MULTI-RELAXATION-TIME LATTICE BOLTZMANN MODEL FOR UNIFORM-SHEAR FLOW OVER A ROTATING CIRCULAR CYLINDER

by

Hasan NEMATI, Mousa FARHADI*, Kurosh SEDIGHI, and Ehsan FATTAHI

Faculty of Mechanical Engineering, Babol University of Technology, Babol, Islamic Republic of Iran

A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using multi-relaxation-time lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1, and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, and 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number, and Nusselt numbers are studied.

Keyword: lattice Boltzmann method, multi-relaxation-time, rotating circular cylinders, shear flow, shear rate, laminar flow

Introduction

Fluid flow and heat transfer around rotating cylinders is a typical process in industry. Furthermore periodic vortex shedding patterns and fluctuating velocity fields behind the bluff bodies can cause structural damage which shortens the life of the structure and increases the acoustic noise and the drag. This structure can be applied in the chemical process, textile industries, transmission cables, making metal plate, and glass and plastics industries. The uniform flow past a circular cylinder has been widely investigated both experimentally and numerically in the past due to the practical and theoretical importance of the flow [1-7]. However, in practice many structures, such as off-shore pipelines near the seabed, are immersed in a boundary layer. These are typical cases with non-uniform approach flows. Therefore, it is important to understand the features of the vortex shedding and hydrodynamic forces of a circular cylinder subject to a non-uniform flow. Some experimental [8-12] and numerical studies have been devoted to linear shear flow around a circular cylinder. However, due to the difficulty of generating shear flow, these studies were restricted to cases with large shear parameters but low Reynolds numbers, or at subcritical Reynolds

*Corresponding author; e-mail: mfarhadi@nit.ac.ir
numbers but with small shears parameters. There have been fewer numerical studies than experimental studies, and the numerical studies were restricted to two-dimensional simulations, with low Reynolds number flows [13, 14]. The most relevant feature of the flow, at moderate values of the Reynolds number, e.g., at a Reynolds number (based on the external velocity and cylinder diameter) close to 50, is the instability of the symmetric wake and the onset of a time-periodic regime characterized by alternate vortex shedding, known as the von Karman vortex street, whose dimensionless period depends on the Reynolds number. Sohankar et al. [15] have investigated that by further increasing the Reynolds number a transition to three-dimensional flow occurs around the value of 180. However the periodic vortex shedding phenomenon remains the large-scale dominant feature even at large Reynolds number in the turbulent wake. In this study the free-stream with a linear velocity profile \(U = U_c + G_y \) and constant temperature \(T_h \), passes over a rotating circular cylinder with a diameter \(D \), angular velocity \(\omega \) and constant temperature \(T_h \).

Therefore three non-dimensional parameters of flow are important and investigated: one is Reynolds number, twice is rotational speed ratio \(\beta \), and last non-dimensional parameter is velocity gradient or shear rate \(K \). As we said quite a few studies have been performed on uniform-shear flow over a circular cylinder particularly rotating circular cylinder. They have mainly investigated the effects of Reynolds number and shear rate on the vortex-shedding frequency, the magnitude and direction of the mean lift, the magnitude of the mean drag, and so on in the uniform-shear flow. Despite many achievements to date, some controversial issues have to be further resolved for improved understanding of the bluff-body flow. Part of the early studies is summarized by Jordan et al. [16]. The numerical studies carried out by Jordan et al. indicated that the front stagnation point shifted to the high velocity side in the shear flow. However, they reported different results in regard to the direction of the transverse lift force. They found that the average lift was toward the low velocity side of the free-stream, while Tamura et al. [13] reported that it was in the opposite direction. The numerical results of Tamura et al. showed that the mean drag coefficient increased with the shear parameter, while the experimental results by Kwon et al. [11] revealed that the drag coefficient decreased monotonically as the shear parameter increased. One of the useful numerical methods that have been used in the recent years is the lattice Boltzmann method (LBM). It was used for simulating the flow field in wide ranges of the engineering applications such as heat transfer problems [17, 18], phase change problems [19-21], cylindrical structure [22, 23], turbulent flow [24, 25], porous media [26], multiphase flow [27], microchannel [28], etc. In the present study, the ability of LBM for simulation the laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder, was investigated. The effects of variation of Reynolds number, rotational speed ratio (\(\beta \)) and shear rate (\(K \)) at blockage ratio
0.1 and Pr = 0.71 are studied. The range of Reynolds numbers of 50 ≤ Re ≤ 160 for three rotational speed ratios of 0, 0.5, and 1 and K = 0.1 are investigated. The results presented in the form of streamlines, vorticity, and temperature contours and flow characteristics such as lift and drag coefficients, Strouhal number, and Nusselt numbers.

