In this work the fundamentals of swirl injector calculation is investigated and new design procedure is proposed. The design method for double-based liquid-liquid injectors is presented based on this theory and experimental results. Then special conditions related to double based liquid-liquid injectors are studied and the corresponding results are applied in design manipulation. The behavior of injector in various performing conditions is studied, and the design procedure is presented based on obtained results. A computer code for designing the injector is proposed. Based on this code, four injectors are manufactured. A specialized laboratory was setup for the measurement of macroscopic spray characteristics under different pressure such as homogeneous droplet distribution, spray angle, and swirl effect. Finally, through phase Doppler analyzer cold test, the microscopic characteristics of injectors spray are also obtained and measured. The results which will be explained in detail are satisfactory.

Key words: swirl injector, double-base injector, macroscopic and microscopic characteristics, atomization, phase Doppler analyzer laboratory

Introduction

The double-based liquid-liquid injectors have many advantages making them applicable in aerospace industries. Fuel and oxidizer can be mixed more efficiently in such injectors, creating an ideal combustion condition and reducing the probability of combustion instability. Since fuel and oxidizer are both exhausted from one injector, without any increase in the diameter of injector plate, a higher discharge rate of fuel and oxidizer can be obtained. In the same way with a fixed discharge rate, it is possible to decrease combustion chamber diameter, and have a stronger thrust. This, in turn, gives higher pressure in the combustion chamber.
The injector has been designed in a way that the fluid may swirl around its axis. The swirl effect’s advantages include producing micro-diameter droplets and desirable spray angle, which provide the perfect combustion condition.

In the following design procedure, the governing equations for an ideal fluid are solved and the results are corrected using correction factors based on experimental data. The rules used in the swirl injector theory are based on the principles of mass, angular momentum, energy conservation (Bernoulli’s equation), maximum flow rate, and minimum energy laws.

Figure 1 shows a schematic of a swirl injector in which d_{BX}, L_{BX}, and D_k are the entrance hole diameter, the length of entrance hole, and the rotation radius, respectively [1].

The geometrical parameter of a swirl injector has an important role in the design procedure and is defined as [1]:

$$ A = \frac{R_c}{n r_{BX}^2} $$

(1)

where r_c is exit hole diameter of nozzle.

According to the conservation of angular momentum principle, parameter M is constant:

$$ M = V_u r = V_{in} R = \text{const.} $$

(2)

The swirl force of the fluid increases as it passes through the injector. Due to this force, a hollow cylinder shape flow forms at the exit of the injector, this is filled by air. The cross-section area of this flow is equal to:

$$ FK = \pi (r_c^2 - r_m^2) = \varphi_c \pi r_c^2 $$

(3)

where r_m and φ_c are the inner radius of flow and the outer radius nozzle contraction coefficient, respectively, φ_c is defined as:

$$ \varphi_c = 1 - \frac{r_m^2}{r_c^2} $$

(4)

According to the maximum mass flow rate principle, for an optimal amount of φ_c, the discharge rate of the injector becomes maximum. The injector flow rate is equal to:

$$ G = \pi r_c^2 \mu \sqrt{2gh} $$

(5)

in which, μ is called discharge rate coefficient which is a function of A and φ_c. According to the given explanations and the principal of maximum discharge rate, $\frac{d\mu}{d\varphi_c} = 0$ and from this, the relationship between A and φ_c is obtained.

