FLOW OF A SECOND GRADE FLUID WITH CONVECTIVE BOUNDARY CONDITIONS

by

Tasawar HAYATa, Sabir A. SHEHZADa,
Muhammad QASIMb*, and Saleem OBAIDATc

aDepartment of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
bDepartment of Mathematics, CIIT, Chak Shahzad, Islamabad, Pakistan
cDepartment of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia

Original scientific paper
UDC: 536.25:532.543.6:517.95
DOI: 10.2298/TSCI101014058H

The flow and heat transfer in a second grade fluid over a stretching sheet subjected to convective boundary conditions are investigated. Similarity transformations have been used for the reduction of partial differential equation into the ordinary differential. Homotopy analysis method has been utilized for the series solutions. Graphical results are displayed and analyzed. Computations for local Nusselt number have been carried out.

Key words: heat transfer, second grade fluid, convective boundary conditions, stretching surface

Introduction

The boundary layer flows and heat transfer over a stretching sheet are quite useful in the engineering applications. Specific examples of such flows occur in the extrusion process, glass fiber and paper production, hot rolling, wire drawing, electronic chips, crystal growing, plastic manufactures, and aerodynamic extrusion of plastic sheets. An extensive literature is available for boundary layer flows induced by a stretching sheet [1-10].

A variety of constitutive equations have been suggested to predict the behavior of non-Newtonian fluids in industry and engineering. Amongst these non-Newtonian fluids, there is one simplest model of differential type fluids which is known as second grade fluid [11-18]. This model can describe the normal stress effects even in steady flows. Convection flow has further practical engineering applications such as cooling of polymer films and metallic plates on conveyers. Recently Yao \textit{et al.} [19] discussed the flow and heat transfer in a viscous fluid flow over a stretching/shrinking sheet with convective boundary conditions. The purpose of this work is to extend the analysis of reference [19] in two directions. Firstly to develop problem formulation for a second grade fluid and secondly to find the series solutions. This paper is arranged as follows. In the next section we present the problem formulation. The section \textit{Homotopy solutions} includes the solutions for the velocity and temperature

* Corresponding author; e-mail: mq_qau@yahoo.com
fields. Homotopy analysis method (HAM) has been used for the derivation of solutions. This method is very powerful and several interesting problems have been solved by this method [20-35]. In the section Convergence of homotopy solutions we discuss the convergence of the obtained solutions. The graphical results for the pertinent parameters are shown and analyzed in the section Graphical results and discussion. In the section Concluding remarks we present the concluding remarks.

Problem formulation

Consider the 2-D and steady flow of an incompressible second grade fluid bounded by a stretching sheet with heat transfer when the fluid remains stationary. The sheet is stretched with a velocity $u_w(x) = bx$, where b is a real number. The constant mass transfer velocity is denoted by v_w with $v_w > 0$ for injection and $v_w < 0$ for suction. We choose x-axis along the stretching surface and the y-axis perpendicular to the x-axis. The present flow consideration is governed by the following expressions:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\alpha_1}{\rho} \left(\frac{\partial \theta}{\partial x} \frac{\partial^2 u}{\partial y^2} + \frac{\partial \theta}{\partial y} \frac{\partial^2 u}{\partial x^2} + \frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y} + v \frac{\partial u}{\partial y} \right)$$

where u and v denote the velocity components in the x- and y-directions, α_1 is the second grade parameter, T – the fluid temperature, c_p – the specific heat, $\nu = \mu/\rho$ – the kinematic viscosity, and ρ – the density of the fluid.

The appropriate boundary conditions are considered in the following forms:

$$u = u_w(x) = bx, \quad v = v_w, \quad -k \frac{\partial T}{\partial y} = h(T - T_f) \quad \text{at} \quad y = 0$$

$$u = 0, \quad T = T_\infty \quad \text{as} \quad y \to \infty$$

Here k is the thermal conductivity of the fluid, h – the convective heat transfer coefficient, v_w – the wall heat transfer velocity, and T_f – the convective fluid temperature below the moving sheet.

Writing:

$$u = \alpha f'(\eta), \quad v = -\sqrt{\alpha} \nu f(\eta), \quad \theta(\eta) = \frac{T_\infty - T}{T_f - T_\infty} \quad \text{at} \quad \eta = \sqrt{\frac{a}{\nu}}$$

The continuity equation is automatically satisfied and we obtain the following system of non-dimensional equations:

$$f'''' + f''' - f'' + K(2ff'' - f'^2 - ff') = 0$$

$$\theta' + Pr \theta f' + Pr Ec f'^2 - Pr Ec K(2ff' - ff') = 0$$

$$f = S, \quad f' = b/l \quad \alpha c, \quad \theta = -\gamma [1 - \theta(0)] \quad \text{at} \quad \eta = 0$$
\[f' = 0, \quad \theta = 0 \quad \text{at} \quad \eta \to \infty \]

where \(a \) is a constant, prime represents the differentiation with respect to \(\eta \), \(S > 0 \) stands for suction and \(S < 0 \) for injection, \(K = \alpha_1 / \mu \), \(\alpha = b / a \), \(Pr = \mu c_p / k \), the Prandtl number. \(Ec = \frac{u_w}{c_p(T_f - T_u)} \) is Eckert number and \(\gamma = h / (k \sqrt{a}) \) the Biot number. The local Nusselt number \(Nu \) is \(Nu = x q_w / k (T_f - T_u) \) where heat transfer \(q_w \) is \(q_w = -k (\partial T / \partial y) \). The dimensionless expression of the local Nusselt number is \(Nu / \text{Re}^{1/2} \).