The lattice Boltzmann method

Lattice Boltzmann equation of momentum

In the field of computational fluid dynamics (CFD), two major approaches to simulate fluids have been developed in the last decades. The classical approach is based on the numerical solutions of the Navier-Stokes equations (NS). Equation (1) shows the momentum equation, which ensures the momentum conservation, while eq. (2) shows the continuity equation, which secures the mass conservation. These partial differential equations (PDE) are solved by the discretization of space and time by using finite differences, finite elements, or finite volumes to derive the macroscopic values of pressure p or the fluid velocity u.

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla (\mu \nabla \mathbf{u}) + \mathbf{g}, \]
\[\frac{\partial \rho}{\partial t} + \nabla (\rho \mathbf{u}) = 0 \]

In contrast to the NS approach, the LBM divides time and space in steps to form a lattice and discretize the fluid as particles, which are positioned at certain points in space, called lattice sites or cells. These fluid particles are only allowed to move in certain and fixed directions, which are derived by a discretization of velocity space [29]. In the LBM, the particle is represented by distribution function. This distribution function is calculated by solving the lattice Boltzmann equation (without external force), eq. (3), which is a special discretization of the kinetic Boltzmann equation. The macroscopic quantities of the simulated fluid can then be derived by calculating the hydrodynamic moments of the distribution function. In contrast to the second-order PDE in the NS approach, the LBM uses only first order PDE:

\[\frac{\partial f}{\partial t} + c \nabla f = -\frac{1}{\tau}(f - f^{\text{eq}}) \]

where c is the particle velocity vector, \(f^{\text{eq}} \) – the equilibrium distribution function, and \(\tau \) – the relaxation time due to collision [30] and depending on the fluid viscosity. By a discretization in velocity space, a finite set of velocity vectors is derived, which have to conserve mass, momentum, and energy of the fluid particles (conservation laws). Equation (4) shows the discretized formulation of eq. (3). \(f_{\alpha} \) denotes the corresponding distribution function in direction \(\alpha \), which is associated with the discrete velocity \(c_{\alpha} \) in direction \(\alpha \) and \(f_{\alpha}^{\text{eq}} \) is the corresponding equilibrium distribution function [30]:

\[\frac{\partial f_{\alpha}}{\partial t} + c_{\alpha} \nabla f_{\alpha} = -\frac{1}{\tau}(f_{\alpha} - f_{\alpha}^{\text{eq}}) \]
In this work the velocity space discretization in the two dimensional case is the D2Q9 model [30]. In this model, the velocity space is discretized in 9 distribution functions, which is the most popular model for the 2-D case. Figure 2 shows the 9 velocities of the D2Q9 model. In the following, e_α will denote the discrete velocity set, where α is between 0 and 8:

$$
\begin{align*}
e_\alpha = \begin{cases}
(0,0) & \alpha = 0 \\
\cos\left((\alpha-1)\frac{\pi}{4}\right), \sin\left((\alpha-1)\frac{\pi}{4}\right) c & \alpha = 1, 2, 3, 4 \\
\sqrt{2}\cos\left((\alpha-1)\frac{\pi}{4}\right), \sin\left((\alpha-1)\frac{\pi}{4}\right) c & \alpha = 5, 6, 7, 8
\end{cases}
\end{align*}
$$

where $c = \Delta x/\Delta t$, Δx and Δt are the lattice cell and the lattice time step sizes, respectively.

For simplicity in lattice Boltzmann method assumes $\Delta x = \Delta t = 1$. For the D2Q9 model, the equilibrium distribution function of f_{eq}. (4) is expressed as:

$$
f_{eq}^\alpha = w_\alpha \left[1 + \frac{3}{e} \mathbf{e}_\alpha \cdot \mathbf{u} + \frac{9}{2e^2} (\mathbf{e}_\alpha \cdot \mathbf{u})^2 - \frac{3}{2e^2} \mathbf{u} \cdot \mathbf{u} \right]
$$

where

$$
w_\alpha = \begin{cases}
\frac{4}{9} & \alpha = 0 \\
\frac{1}{36} & \alpha = 1, 2, 3, 4 \\
\frac{1}{9} & \alpha = 5, 6, 7, 8
\end{cases}
$$

where w_α is the equilibrium distribution weight for direction α. The fluid density ρ can be evaluated with eq. (8), whereas the velocity \mathbf{u} is contained in the momentum fluxes of eq. (9):

$$
\rho = \sum_\alpha f_\alpha \\
\rho \mathbf{u} = \sum_\alpha e_\alpha f_\alpha
$$