The friction effect on the flow

When the fluid passes through the entrance whole and reaches to swirl chamber, a pressure drop is formed in fluid that is equal to:
\[\Delta p_{BX} = \xi_{BX} \frac{\rho V_{BX}^2}{2} \]

(6)

where, \(\xi_{BX} \) is the drop coefficient of entrance hole and is obtained from experimental tests. Figure 2 shows the variation diagram of \(\xi_{BX} \) as a function of Reynolds number, which is defined as:

\[\text{Re}_{BX} = \frac{V_{BX} d_{BX} \sqrt{n}}{\nu} \]

(7)

When the fluid enters to swirl chamber from entrance hole, it contracts in a way that the average radius of rotation increases and changes from \(R \) to \(R_e \). A coefficient \(\varepsilon \) is defined here and is found from experimental tests as follows:

\[\varepsilon = \frac{R}{R_e} \]

(8)

Figure 3 presents the variation of \(\varepsilon \) vs. \(1/B \), where \(B = R/r_{BX} \). Using the coefficient \(\varepsilon \), the injector geometrical characteristic can be calculated from:

\[A_D = \frac{R e}{\varepsilon n r_{BX}^2} \]

(9)

There is a loss of energy inside the swirl chamber due to the friction between the fluid and the wall. The amount of friction is obtained using the friction coefficient \(\lambda_k \) which is obtained from fig. 4. The parameter \(\theta \) is defined that shows the amount of the friction effects and is equal to [1]:

\[\theta = \frac{\lambda_k A_D}{2} \left(\frac{R_k}{R_e} - 1 \right) \]

(10)

where, \(R_k \) is the radius of swirl chamber.

A hydraulic jump occurs because of an abrupt change in flow path slop, just after the nozzle entrance cone. This in turns causes an energy loss in entrance channel (\(\Delta E_{BX} \)), swirl chamber.

The shape of spray is a cone with an angle, which its calculated value is corrected using the following correction factor:

\[\overline{\alpha} = \frac{\alpha_{\text{EXP}}}{\alpha_{\text{T}}} \]

(11)

where \(\alpha_{\text{EXP}} \) and \(\alpha_{\text{T}} \) are experimental and theoretical values of \(\alpha \), respectively. Figure 5 shows the diagram of \(\alpha \) vs. the \(\theta \) collection.

Ommi, F., et al.: Experimental Investigation of Characteristics of a Double-Base Swirl ...
THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 479-491

Figure 2. Diagram of the amount of input channel resistance \(\xi_{BX} \) and Reynolds number [1]

Figure 3. Relationship of amount of transformation input current \(\varepsilon \) and \(1/B \)

Figure 4. Relationship between value of friction and the input Reynolds number [1]
(1) experimental relation, (2) theoretical relations

Figure 5. Relationship of spray cone relative angle \(\alpha \) with \(\theta \) set
Swirl injector design procedure

The swirl injector should provide the necessary discharge rate of the fluid under a definite spray cone angle and the pressure difference. It is also recommended to have minimum energy drop, in order to face with minimum reduce of exit flow velocity and injection quality.

As mentioned before the total amount of θ determines the effect of friction and the smaller value of θ show the smaller effects of fluid viscosity on the injector hydraulics. For low viscosity liquids such as gasoline, oil, and water, the suitable range of injector expansion coefficient ($C_c = R/r_c$) is recommended within $1.25 \leq C_c \leq 5$. In this state as spray, cone angle is larger; the size of C_c should be smaller. As the length of nozzle is not desirable, since it leads to a decrease in the spray cone angle, it is recommended to take ($L_c = L_c/d_c$) in the range of $0.25 \leq L_c \leq 1.0$. It is also, recommended to take the input cone angle to nozzle in the range of $60 \leq \psi \leq 120$. If the entry canals do not have sufficient length, the current fails in taking tangent direction and inclines towards the rotation chamber axis and as a result, the cone spray angle becomes smaller and the discharge coefficient becomes bigger. Therefore, the length of input canals should not be smaller than one and a half time of its internal diameter. On the other hand, this length should not be too large since in such situation, the energy loss resulted from friction becomes high.

In most injectors, 2 to 3 canals will be sufficient to make the symmetric spray cone. When the number of canals becomes more than three, no considerable change is made in the quality of fuel distribution; however, the injector structure becomes more complex and its precision becomes less. In open injectors (low amounts of C_c) the loss of energy reveals itself in input canals; thus, it is necessary to take C_c bigger than 1.25 ($C_c \geq 1.25$).

