

INTRODUCTION

Methotrexate (MTX) is a cytostatic drug belonging to the group of antimetabolites; it is an antagonist of folic acid with an intensive application in gynaecology practice.

BACKGROUND: Methotrexate is a cytostatic drug belonging to the group of antimetabolites; it is an antagonist of folic acid with an intensive application in gynaecology practice.

METHODS: The frequency of micronuclei (MN) in peripheral blood lymphocytes of 30 patients with myoma uteri was analyzed before and after intratumoral application of methotrexate (MTX) in total dose from 50 to 115 mg. Analysis of micronuclei was performed by the application of cytokinesis-block technique (CB).

RESULTS: Average frequency of MN in lymphocytes of patients before the therapy was 4.6±0.4 MN/1000 analyzed cells. After the completion of therapy with six separate doses during six consecutive menstrual average frequency of MN increased 1.5 times (7.0±0.6) in comparison to control frequency before the therapy. Statistically significant difference (p<0.001) was established by the Student t test.

CONCLUSION: Methotrexate intratumoral treatment of the myoma uteri significantly increased micronuclei in peripheral blood lymphocytes.

KEY WORDS: Methotrexate; Injections, Intralesional; Myoma; Uterine Neoplasms; Lymphocytes; Micronuclei

PATIENTS AND METHODS

In the investigation of mutagenic effect of MTX on the MN frequency in peripheral blood lymphocytes, we applied CBMN test (2) before and after the completed therapy on the sample of 30 patients with the diagnosis myoma uteri. The median age of surveyed patients was 45±0.8 years, (range, 36-52 years). MTX was applied intratumorally in single doses on day 8 of follicular phase of menstrual cycle, and the procedure was repeated during six consecutive cycles.

We used standard method for cultivation of peripheral blood lymphocytes in duration of 72 hours (5,6) together with some modi-

Effect of intratumoral application of methotrexate in vivo on frequency of micronuclei in peripheral blood lymphocytes

Tanja NOVAKOVIĆ
Olivera MILOŠEVIĆ-DORĐEVIĆ
Darko GRUJIČIĆ
Dragoslav MARINKOVIĆ
Slobodan JANKOVIĆ
Slobodan ARSENIJEVIĆ

© 2003, Institute of Oncology Sremska Kamenica, Serbia and Montenegro

Address correspondence to:
Dr. Olivera Milošević-Dorđević, Faculty of Science, University of Kragujevac, Institute of Biology, Department of Genetics, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia and Montenegro, e-mail: olivera@knez.uis.kg.ac.yu

The manuscript was received: 22. 12. 2002

Provisionally accepted: 16. 01. 2003

Accepted for publication: 22. 02. 2003

Archives of Oncology 2003;11(1):1-4.

Original article

UDC: 616.14-006.4: 616.155.392: 612.085.1

1 CLINIC OF GYNECOLOGY AND OBSTETRICS, KRAGUJEVAC, SERBIA AND MONTENEGRO

2 FACULTY OF SCIENCE, KRAGUJEVAC, SERBIA AND MONTENEGRO

3 FACULTY OF BIOLOGY, BELGRADE, SERBIA AND MONTENEGRO
fications necessary for application of the CBMN test (2) in our cytogenetic studies.

For the cultures of peripheral blood lymphocytes 77% Parker 199 (Torlak, Belgrade), 20% fetal calf serum (Institute of Veterinary Medicine, Novi Sad) and 3% phytohemagglutinin (PHA-INEP) were used. Under sterile conditions, 20 drops of whole heparinized blood were put into bottles containing 5 ml of medium. Cultures were incubated at 37°C for 72 hours. Cytochalasin B (Fluka) was added after 48 hours of incubation into the final concentration of 4 mg/ml.

The preparation was standard. Hypotonic solution was 0.56% KCl, and fixation was carried out during 2×15 minutes by fixative (glacial acetic acid: methanol = 1:3). The slides were stained by 2% alkaline Giemsa (Alfapanon, Novi Sad) and dried under a lamp. The analyses of MN were carried out on 1000 binucleated lymphoblasts per patient. We applied Student t test and analysis of variance (ANOVA) when comparing the obtained results.