Equation (4) is called the discrete velocity model (DVM). This equation can be solved by the standard numerical approaches, for example finite difference method. The LBM approach uses this method for discretization of eq. (4):

$$
f_\alpha (\mathbf{x} + e_\alpha \Delta t, t + \Delta t) - f_\alpha (\mathbf{x}, t) = -\Delta t \frac{\partial}{\partial t_m} \left[f_\alpha (\mathbf{x}, t) - f_{eq}^\alpha (\mathbf{x}, t) \right]
$$

where Δt is the lattice time step, $\Delta x = e_\alpha \Delta t$ - the lattice space step, t_m - the lattice relaxation time, and $\mathbf{x} = xi + yj$ - the a point in the discretized physical space that x, and y are variables from $(0,n)$, and $(0,m)$ respectively. Equations (1) and (2) can be derived for the D2Q9 model as (without force body):
\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \nabla \mathbf{u} = - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} \]

(11)

\[\nabla \mathbf{u} = 0 \]

(12)

The pressure \(p \) satisfies the equation of state as \(p = \rho c_s^2 \) and the kinematical viscosity \(\nu \) is determined by \(\nu = c_s^2 (t_m - 0.5) \), where \(c_s = c^{1/3} \) is the speed of sound.

Lattice Boltzmann equation of temperature

Lattice Boltzmann equation of temperature field like velocity field can be considered as:

\[g_\alpha(x + e_\alpha \Delta t, t + \Delta t) - g_\alpha(x, t) = -\frac{\Delta t}{\tau_h} \left[g_\alpha(x, t) - g^{eq}_\alpha(x, t) \right] \]

(13)

\(g_\alpha \) is the temperature distribution function in the \(\alpha \) direction and \(\tau_h \) is the relaxation time. \(g^{eq}_\alpha \) is the corresponding equilibrium distribution function that can be expressed as [31, 32]:

\[g^{eq}_\alpha = w_\alpha T \left(1 + \frac{3}{c_s^2} e_\alpha \mathbf{u} \right) \]

(14)

where \(T \) is the fluid temperature and can be evaluated from:

\[T = \sum_\alpha g_\alpha \]

(15)

In addition, similar to mass and momentum equations, equation of temperature can be obtained as [30]:

\[\frac{\partial T}{\partial t} + \nabla(\mathbf{u}T) = \sigma \nabla^2 T \]

(16)

where \(\sigma \) is the diffusivity coefficient which is represented as \(\sigma = c_s^2 (\tau_h - 0.5) \).

Finally, eq. (10) and (13) is usually solved in two steps:

\[\tilde{f}_\alpha(x, t + \Delta t) = f_\alpha(x, t) - \frac{1}{\tau_m} \left[f_\alpha(x, t) - f^{eq}_\alpha(x, t) \right] \]

Collision step (17a)

\[\tilde{g}_\alpha(x, t + \Delta t) = g_\alpha(x, t) - \frac{1}{\tau_h} \left[g_\alpha(x, t) - g^{eq}_\alpha(x, t) \right] \]

(17b)

\[f_\alpha(x + e_\alpha \Delta t, t + \Delta t) = \tilde{f}_\alpha(x, t + \Delta t) \]

Streaming step (18a)

\[g_\alpha(x + e_\alpha \Delta t, t + \Delta t) = \tilde{g}_\alpha(x, t + \Delta t) \]

(18b)

where \(\tilde{f}_\alpha \) and \(\tilde{g}_\alpha \) denotes the post-collision distribution function. Equation (17) is the so-called collision step. At first step, various fluid particle interactions are modeled like collisions and calculated new distribution functions according to the distribution functions of the last time step and the equilibrium distribution functions, which are calculated with eq. (6).

The second step is called the stream step. In this step, fluid particles are streamed from one cell to a neighboring cell according to the velocity and temperature of the fluid particles in this cell. This streaming operation can either be performed as a pushing operation from one cell to the surrounding cells or as pulling operation in one cell from the surrounding cells.

Curved boundary treatment

Consider fig. 3(a) is a part of optional curved wall geometry, where the black circles on the boundary x_w, the open circles are the boundary nodes in the fluid x_i and the grey circles show solid area x_b. To complete the lattice Boltzmann solution, the $f(x_i, t)$ and $g(x_b, t)$ in boundaries, are needed. Δ is defined to evaluate the fraction of crossed link in the fluid area:

$$\Delta = \frac{||x_i - x_w||}{||x_i - x_b||}$$ \hspace{1cm} (19)

Figure 3. Figure of lattices in curved wall boundary and bounce back; (a) $\Delta = 0.5$, (b) $\Delta < 0.5$, and (c) $\Delta > 0.5$