The hydraulic design of a simple swirl injector includes determining dimensions of nozzle, swirl chamber, and input canals. The initial data consists of the cone angle of spray, discharge rate, pressure difference of injector, and the entrance angle to nozzle, number of holes to the swirl chamber, density and fluid viscosity. The design stages could be described as below.

- Determine the values of ψ, n, C_c, V, G, D, and a.
- Considering $a_0 = 0.85$ as the first approximation from its range of variation, $0.5 \leq a_0 \leq 1$ and calculating the spray cone angle from:

$$\alpha_1 = \frac{a_0}{0.85} \quad (12)$$

- Obtaining the values of A_{D1} and α_1 using fig. 6.
- Determine the value of μ_1 using fig. 6.
- Obtain the injector nozzle diameter from the equation:

$$d_{cl} = \frac{4G}{\mu_1 \sqrt{2G} \Delta x_0} \quad (13)$$

- Determine the swirl radius R_1, using chosen value of C_c and r_{cl}:

$$R_1 = C_cr_{cl} \quad (14)$$

- Calculating the entrance channel diameter using the relation [3]:

![Figure 6. Relationship of discharge coefficient and nozzle contraction coefficient and spray angle to the geometric characteristic of injector [2]](image-url)
\[d_{BX1} = 2 \left(\frac{R_1 }{\varepsilon_0 n A_{DI} } \right)^{1/2} \]

(15)

where \(\varepsilon_0 = 0.8 \) as the first approximation.

– Calculating the flow Reynolds number [4]:

\[\text{Re}_{BX1} = \frac{4G}{\rho \pi d_{BX1} \sqrt{N}} \]

(16)

– Determine the friction coefficient using fig. 4.

– Calculate the injector equivalent characteristic length using [5]:

\[A_{cl} = \frac{A_{DI}}{1 + \theta_1} \]

(17)

where \(\theta_1 = 0.5\sigma \lambda_k A_{DI} (c_{kl} - 1) \) and \(c_{kl} = c_c + \frac{G_{BX1}}{r_{cl}} \)

– Obtaining the value of \(\alpha 1 \) using fig. 5.

– Determine \(\mu_{\theta_1} \) and \(\alpha_{\theta_1} \) using fig. 6.

– Calculate the first approximation of spray cone angle [6]:

\[\alpha_{pl} = \alpha_1 \alpha_{\theta_1} \]

(18)

– Calculate the total energy loss in injector using fig. 2:

\[\Delta \Sigma E_{BX1} + \Delta k_1 + \Delta C_1 \]

(19)

– Calculating \(\Delta E_{BX1} \) using the following equation:

\[\Delta E_{BX1} = \zeta_{BX1} \frac{A^2}{C_c^2}, \quad C_c = \frac{R}{r_c} \]

(20)

– Calculating \(\Delta k_1 \) by the equation [7]:

\[
\Delta k = \frac{\lambda_k}{\sigma^2} \left\{ \frac{1}{\sigma} \left[1 - \frac{1}{C_k} \right] + \lambda_k \left[\frac{A_D}{2} - \frac{1}{2\sigma - \lambda_k} \left(\frac{2 \sigma}{\sigma} + \frac{A_D}{2} + \frac{1}{2\sigma - \lambda_k} \right) \right] \right\} + \frac{3}{2\sigma^2} \ln \left(\frac{2\sigma - \lambda_k}{A_D C_k} \right) \left(2\sigma^2 \right) \]

(21)

\[\sigma = \frac{1}{A_D} + \frac{\lambda_k}{2} C_k \], \quad C_k = \frac{R_k}{r_c} \]

– Selecting an appropriate value for nozzle resistance coefficient (\(\zeta_c \)) in the range of 0.11 and 0.16 [1].

– Obtaining \(\phi_1 \) using fig. 6 and considering \(A = A_{cl} \).