RESULTS

Results of the investigation are presented in Tables 1 and 2, and in Figure 1.

Table 1. Frequencies of micronuclei (MN) in peripheral blood lymphocytes of patients with myoma uteri before and after methotrexate intra-tumoral treatment of the myoma

<table>
<thead>
<tr>
<th>Patients</th>
<th>Age (years)</th>
<th>Before therapy</th>
<th>Frequency MN/1000 CB cells</th>
<th>Doses (mg)</th>
<th>After therapy</th>
<th>Frequency MN/1000 CB cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>214</td>
<td>5</td>
<td>50</td>
<td>1000</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>1000</td>
<td>4</td>
<td>50</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>1000</td>
<td>8</td>
<td>50</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>1000</td>
<td>8</td>
<td>50</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>1000</td>
<td>4</td>
<td>50</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>1000</td>
<td>5</td>
<td>55</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>1000</td>
<td>8</td>
<td>60</td>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>1000</td>
<td>6</td>
<td>60</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>42</td>
<td>1000</td>
<td>3</td>
<td>60</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>1000</td>
<td>8</td>
<td>60</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>1000</td>
<td>7</td>
<td>60</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>1000</td>
<td>6</td>
<td>60</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>48</td>
<td>1000</td>
<td>9</td>
<td>60</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>1000</td>
<td>4</td>
<td>60</td>
<td>900</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>1000</td>
<td>3</td>
<td>60</td>
<td>900</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>46</td>
<td>1000</td>
<td>6</td>
<td>60</td>
<td>900</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>53</td>
<td>1000</td>
<td>1</td>
<td>60</td>
<td>900</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>44</td>
<td>1000</td>
<td>6</td>
<td>60</td>
<td>900</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>36</td>
<td>1000</td>
<td>6</td>
<td>60</td>
<td>900</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>49</td>
<td>1000</td>
<td>3</td>
<td>60</td>
<td>900</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>43</td>
<td>1000</td>
<td>5</td>
<td>60</td>
<td>900</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>42</td>
<td>1000</td>
<td>4</td>
<td>60</td>
<td>900</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>48</td>
<td>1000</td>
<td>1</td>
<td>60</td>
<td>900</td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td>52</td>
<td>1000</td>
<td>2</td>
<td>60</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
<td>1000</td>
<td>5</td>
<td>60</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>45</td>
<td>1000</td>
<td>5</td>
<td>60</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>44</td>
<td>1000</td>
<td>7</td>
<td>60</td>
<td>1000</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>48</td>
<td>1000</td>
<td>4</td>
<td>70</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>29</td>
<td>48</td>
<td>1000</td>
<td>4</td>
<td>70</td>
<td>1000</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>48</td>
<td>1000</td>
<td>0</td>
<td>115</td>
<td>1000</td>
<td>3</td>
</tr>
</tbody>
</table>

The application of MTX therapy (7.03±0.55), average MN frequency (Table 1) was increased 1.5 times in comparison to average MN frequency in the same patients before the therapy (4.63±0.43), with the statistical significance of p<0.001. From 29 930 analyzed binucleated cells after the treatment, 272 (0.91%) cells with MN were found, which was double in comparison with control cells before the therapy (0.46%). Binucleated lymphoblasts with 1 MN were exclusively present in the analyzed sample.

Frequencies of MN were increased in most patients in relation to their values before the therapy. This increase was individual - from 1.25 (25%) to 6 times (600%). The change of MN frequency did not occur in the analyzed cells of patients numbered 2 and 5 who received total dose of 50 mg, patient number 7 who received total dose of 55 mg, and patients 11 and 15 who received total dose of 60 mg. In patient number 1 who received total dose of 50 mg, and patients 14 and 20 who received total dose of 60 mg, the frequencies of MN after the therapy decreased in relation to their values before the therapy.

Single MN frequencies before and after the therapy due to received doses are shown in Figure 1. Correlation between the received dose and MN frequency was negative (r=-0.17 p=0.36).

