^t$, such that $\pi_i^k(x_i) = \beta_i, \|x_i\| = 1$, for $i = 1, \ldots, n$. By a simple calculation, it then follows that $(A_{k_i})_\beta = A_{k_i}$. Hence $\lambda \in W^n(\mathcal{A}).$

Lemma 3.2. Let $(U_i^\alpha)_{\alpha = 1}^\infty$ and A_k be as in Theorem 3.1. Suppose that $\tilde{k}, k \in \mathbb{N}_+^n$ and $\tilde{k} \geq k$, in the sense that, $\tilde{k}_i \geq k_i$, for all $i = 1, \ldots, n$. Then $W^n(A_k) \subseteq W^n(A_{\tilde{k}})$.

Proof. This result is an immediate consequence of the fact that C^k is a subspace of \tilde{C}^k for $\tilde{k}_i \geq k_i, i = 1, \ldots, n$.

Remark 3.3. In the proof of Theorem 3.1 and Lemma 3.2, the boundedness of operators is less important than one might expect. In fact, the same results also hold, if \mathcal{A} is an unbounded operator in $H = H_1 \oplus \cdots \oplus H_n$, and let $(U_i^\alpha)_{\alpha = 1}^\infty$ be nested families of space in $D_i := \bigcap_{j=1}^n D_{ij}$, where D_{ij} is the domain of A_{ij} for $i, j = 1, \ldots, n$.

Roughly speaking, the proof of Theorem 3.1 and Lemma 3.2 also yield for unbounded operators.

Theorem 3.4. Let \mathcal{A}, A_k and $(U_i^\alpha)_{\alpha = 1}^\infty$ be as in Theorem 3.1. Suppose that $(a_i^\alpha)_{\alpha = 1}^\infty$ is orthonormal basis of H_α, for $i = 1, \ldots, n$. Then

$$\bigcup_{k \in \mathbb{N}_+^n} W^n(A_k) = \bigcup_{m \in \mathbb{N}_+^n} W^n(A_m) = W^n(\mathcal{A}),$$

where $m := (m_1, \ldots, m_n) \in \mathbb{N}_+^n$.

Proof. By Lemma 3.2, it is immediate that

$$\bigcup_{k \in \mathbb{N}_+^n} W^n(A_k) \subseteq \bigcup_{m \in \mathbb{N}_+^n} W^n(A_m),$$

where $m := \max(k_1, \ldots, k_n)$. To see the other inclusion, consider $m := \min(k_1, \ldots, k_n)$. And hence proves that

$$\bigcup_{k \in \mathbb{N}_+^n} W^n(A_k) = \bigcup_{m \in \mathbb{N}_+^n} W^n(A_m).$$
To complete this proof, it therefore now remains to prove that \(W^n(\mathcal{A}) \subseteq \bigcup_{k \in \mathbb{N}_0^*} W^n(\mathcal{A}_k) \).

Let \(\lambda \in W^n(\mathcal{A}) \). There then exists \(x \in S^n \), such that \(\lambda \) is an eigenvalue of \(\mathcal{A}_n \), as defined in (2). Since \((\alpha_i^k)_{k=1}^\infty \) is orthonormal basis of \(\mathcal{H}_i \), \(i = 1, \ldots, n \), there exists a sequence \((x^i_k)_{k=1}^\infty \), with each \(x^i_k \in \text{span}(\alpha_i^1, \ldots, \alpha_i^k) \) for some \(k_i > 0 \), such that \(||x^i - x^i_k|| \rightarrow 0 \), and \(||A_{ij}^i x^i_k - A_{ij}^i x^i|| \rightarrow 0 \), as \(k \rightarrow \infty \), where \(x^i \) denotes the \(i \)-th component of \(x \) and \(j = 1, \ldots, n \). Let \(x_k = (x^1_k, \ldots, x^n_k) \), by a simple calculation, we then obtain that \(||\mathcal{A}_k - \mathcal{A}_n|| \rightarrow 0 \), as \(k \rightarrow \infty \).

For a unbounded linear operator \(A \) in \(\mathcal{H} \) which admits a so-called block operator matrix representation:

\[
\mathcal{A} := \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{bmatrix},
\]

where \(A_{ij} : \mathcal{H}_i \rightarrow \mathcal{H}_j \), is closable operators with dense domains \(D_{ij} \in \mathcal{H}_j \), for \(i, j = 1, \ldots, n \). We always suppose that \(\mathcal{A} \) with its natural domain \(D(\mathcal{A}) := D_1 \oplus \cdots \oplus D_n \), where \(D_i := \bigcap_{j=1}^n D_{ij} \in \mathcal{H}_j \), is also densely defined for \(i, j = 1, \ldots, n \).

\textbf{Remark 4.1.} It should be noted that, unlike bounded operators, unbounded linear operators, in general, do not admit a matrix representation (5), with respect to a given decomposition \(\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n \).