– Calculating \(\Delta C_1 \) using the following equation:

\[\Delta C = \frac{\zeta_c}{\rho_c^2} \]

(22)

– Obtaining a first approximate value for \(\mu_{pl} \) [8]:

\[\mu_{pl} = \frac{\mu_{\theta_1}}{\sqrt{1 + \Delta \Sigma \mu_{\theta_1}^2}} \]

(23)
– Calculating the coefficient of transformation, \(\varepsilon_i \), via fig. 3.
– Updating the values of \(\varepsilon_1, \mu_1, \) and \(\alpha_1 \) by comparing the calculated values of \(\varepsilon_0, \mu_1, \) and \(\alpha_0 \). If the difference exceeds the permitted quantity, the second approximation is obtained. In this case, with respect to the given amount, the spray cone angle \(\alpha_0 \) and amount of \(\alpha_1 \) obtained from the first approximation is obtained to be as \(\alpha_0 = \alpha_0/\alpha_1 \).
– Considering the value of \(\alpha_2 \) and using fig. 6 the values of \(\mu_2 \) and \(A_{D2} \) are calculated.
– Calculating \(\mu_2 \) using the obtained coefficient of energy loss, by the expression:

\[
\mu_2' = \frac{\mu_2}{\sqrt{1 + \Delta \sum_1 \mu_2}}
\]

(24)

– Calculating the nozzle injector diameter using the formula:

\[
d_{c2} = \sqrt{\frac{4G}{\pi \mu_2' \sqrt{2\rho \Delta \rho_\phi}}}
\]

(25)

– Obtaining the swirl radius by \(R_2 = C_{c} r_2 \).
– Calculating the inlet channel diameter using the expression [9]:

\[
d_{B_{X2}} = 2 \sqrt{\frac{R_2 \varepsilon_{2} - \frac{\lambda_{k1}}{2} \frac{R_2 \varepsilon_{2}}{e_{1\alpha}} \left(C_{k1} - 1 \right)}{\varepsilon_1 n A_{D2}}}
\]

(26)

where \(n \) is determined before and the amount of \(\lambda_{k1}, C_{k1}, \) and \(\varepsilon_1 \) will obtain in the first approximation.
– Reynolds number is calculated as [10]:

\[
Re_{B_{X2}} = \frac{4G}{\rho \nu d_{B_{X2}} \sqrt{n}}
\]

(27)

– The friction coefficient is determined using fig. 5.
– Obtaining the injector equivalent characteristic using:

\[
A_{c2} = \frac{R_2 r_2}{\varepsilon_1 n r_2^2 (1 + \theta_2)}
\]

(28)

where \(C_{k2} = C_c + r_{B_{X2}} / r_c \) and \(\theta_2 = (\lambda_{k2} / 2)(R_2 r_2 / \varepsilon_1 n r_2^2 \) \).
– Determining the amounts of \(\mu_{q2} \) and \(\alpha_{q2} \) using fig. 6.
– Obtaining the value of \(\alpha_2 \) by using fig. 5.
– By using formula \(\alpha_{p2} = \alpha_{q2} \), the magnitude of the spray cone angle in second approximation is obtained.
– Calculating the energy loss coefficient using the same procedure in the first stage.
– The discharge coefficient in second approximation is obtained from the relation [10]:

\[
\mu_{p2} = \frac{\mu_{q2}}{\sqrt{1 + \Delta \sum_2 \mu_2}}
\]

(29)

– Obtaining the value of \(\varepsilon_2 \) using the values of \(B_2 \) and \(\varepsilon_1 \) (fig. 3).
Comparing the calculated values of e_2, a_{p2}, and μ_{p2} with the previous values of e_1, a_0, and μ_{p1} in order to calculate their approximation. If a good convergence cannot be obtained, a smaller value for c_c should be selected and the appropriate stages have to repeat.