Summarizing the presented results, the analysis of variance-ANOVA (Table 2) shows a significant difference in average frequencies of MN between the observed groups, with a probability p<0.001. Influence of genetic factors on variability in the presence of MN is considerably greater (78.4%) than that of environmental factors (21.6%).
DISCUSSION

Micronuclei in mitotically active cells arise from structural chromosomal aberrations or disturbed function of mitotic spindle. That is why some authors consider that the follow up of MN frequencies in peripheral blood lymphocytes in the samples of human individuals could be a very effective test to estimate the effects of biological, physical and chemical agents (7).

At the of a six months long therapeutic MTX intratumoral treatment of the myoma uteri, the results of average MN frequencies in peripheral blood lymphocytes of 30 patients aging from 36 to 52 years showed statistically significant increase in relation to control MN values of the same patients before the therapy (p<0.001).

The obtained results can be compared with data from literature. MTX produced a significant genetic damage, which was proved by the increased incidence of chromosomal aberration and MN formation in human as well as in animal model (8). Acar et al. (9) reported significantly higher MN frequencies in patients with acute lymphoblastic leukemia (ALL) after the treatment with antileukemic agent (vincristine, methotrexate, daunomycin, prednisone and asparaginase). Kasahara et al. (10) indicated that level of MN and chromosomal aberrations in mouse cells of bone marrow was far higher after multiple treatments than in single MTX treatments, and they concluded that effect of multiple doses of MTX on induction of MN and chromosomal aberrations could be explained by intracellular inhibition of dihydrofolate reductase (DHFR).

The primary site of action of MTX is the enzyme dihydrofolate reductase (DHFR). Inhibition of DHFR leads to toxic effects through partial consumption of the tetrahydrofolate cofactors, which are necessary for the synthesis of purines and thymidylate (precursors of DNA) (11-13), and through direct inhibition of folate-dependent enzymes of purine and thymidylate metabolism by the polyglutamates of MTX and dihydrofolate polyglutamates which accumulate with the inhibition of DHFR (14). The final result is the inhibition of DNA replication and cell death (13).

Among the lymphocytes of patients before therapy, individual variation in MN/1000 binucleated cells was significant, varying from 0 to 8; after the therapy MN ranged from 1 to 16. By the application of ANOVA for MN, we noted statistically significant difference in comparison between groups vs. within group variance (F=11.88, p<0.001). The present variability in the MN frequency could be attributed to an individual reactivity on MTX action. Interindividual variation in MN was almost five times greater than intraindividual variation. It is our impression that interindividual cell variation in MN frequency is mainly based on epigenetic, i.e. a regulatory-genetic variation whereas the differences among individuals are prevalently strustructuraly genetic.

Previous investigations showed that in different persons treated by the same dose of mutagen, the level of chromosomal aberrations was different, which was explained as an individual reactivity (15,16). Individual sensitivity increased due to the difference in metabolic activation of mutagen and efficiency of DNA repair (17).

Obtained results showed a negative correlation between received doses of MTX and MN frequencies. In 5 patients (No. 2, 5, 7, 11, 15 in Table1) the change of MN frequency did not occur after the therapy, and in 3 patients (No. 1, 14 and 20 in Table 1) frequencies of MN after the therapy decreased in relation to their values before therapy.

Many authors demonstrated mechanisms of resistance to MTX action (18-21). DHFR levels in leukemic cells increase within 24 hours after the treatment with methotrexate. This probably shows the induction of new enzyme synthesis. Recent investigations demonstrate that the intracellular level of DHFR protein is controlled at the level of mRNA translational efficiency through an autoregulatory mechanism, whereby the DHFR protein may bind to and control the translational efficiency of its own mRNA (22).

CONCLUSION

Our results suggest that intratumoral application of MTX therapy by using sub-endometrial injection into the myoma in patients with myoma uteri significantly increased the frequency of micronuclei in human peripheral blood lymphocytes.

Acknowledgments

This work was supported by the Serbian Ministry of Science and Technology, Grand No. 1214.

REFERENCES