The standard (half-way) bounce back no-slip boundary condition always assumes a delta value of 0.5 to the boundary wall, fig. 3(b). Due to the curved boundaries, delta values in the interval of (0, 1) are now possible. Figure 3(c) shows the bounce back behavior of a surface with a delta value smaller than 0.5 and fig. 3(d) shows the bounce back behavior of a wall with delta bigger than 0.5. In all three cases, the reflected distribution function $f(x, t + \Delta t)$ at x_i is unknown. Since the fluid particles in the LBM are always considered to move one cell length per time step, the fluid particles would come to rest at an intermediate node x_i. In order to calculate the reflected distribution function in node x_i, an interpolation scheme has to be applied [33].
Velocity and temperature in curved boundary condition

To calculate the distribution function in the solid region \(\tilde{f}_\sigma(x_b, t) \) based upon the boundary nodes in the fluid region, the bounce back boundary conditions combined with interpolations including a one-half grid spacing correction at the boundaries [30, 33]. Then the Chapman-Enskog expansion for the post-collision distribution function on the eq. (17a) is conducted as:

\[
\tilde{f}_\sigma(x_b, t + \Delta t) = (1 - \lambda) \tilde{f}_\sigma(x_f, t + \Delta t) + \lambda f_\sigma^*(x_b, t + \Delta t) - 2 \frac{3}{c^2} w_\sigma \rho(x_f, t + \Delta t) e_\alpha u_w
\]

(20)

where:

\[
f_\sigma^*(x_b, t + \Delta t) = f_\sigma^eq(x_f, t + \Delta t) + \frac{3}{c^2} w_\sigma \rho(x_f, t + \Delta t) e_\alpha (u_{bf} - u_f)
\]

(21)

\[
u_{bf} = u_{wf}, \quad \lambda = \frac{2\Delta - 1}{\tau_m - 2}, \quad \text{if} \quad 0 < \Delta \leq 0.5
\]

(22a)

\[
u_{bf} = \left(1 - \frac{3}{2\Delta}\right) u_f + \frac{3}{2\Delta} u_w, \quad \lambda = \frac{2\Delta - 1}{\tau_m + 0.5}, \quad \text{if} \quad 0.5 < \Delta \leq 1
\]

(22b)

\(u_{bf}\) and \(u_w\) indicate imaginary velocity for interpolations and the velocity of wall. This study used the method is based on the reported method in [34] for temperature field in curved boundary. Distribution function for temperature divided two parts, equilibrium and non-equilibrium:

\[
g_\sigma(x_b, t) = g_\sigma^{eq}(x_b, t) + g_\sigma^{neq}(x_b, t)
\]

(23)

By substituting eq. (23) in eq. (17b) we have:

\[
\tilde{g}_\sigma(x_b, t + \Delta t) = g_\sigma^{eq}(x_b, t) + \left(1 - \frac{1}{r_m}\right) g_\sigma^{neq}(x_b, t)
\]

(24)

Obviously to calculate \(\tilde{g}_\sigma(x_b, t + \Delta t)\), both \(g_\sigma^{eq}(x_b, t)\) and \(g_\sigma^{neq}(x_b, t)\) are required. Equilibrium and non equilibrium parts of eq. (24) are define as:

\[
g_\sigma^{eq}(x_b, t) = w_\sigma T^* \left(1 + \frac{3}{c^2} e_\sigma u^*_w\right)
\]

(25)

\[
g_\sigma^{neq}(x_b, t) = \begin{cases} g_\sigma^{eq}(x_f, t) & \text{if} \quad \Delta \geq 0.75 \\ (1 - \Delta) g_\sigma^{eq}(x_f, t) + \Delta \tilde{g}_\sigma^{eq}(x_f, t) & \text{if} \quad \Delta < 0.75 \end{cases}
\]

(26)

where

\[
u^*_w = \frac{u_w + (\Delta - 1) u_f}{\Delta} \quad \text{if} \quad \Delta \geq 0.75
\]

(27)

\[
u^*_w = \frac{u_w + (\Delta - 1) u_f + (1 - \Delta)[2u_w + (\Delta - 1) u_{wf}]}{(1 + \Delta)} \quad \text{if} \quad \Delta < 0.75
\]

\[
T^* = \frac{(T_w + (\Delta - 1) T_f)}{\Delta} \quad \text{if} \quad \Delta \geq 0.75
\]

(28)

\[
T^* = \frac{T_w + (\Delta - 1) T_f + (1 - \Delta)[2T_w + (\Delta - 1) T_{wf}]}{1 + \Delta} \quad \text{if} \quad \Delta < 0.75
\]
In order to calculate accurate forces on the moving walls, the momentum exchange method is used, which already showed good results in [33]. The momentum exchange method for the LBM is based upon the transfer of momentum by fluid particles to a particle surface after the streaming step.