After calculation of d_c, R, and d_{BX}, other geometrical sizes of injector are calculated. The diameter of swirl enclosure is obtained in the next step by using the formula $D_k = 2(R + r_{BX})$. Then the nozzle length (L_c), the length of entrance hole (L_{BX}), and swirl enclosure length (L_k) are selected, considering the aforementioned comments.

The proposed procedure has an extensive application and its results are precise within ±10%.

The double-base swirl injector calculation results

Figure 7 shows a double-base injector. In this injector, fuel and oxidizer are mixed outside the nozzle. The injector parameters should be selected in a way that the fuel and oxidizer spray cones do not cut each other near nozzle outlet. α_f and α_o show the spray angle of fuel and the angle of oxidizer, respectively. The design procedure of single injector is applied for designing the double-base injector. An important point in designing this type of injector is that the gas vortex radius of the outer injector should be more than external radius of central injector nozzle. One should also consider that for the contact of two-spray umbrella, the spray cone angle in the inner injector should be more than outer one.

Considering an ideal fluid and same pressure difference for fuel and oxidizer paths, the following expressions are derived for these types of injectors [12]:

$$\frac{v_{BX0}}{v_{BXF}} = \sqrt{\frac{\rho_0}{\rho_F}} \tag{30}$$

in which ρ_0 and ρ_F are oxidizer and fuel densities, respectively.

The oxidizer to fuel mass flow rate ratio is [13]:

$$K_m = \frac{m_{o0}}{m_{oF}} = \frac{n_o d^2_{BX0}}{n_f d^2_{BXF}} \sqrt{\frac{\rho_0}{\rho_F}} \tag{31}$$

where m_{o0} and m_{oF} are the oxidizer and fuel mass flow rates, respectively. The total flow rate is equal to [14]:

$$m_o = m_{o0} + m_{oF} = n_o \pi r^2_{BX} \rho_0 V_{BX0} \tag{32}$$
in which \(r_{BX} = r_{BX_0}(K_m + 1)/K_m^{1/2} \)

Considering the law of angular momentum conservation one may write:

\[
M = RV_{BX} = \bar{R}V_{BX_0} \tag{33}
\]

\[
R_F = R_0 \gamma_R = R \gamma_R, \quad \bar{R} = R \frac{K_m + \gamma_R}{K_m + 1} \sqrt{\frac{\rho_0}{\rho_F}} \tag{34}
\]

\[
V_{BX} = V_{BX_0} \frac{K_m + \gamma_R}{K_m + 1} \sqrt{\frac{\rho_0}{\rho_F}} \tag{35}
\]

According to the aforementioned relations, the geometric characteristic of a double-based swirl injector could be written as:

\[
\bar{A} = \frac{K_m}{(K_m + 1)} \left(\frac{K_m + \rho_0}{\rho_F} \right) n_0 r_{BX_0}^2 \tag{36}
\]

Expression for \(\mu_\varphi \) and \(\alpha \) are the same as those for single-base injector with substitution of \(\bar{A} \) by \(A \). Therefore, one may write:

\[
m_i = \mu_\varphi F_{cp} \sqrt{2 \rho_i \Delta P_\varphi} \tag{37}
\]

in which \(\rho_i = \rho_0 \rho(1 + K_m)(\rho_0 + K_m \rho_\varphi) \) and \(\mu_\varphi \) is the passage efficiency or total discharge rate coefficient and \(F_{cp} \) is the cross-section area of flux in nozzle.

Depending on the value of \(C_c = R/r_c \), some corrections in discharge coefficient might be necessary. The relationship between experimental and theoretical discharge rate coefficient (\(\mu_{exp} \) and \(\mu_\varphi \)) as a function of \(R/r_c \) is presented graphically in fig. 8 [15].