\textbf{Definition 4.2.} The block operator matrix \(\mathcal{A} \) in (5) is called

(1) diagonally dominant if \(A_{ij} \) is \(A_{jj} \)-bounded (see [7], Definition 2.1.2),

(2) off-diagonally dominant if \(A_{ij} \) is \(A_{n+1-j,j} \)-bounded, where \(i, j = 1, \ldots, n \).

The definition of the block numerical range for bounded linear operators (see [7], Definition 1.1.12.) generalizes as follows to unbounded block operator matrices \(\mathcal{A} \) of the form (1) with dense domain \(D(\mathcal{A}) \).

\textbf{Definition 4.3.} Let \(S^n := \{(x_1, \ldots, x_n) : \|x_1\| = \cdots = \|x_n\| = 1\} \). For \(x = (x_1, \ldots, x_n) \in S^n \), define the \(n \times n \) matrix \(\mathcal{A}_x \) as follows:

\[
\mathcal{A}_x := \begin{bmatrix}
(A_{11}x_1, x_1) & \cdots & (A_{1n}x_n, x_1) \\
\vdots & \ddots & \vdots \\
(A_{n1}x_1, x_n) & \cdots & (A_{nn}x_n, x_n)
\end{bmatrix}.
\]

Let

\[
W^n(\mathcal{A}) := \{ \lambda \in \mathbb{C} : \lambda \in \sigma(\mathcal{A}_x), x \in S^n \}
\]

be block numerical range of the unbounded block operator matrix \(\mathcal{A} \), which is defined by (5).
Remark 4.4. For \(n = 1 \), the block numerical range is just the usual numerical range, for \(n = 2 \), it is the quadratic numerical range, as the bounded case.

The following result shows some important properties of the block numerical range of the unbounded block operator matrix.

Proposition 4.5. For an unbounded block operator matrix \(\mathcal{A} \), we have

1. \(\sigma_p(\mathcal{A}) \subseteq W^p(\mathcal{A}) \), where \(\sigma_p(\mathcal{A}) \) is the point spectrum of \(\mathcal{A} \).
2. \(W^p(\mathcal{A}) \subseteq W(\mathcal{A}) \).
3. \(W^p(\mathcal{A}) \subseteq W(\mathcal{A}) \), where \(\mathcal{D}_1 \oplus \cdots \oplus \mathcal{D}_n \) is a refinement (see [7], Definition 1.11.12) of \(\mathcal{D}_1 \oplus \cdots \oplus \mathcal{D}_n \).

Proof. The proofs are completely analogous to the proofs of the bounded case (see [7]) if we take \(x = (x_1, \ldots, x_n)^T \in S^n \).

In the following result we describe a property of convergence for unbounded operator.

Theorem 4.6 (For unbounded operator). Let

\[
\mathcal{A} := \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & \ddots & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{bmatrix}
\]

be an unbounded operator in \(\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n \). For \(i = 1, \ldots, n \), let \((\mathcal{U}^i_k)_{k=1}^\infty \) be nested families of space in \(\mathcal{D}_i \), given by \(\mathcal{U}^i_k := \text{span}(\{x^i_k\}) \), where \((x^i_k)_{k=1}^\infty \) is orthonormal. And \(A^i_k \) denotes as in Theorem 3.1. Suppose that \(\mathcal{A} \) is diagonally dominant, and \((\mathcal{U}^i_k)_{k=1}^\infty \) is a core (see [3], Section III.3) of \(A^i_k \), \(i = 1, \ldots, n \). Then \(\bigcup_{i=1}^n \bigcap_{k=1}^\infty W^p(A^i_k) = \bigcap_{m \in \mathbb{N}_+} W^p(A_{\infty}^m) = W_p(\mathcal{A}) \), where \(m^i := (m, \ldots, m) \in \mathbb{N}_+^n \).

Proof. Since \((\mathcal{U}^i_k)_{k=1}^\infty \) is a core of \(A^i_k \), for \(i = 1, \ldots, n \), there exists a sequence \((x^i_k)_{k=1}^\infty \) with each \(x^i_k \in \mathcal{U}^i_k \) for some \(k_i > 0 \), such that \(\|x^i_k - x^i_0\| \to 0 \), and \(\|A^i_k x^i_k - A^i_i x^i_k\| \to 0 \). Because \(A^i_k \) is \(A^i_0 \)-bounded for \(j = 1, \ldots, n \), we have \(\|A^i_j x^i_k - A^i_j x^i_0\| \to 0 \), as \(k \to \infty \). The rest of proof is completely analogous to the proof of Theorem 3.4.

Remark 4.7. The same result holds if \(\mathcal{A} \) is off-diagonally dominant with \((\mathcal{U}^i_k)_{k=1}^\infty \) being a core of \(A_{\infty-1-i} \), for \(i = 1, \ldots, n \).

Remark 4.8. Note that, the result of Theorem 2.3 in [5], is the \(n = 2 \) case of Theorem 4.6.

Acknowledgment

The authors are grateful to the referees for valuable comments on this paper.

References