The total force acting on a particle is then calculated as:

$$ F = \sum_{a} \sum_{x_i} e_a [f_a(x_i, t) + f_a(x_i, t)] [1 - w(x_i)] $$

(29)

where, $w(x_i)$ is an indicator which is 0 and 1 when x_i location is occupied by fluid and solid, respectively.

Multi-relaxation-time model

The multi-relaxation-time lattice Boltzmann equation reads:

$$ f_a(x + e_a \Delta t, t + \Delta t) - f_a(x, t) = -[S_{aa}] [f_a(x, t) - f^{eq}_a(x, t)] $$

(30)

The nine eigenvalues of matrix $[S]$ are all between 0 and 2 so as to maintain linear stability and the separation of scales, which means that the relaxation times of non-conserved quantities are much faster than the hydrodynamic time scales. Equation (10) is the special case in which the nine relaxation times are all equal, and the collision matrix $[S] = I/\tau_m[I]$, where $[I]$ is the identity matrix. Like eq. (17), eq. (30) includes two steps, collision and streaming:

$$ \tilde{f}_a(x, t + \Delta t) - f_a(x, t) = -[S_{aa}] [f_a(x, t) - f^{eq}_a(x, t)] $$

(31)

$$ f_a(x + e_a \Delta t, t + \Delta t) = \tilde{f}_a(x, t + \Delta t) $$

(32)

The collision step can be mapped to the momentum space by multiplying through by a transformation matrix $[M]$ and the streaming is still finished in the velocity space. The multi-relaxation-time lattice Boltzmann equation, eq. (30) becomes:

$$ f(x + e_a \Delta t, t + \Delta t) - f(x, t) = -[M]^{-1} [\tilde{S}] [\hat{f}(x, t) - \hat{f}^{eq}(x, t)] $$

(32)

where $f = [M]f$ and the bold-face symbols denote 9 dimensional column vectors, e. g. $f(x, t) = [f_0(x, t), f_1(x, t), \ldots, f_8(x, t)]$. The collision matrix $[S] = [MSM]^{-1}$ in moment space is a diagonal matrix given by:

$$ [\hat{S}] = \text{diag}[0, s_2, s_3, 0, s_5, 0, s_7, s_8, s_9] $$

(33)

and \hat{f}^{eq} is the equilibrium value of the moment f. The transformation matrix $[M]$ can be constructed via the Gram-Schmidt orthogonalization procedure. Ginzburg [35] has been proposed the general form of the transformation matrix. Following the method by Ginzburg, the transformation matrix $[M]$ of multi-relaxation-time model is obtained:
The corresponding equilibrium distribution functions in moment space \(\hat{f}^{eq} \) are given by:

\[
\hat{f}^{eq} = [\rho, e^{eq}, e^{eq}, u_x^{eq}, q_x^{eq}, u_y^{eq}, q_y^{eq}, p_x^{eq}, p_y^{eq}]^T
\]

(35)

where

\[
e^{eq} = -2\rho + 3(u_x^2 + u_y^2), \quad e^{eq} = \rho - 3(u_x^2 + u_y^2), \quad q_x^{eq} = -u_x,
\]

\[
q_y^{eq} = -u_y, \quad p_x^{eq} = u_x^2 - u_y^2, \quad p_y^{eq} = u_x u_y.
\]

(36)

In Lallemand et al. [36], it was shown that for the multi-relaxation-time (MRT) model to give the same shear viscosity as given by \(\nu = c_s^2 (\tau_m - 0.5) \) for the single-relaxation-time model, one can set:

\[
s_2 = s_9 = \frac{1}{\tau_m}
\]

(37)

It is necessary to choose the rest of the relaxation parameters, \(s_2, s_3, s_5, \) and \(s_7 \). In general, these four parameters can be chosen to be slightly larger than 1. Figure 4 shows the comparison of performance of MRT and single-relaxation-time (SRT). This figure shows the time historic of drag coefficient for \(Re = 50, K = 0.1, \) and \(\beta = 1 \). As it can be seen, the results of SRT consequently time is very noisy rather than MRT results, consequently time-average drag coefficient has accurate quantity.
Verification and simulation

Figure 1 shows the computational domain of flow and heat transfer around a rotating isothermal circular cylinder of diameter D with uniform-shear flow in entrance and co-ordinates system. The initial values of velocity field are $u_c(x,y) = U_c, u_s(x,y) = 0$. The following dimensionless numbers are used to show the results:

$$ t^* = \frac{2Ut}{D}, \quad x^* = \frac{2x}{D}, \quad y^* = \frac{2y}{D}, \quad u^* = \frac{u}{U_c}, \quad v^* = \frac{v}{U_c}, \quad T^* = \frac{T - T_w}{T_c - T_w} \quad (38) $$

To verify this study, flow around a rotating circular cylinder with constant velocity inlet and temperature is simulated. In a rectangular domain, the origin is located at the centre of the circular cylinder and the co-ordinates x and y are taken, respectively, to be measured along the horizontal and vertical directions. The upper and lower boundaries are set as free-slip velocity boundaries. At the inlet, fluid enters in x-direction in the domain with constant temperature and uniform velocity U_c and exits with fully developed profile.