Based on the presented design procedure, a computer code is developed, which performs the design and necessary calculations of different dimensions of injector. This program designs injector based on design data and calculates its dimensions. To design a double-base injector, the data of internal and external nozzle should be input in the program separately to obtain its geometry. However, as mentioned, the radius of external nozzle should be more than the external radius of nozzle in the inner injector. At the same time, the spray cone angle of inner injector should be more than outer injector, therefore both spray cones would contact to each other after discharging form injector. According to the design condition, the internal nozzle must inject flow of 20 cm\(^3\)/s in defined pressure of 10 bar. The external nozzle must also inject 120 cm\(^3\)/s in 4 bar. The spray angles for the internal and external nozzles obtained 85° and 75°, respectively.

Figure 8. Correction factor of coefficient flow vs. swirl radius
Manufacturing the injectors

Four injectors are manufactured based on design calculations. The double-based swirl injector has three parts including internal nozzle, external nozzle and lid. Brass metal was chosen due to its special characteristics for accurate machining and minute drilling. Detailed drawings of internal and external nozzle are shown in figs. 9 and 10. These three parts are brazed and assembled precisely as shown in fig. 11.

Hydrodynamic test laboratory

To check the quality of the manufactured injectors, a preliminary laboratory set-up is needed. This set-up will measure the macroscopic characteristics of injectors spray such as homogeneous spray distribution, spray angle and swirl effect on the spray formation under different pressure. This test rig was set up with the following parts as, injector stand, pressurized liquid tanks, high pressure nitrogen capsule, manometer and regulator, radial and sectional collector, stroboscope, and high speed camera. The liquid emitted by the injectors are collected in two different collectors made of flexi glass material as shown in figs. 12 and 13. The level of fluid in the radial and sectional collectors display spray distribution quality in r and θ direction, respectively. Sectional collector divided into six 60° section and the radial one divided into three co-centric cylinders. Furthermore, a high-speed camera is used to capture the spray cone angle and atomized spray distribution of both internal and external nozzle.
Test results of injectors

Flow-pressure test

This test is conducted to measure the flow changes under different working pressure for both internal and external nozzle. Figures 14 and 15 present the results of the experimental flow for a specific set of design conditions.

Spray angle test

To show the spray formation of internal and external nozzle clearly a stroboscope and a high-speed camera are used. Figure 16 displays the spray circulation of injector. As fluid pressure increases from zero to ten bar, the spray cone gradually opens to become fully developed as seen in fig. 17.

In figs. 18 and 19 the spray cone angle of both internal and external nozzle are approximately 70° and 80°, respectively, under design condition ($P_0 = 4$, $P_f = 10$ bar) which are satisfactory in the light of theoretical calculations.
Spray symmetry and homogeneity test

Sectional and radial collectors are used to check the symmetry of the fluid spray. To obtain a symmetrical distribution of injection, the machining and drilling processes must be precise and accurate. Figures 20 and 21 shows, the spray distribution in each compartment of the collector.

Microscopic spray droplet test

Using phase Doppler particle analyzer (PDPA) laser laboratory, the microscopic characteristics of the injector spray have been identified. This instrument works with Doppler frequency difference phenomenon. As shown in fig. 22 PDPA system consists of a laser light source, optical arrangements, a transmitter, and a data acquisition system. The visualization system used in this experiment consists of a laser source, lenses and mirrors, a high-pressure spray chamber, and CCD camera.

According to fig. 23 mounting the injector on the apparatus and setting the fluid tanks pressure on the design condition droplet normal velocity \([\text{m/s}]\) and sauter mean diameter (SMD) \([\mu\text{m}]\) distribution at 100 mm downstream, for \(P_0 = 4\) and \(P_f = 10\) bar and \(T = 25^\circ\text{C}\), is shown in figs. 24 and 25, respectively. There is a high velocity zone around the injector axis that represents existence of the spray liquid sheet as it is seen in fig. 24. Droplets normal velocities are obtained in the range of 11 m/s. According the fig. 25, droplets with less mean diameter are placed in center of the spray cone and the diameter increases along radius.
Conclusions