The evolution of wake flow pattern around the cylinder at $Re = 200, \beta = 0.5$ for 3 different t^* is represented in fig. 5. Figures 5(a) and 5(b) show the streamlines obtained by present study and experimental results of Coutanceau et al. [6], respectively. The comparison between obtained results and experimental results shows good agreement in formation of wakes.

![Figure 5. Comparison between the evolution of the velocity field for Re = 200, and $\beta = 0.5$ (a) obtained by present computation and (b) experiment [6]](image)
Variations of u^* and v^* with time are compared with the experimental results of Coutanceau et al. [6] in fig. 6. These results are presented at $Re = 200$ and $\beta = 0.5$ at different t^*. The comparison indicates that the results have noticeable agreement with experimental data. Because of the lack of available experimental and numerical data for heat transfer, the results of present study are compared with those of numerical simulation of finite volume method (FVM) [37] and LBM [34] for the same problem at $Re = 200$, $\beta = 0.5$, and $Pr = 0.5$.

The comparison of temperature profiles obtained by present study and the FVM [37] is shown in fig. 7. Clearly, the two results are coherent however it is more difficult to handle this type of rotating boundary conditions in this FVM study. Figure 8 shows the growth of temperature contours with velocity streamlines at $Re = 200$, $\beta = 0.5$, and $Pr = 0.5$. The comparison between present study results and those obtained by Yan et al. [34] shows good agreement in formation of wakes.

To check more accordance of heat transfer of the present study and experimental data, fig. 9 shows the distribution of period averaged Nusselt number on the surface of the cylinder. These results are compared with the results of Eckert et al. [38] that are calculated at $Re = 218$, $\beta = 0.0$, and $Pr = 0.71$.

Figure 6. Time development of velocity profiles on x-axis for $Re = 200$ and $\beta = 0.5$; (a) u^* and (b) v^* obtained by experiments (symbols) [6] and present study (lines)

Figure 7. Comparison of temperature distributions on x-axis obtained by present study (symbols) and FVM (lines) [37] at $Re 200$, $\beta = 0.5$, and $Pr = 0.5$
Figure 8. Comparison between the evolution of the temperature field for $Re = 200$, $\beta = 0.5$, and $Pr = 0.5$ obtained by (a) present study and (b) previous numerical study [34] (color image see on our web site).

Figure 9. Distribution of period-averaged Nusselt number on the cylinder surface at $Re = 218$, $\beta = 0$, and $Pr = 0.71$.
Results and discussion

After verifying the numerical method, we have conducted numerical simulations at various range of Reynolds number ($50 \leq \text{Re} \leq 160$), three rotational speed ratios of 0, 0.5, and 1 at shear rate $K = 0.1$, blockage ratio $B = 0.1$ and $Pr = 0.71$.

Isotherms and vorticity contours

Figure 10 shows the variations of the vortex-shedding frequency with the Reynolds number and rotational speed ratio in uniform-shear flow over a rotating circular cylinder. According to fig. 10(a), with increasing Reynolds number, the shedding frequency markedly increases all over the ranges of the rotational speed ratio considered in the present study. Such correlation between the shedding frequency and Reynolds number agrees well with those of Kang [39]. On the other hand, the shedding frequency slightly increases with increasing rotational speed ratio. In the laminar regime, the effect of Reynolds number on the vortex-shedding frequency is overall very strong compared with those of other parameters. To more closely reveal the rotating effect, the variation of the shedding frequency with the rotational speed ratio is presented in fig. 10(b) for the uniform-shear flow at different Reynolds numbers. The effect of Reynolds number on instantaneous vorticity contours (ω_z) and isotherms are shown in fig. 11. As it can be seen in fig. 11, vortex formation for different Reynolds and at a specific time is shown. At $\text{Re} = 50$ vortex core stretches and does not allow the vortex to shed. Increasing the Reynolds number decrease the length of vortex core, hence the shedding frequency increases. As both vorticity and thermal energy are transported by the flow, the vorticity contours and the isotherms exhibit similar features. Figure 12 shows the effect of rotational speed ratio (β) on flow and heat transfer fields. Vorticity contours at left and the isotherms at right for $\text{Re} = 160$, $Pr = 0.72$, and shear rate $K = 0.1$ are shown in fig. 12. The cylinder does not rotate when $\beta = 0$, the vortices are asymmetric and shed alternatively downstream and meanwhile the heat advects to the downstream similar to the vortices, fig. 12(a). When $\beta \neq 0$, differences in the vorticity and isotherm contours become obvious. Because the upper side of the cylinder moves against the stream whereas the lower one moves.

![Figure 10. Vortex-shedding frequencies (Sr) with respect to (a) Re and (b) β](image-url)
in the direction of stream the wall shear gradient is asymmetrical. Evidently, the periodic vortex shedding still remains. Besides advection of vorticity, also heat is advected into the cylinder wake as can be seen in fig. 12.

Figure 11. Vorticity (on the left) and isotherms (on the right) contours for $Pr = 0.71$ and $\beta = 0.5$ at $t^* = 355$; (a) $Re = 50$, (b) $Re = 80$, (c) $Re = 120$, and (d) $Re = 160$

Figure 12. Vorticity (on the left) and isotherms (on the right) contours for $Pr = 0.71$ and $Re = 160$ at $t^* = 660$; (a) $b = 0$, (b) $b = 0.5$, and (c) $b = 1$
The heat is advected from cylinder wall in the near wake is a way similar to the advection of vorticity. The similarity between advection of vorticity and heat implies that the vortex structures are hot isolated areas with a strong circulation. However, one of the differences which can be observed is the size of the hot core and the vortex structure. As can be seen, the hot core is more compact than the vortex structure. Due to the fact that heat is captured in the kernel of the vortex structure, only diffusion process can cause the hot core to spread.

Force acting on cylinder

To examine the Re number and rotational speed ratio (β) effects on the force acting, the time average and time historic values of drag and lift coefficients are shown in figs. 13, 14, and 15. Obviously fig. 13 shows that C_D and C_L values do not change significantly at different Re numbers. The maximum variation is 6.5% and 7% for C_D and C_L, respectively.

![Figure 13](image1.png)

Figure 13. Time-averaged lift and drag coefficients as a function of Reynolds number for different rotational speed ratios: (a) C_L and (b) C_D.

![Figure 14](image2.png)

Figure 14. Time-historic lift and drag coefficients at different Reynolds numbers for $\beta = 0.5$: (a) C_L and (b) C_D.

Figure 15. Time-historic lift and drag coefficients for different rotational speed ratios at Re = 160; (a) C_L and (b) C_D

It should be mentioned that, because of the counterclockwise rotation of the cylinder, the time averaged lift coefficient, \bar{C}_L, for all β are less than zero. The negative value for \bar{C}_L at $\beta = 0$ is due to the shear effect that results the pressure over the top part of cylinder becomes higher than that under the bottom part. As it can be seen in fig. 13(b), when β increases from 0 to 1 \bar{C}_D decreases. It’s due to the significantly reduce of wake length behind the cylinder as a result of the cylinder rotation. It should be mentioned that the rotation of cylinder accelerates the detachment of vortices. Figure 14 shows time historic values of drag and lift coefficients for Re = 160 and different β. As can be seen, for lift coefficient the amplitude of the oscillation increases while the mean values do not change noticeably, and for drag coefficient the changes of amplitude of the oscillation and mean values are negligible. In contrary, the rotational speed ratio changes the mean value of the lift coefficient meanwhile the amplitude of oscillation does not change significantly as shown in fig.15.

Nusselt number variations

The variation of local Nusselt number for different Re at $t^* = 355$ are shown in fig. 16. It can be seen from the figure that, for all four different Re numbers, there are two local minimum and one maximum. Due to the smaller thermal resistance, the local Nu at the forward stagnation point is highest and decreases up to the point of separation. In the wake region, where the vortices are formed and shed, a further increase in Nu number can be seen because of good mixing. Due to the influence of vortex shedding, the local Nu number distribution in the wake region varies temporally. However, these variations are averaged out for the purpose of comparison. Figure 17 depicts the
periodic average Nu number variation with rotational speed ratio at Re = 50 and 160. It is expected that the peak of the Nu distribution shifts to the right, due to the rotation of cylinder, but the maximum value stays at θ = π as a result of the shear effect. The rotation of the cylinder pushes forward the point of flow separation, hence, the minimum point of Nu distribution on the cylinder surface shift to the right.

For better discussion present investigation is concluded by exploring the effect of Re number and rotational speed ratio on the period-surface average Nu number outcome as indicated in fig. 18. As it mentioned before the effect of Reynolds number on the vortex-shedding frequency is overall very strong in compare with rotational speed ratio. It is concluded that the Re number increment, increases the period-surface average Nu number due to the good mixing of the vortices and the high shed frequency. Although the increase of the rotational speed ratio increases the Nu, but it is slight in compare with Re number.