A theoretical design procedure for double-base liquid-liquid swirl injectors is described. A computer code is developed for the proposed method and the results are compared with experimental data. According to design calculations, four swirl injectors have been manufactured precisely. To check the quality of the injectors, a preliminary laboratory was set up to measure the macroscopic characteristics of sprays such as spray angle and distribution quality. In order to obtain microscopic characteristics such as droplets velocities and SMD PDA laser laboratory was used. Experimental results show that the manufactured injectors based on the design procedure are flawless.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_D</td>
<td>Geometrical characteristic</td>
</tr>
<tr>
<td>C_C</td>
<td>Injector expansion coefficient</td>
</tr>
<tr>
<td>D_e</td>
<td>Rotation radius</td>
</tr>
<tr>
<td>$D(R)$</td>
<td>Diameter (radius), [cm]</td>
</tr>
<tr>
<td>$d_{BX}(r_{BX})$</td>
<td>Entrance whole diameter (radius), [cm]</td>
</tr>
<tr>
<td>$d_e(r_e)$</td>
<td>Exit hole diameter (radius) of nozzle, [cm]</td>
</tr>
<tr>
<td>ΔE_{BX}</td>
<td>Energy loss in entrance channel, [J]</td>
</tr>
<tr>
<td>F_{cp}</td>
<td>Cross-section area of flux in nozzle</td>
</tr>
<tr>
<td>G</td>
<td>Injector flow rate</td>
</tr>
<tr>
<td>K_m</td>
<td>Oxidizer to fuel mass flow rate ratio</td>
</tr>
<tr>
<td>L_{BX}</td>
<td>Length of entrance hole, [cm]</td>
</tr>
<tr>
<td>L_n</td>
<td>Nozzle length, [cm]</td>
</tr>
<tr>
<td>L_k</td>
<td>Swirl enclosure length, [cm]</td>
</tr>
<tr>
<td>$m_{f\psi}$</td>
<td>Fuel mass flow rates</td>
</tr>
<tr>
<td>$m_{o\psi}$</td>
<td>Oxidizer mass flow rates</td>
</tr>
<tr>
<td>n</td>
<td>Number of each collector sector</td>
</tr>
<tr>
<td>r_m</td>
<td>Inner radius of flow, [cm]</td>
</tr>
<tr>
<td>Δp_{BX}</td>
<td>Pressure drop, [N/m2]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>R_k</td>
<td>Radius of swirl chamber, [cm]</td>
</tr>
<tr>
<td>T</td>
<td>Temperature, [°C]</td>
</tr>
</tbody>
</table>

Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Spray cone angle</td>
</tr>
<tr>
<td>α_{EXP}</td>
<td>Experimental values of α</td>
</tr>
<tr>
<td>α_{T}</td>
<td>Theoretical values of α</td>
</tr>
<tr>
<td>ε</td>
<td>Coefficient</td>
</tr>
<tr>
<td>ζ_{BX}</td>
<td>Drop coefficient of entrance hole</td>
</tr>
<tr>
<td>θ</td>
<td>The amount of the friction effects</td>
</tr>
<tr>
<td>λ_k</td>
<td>Friction coefficient</td>
</tr>
<tr>
<td>μ</td>
<td>Discharge rate coefficient</td>
</tr>
<tr>
<td>μ_{ψ}</td>
<td>Passage efficiency (total discharge rate coefficient)</td>
</tr>
<tr>
<td>ξ</td>
<td>Resistance coefficient</td>
</tr>
</tbody>
</table>
\[\rho_f \quad - \text{fuel densities,} \ [\text{kgm}^{-3}] \]
\[\rho_o \quad - \text{oxidizer densities,} \ [\text{kgm}^{-3}] \]
\[\varphi_c \quad - \text{outer radius nozzle,} \ [\text{cm}] \]
\[\psi \quad - \text{ratio cone angle to nozzle} \]

Acronyms
- CCD – charge coupled device
- PDPA – phase doppler particle analyzer
- SMD – sartre mean diameter

References

15. Fischer, U., Valinejad, A., Tables and Standards of Design and Machinery, Taban, Iran, 2005