Conclusions

The present study has applied lattice Boltzmann method to simulate numerically two-dimensional laminar flow and heat transfer over a rotating circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder using MRT method. The range of Reynolds numbers 50 ≤ Re ≤ 160 for three rotational speed ratios of 0, 0.5, and 1, and K = 0.1 are investigated. The results show that in the laminar regime, the effect of Reynolds number on the vortex-shedding frequency is overall very strong compared
with rotational speed ratio. The results of SRT are very noisy rather than MRT results; consequently accuracy of MRT model is more than SRT model. In addition variation of C_D and C_L values strongly depends on rotational speed ratio (β) and do not change significantly with Reynolds number. In heat transfer field it is expected that the peak of the Nu distribution shifts to the right, due to the rotation of cylinder, but the maximum value stays at $\theta = \pi$ as a result of the shear effect. The rotation of the cylinder pushes forward the point of flow separation, hence, the minimum point of Nu distribution on the cylinder surface shift to the right.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>non-dimensional parameter – blockage ratio $[dW]/[D]$</td>
</tr>
<tr>
<td>C_D</td>
<td>drag coefficient $[= 2F_i/(\rho U D)]$, [-]</td>
</tr>
<tr>
<td>C_L</td>
<td>lift coefficient $[= 2F_i/(\rho U D)]$, [-]</td>
</tr>
<tr>
<td>c_s</td>
<td>speed of sound in lattice scale, [-]</td>
</tr>
<tr>
<td>D</td>
<td>diameter of cylinder, [m]</td>
</tr>
<tr>
<td>e_i</td>
<td>discrete lattice velocity in direction i, [-]</td>
</tr>
<tr>
<td>F</td>
<td>force, [N]</td>
</tr>
<tr>
<td>F_x</td>
<td>force in x-direction, [N]</td>
</tr>
<tr>
<td>F_y</td>
<td>force in y-direction, [N]</td>
</tr>
<tr>
<td>f_i</td>
<td>velocity distribution function (pre-collision), [-]</td>
</tr>
<tr>
<td>\tilde{f}_i</td>
<td>velocity distribution function (post-collision), [-]</td>
</tr>
<tr>
<td>f_{eq}</td>
<td>equilibrium distribution function of velocity, [-]</td>
</tr>
<tr>
<td>G</td>
<td>lateral velocity gradient $[= dU/dy]$, $[s^{-1}]$</td>
</tr>
<tr>
<td>g_i</td>
<td>temperature distribution function (pre-collision), [-]</td>
</tr>
<tr>
<td>\tilde{g}_i</td>
<td>temperature distribution function (post-collision), [-]</td>
</tr>
<tr>
<td>g_{eq}</td>
<td>equilibrium distribution function of temperature, [-]</td>
</tr>
<tr>
<td>g_s</td>
<td>acceleration due to gravity, $[ms^{-2}]$</td>
</tr>
<tr>
<td>K</td>
<td>non-dimensional velocity gradient or shear rate $[= DG/\Omega_i]$, [-]</td>
</tr>
<tr>
<td>Nu</td>
<td>local Nusselt number $[= (D\Omega\Omega_i)/(\rho C_p)]$, [-]</td>
</tr>
<tr>
<td>$\langle Nu \rangle$</td>
<td>period-surface average Nusselt number $\int_{t_i}^{t_{eq}} \langle Nu \rangle \text{d}t$, [-]</td>
</tr>
<tr>
<td>ρ</td>
<td>density, $[kg/m^3]$</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity, $[m^2/s]$</td>
</tr>
<tr>
<td>β</td>
<td>rotational speed ratio $[= D_0/2U_c]$, [-]</td>
</tr>
<tr>
<td>ν</td>
<td>heat transport, [K]</td>
</tr>
<tr>
<td>t</td>
<td>time, [s]</td>
</tr>
<tr>
<td>T_h</td>
<td>hot temperature, [K]</td>
</tr>
<tr>
<td>T_c</td>
<td>cold temperature, [K]</td>
</tr>
<tr>
<td>U_c</td>
<td>free stream velocity of the cylinder, $[ms^{-1}]$</td>
</tr>
<tr>
<td>W</td>
<td>lateral width, [m]</td>
</tr>
<tr>
<td>w_k</td>
<td>weighting factor, [-]</td>
</tr>
<tr>
<td>x</td>
<td>horizontal direction, [m]</td>
</tr>
<tr>
<td>y</td>
<td>vertical direction, [m]</td>
</tr>
<tr>
<td>θ</td>
<td>angular velocity of the cylinder, $[s^{-1}]$</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>angular velocity of the cylinder, $[s^{-1}]$</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>cold</td>
</tr>
<tr>
<td>h</td>
<td>hot</td>
</tr>
<tr>
<td>i</td>
<td>spatial indices</td>
</tr>
</tbody>
</table>

References