Homotopy solutions

We write the initial guesses and linear operators as:

\[
\begin{align*}
\hat{f}_0(\eta) &= S + \alpha (1 - e^{-\eta}), \quad \hat{\theta}_0(\eta) = \frac{\gamma e^{-\eta}}{1 + \gamma} \\
\mathcal{L}_0 &= f'' = f', \quad \mathcal{L}_0 = \theta'' = \theta
\end{align*}
\]

with

\[
\mathcal{L}_0 (C_i + C_2 e^\eta + C_3 e^{-\eta}) = 0, \quad \mathcal{L}_0 (C_i e^\eta + C_3 e^{-\eta}) = 0
\]

where \(C_i (i = 1-5) \) denote the arbitrary constants.

Zeroth order deformation problems

The problems at this can be written as:

\[
\begin{align*}
(1 - p) \mathcal{L}_0 \left[\hat{f}(\eta, p) - f_0(\eta) \right] &= p h \eta N_1 \left[\hat{f}(\eta, p), \hat{\theta}(\eta, p) \right] \\
(1 - p) \mathcal{L}_0 \left[\hat{\theta}(\eta, p) - \theta_0(\eta) \right] &= p h \eta N_0 \left[\hat{f}(\eta, p), \hat{\theta}(\eta, p) \right]
\end{align*}
\]

\[
\begin{align*}
\hat{f}(0; p) &= S, \quad \hat{f}'(0, p) = b / a = \alpha, \quad \hat{f}'(\infty, p) = 0, \quad \hat{\theta}'(0, p) = -\gamma [1 - \hat{\theta}(0, p)], \quad \hat{\theta}(\infty, p) = 0
\end{align*}
\]

\[
\begin{align*}
N_1 [f(\eta, p), \theta(\eta, p)] &= \frac{\partial^3 f(\eta, p)}{\partial \eta^3} - f(\eta, p) \frac{\partial^2 f(\eta, p)}{\partial \eta^2} - \left(\frac{\partial f(\eta, p)}{\partial \eta} \right)^2 + \\
&+ K \left\{ 2 \frac{\partial f(\eta, p)}{\partial \eta} \frac{\partial^3 f(\eta, p)}{\partial \eta^3} - \left(\frac{\partial^2 f(\eta, p)}{\partial \eta^2} \right)^2 - f(\eta, p) \frac{\partial^4 f(\eta, p)}{\partial \eta^4} \right\}
\end{align*}
\]

\[
\begin{align*}
N_0 [\theta(\eta, p), f(\eta, p)] &= \frac{\partial^2 \theta(\eta, p)}{\partial \eta^2} + Pr f(\eta, p) \frac{\partial \theta(\eta, p)}{\partial \eta} + Pr Ec \frac{\partial^2 (\eta, p)}{\partial \eta^2} - \\
&- Pr Ec K \left[\frac{\partial f(\eta, p)}{\partial \eta} \frac{\partial^2 \theta(\eta, p)}{\partial \eta^2} - f(\eta, p) \frac{\partial^2 \theta(\eta, p)}{\partial \eta^2} \frac{\partial \theta(\eta, p)}{\partial \eta} \right]
\end{align*}
\]
where p is an embedding parameter, h_1 and h_0 are the non-zero auxiliary parameters and N_f and N_0 are the non-linear operators. For $p = 0$ and $p = 1$ we have:

$$f(\eta, 0) = f_0(\eta), \quad \theta(\eta, 0) = \theta_0(\eta) \quad \text{and} \quad f(\eta, 1) = f(\eta), \quad \theta(\eta, 1) = \theta(\eta)$$

and $f(\eta, p)$ and $\theta(\eta, p)$ vary from $f_0(\eta), \theta_0(\eta)$ to $f(\eta)$ and $\theta(\eta)$ when p varies from 0 to 1.

By Taylor series expansion one has:

$$f(\eta, p) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta) p^m$$

$$\theta(\eta, p) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta) p^m$$

$$f_m(\eta) = \frac{1}{m!} \frac{\partial^m f(\eta, p)}{\partial \eta^m} \bigg|_{p=0}, \quad \theta_m(\eta) = \frac{1}{m!} \frac{\partial^m \theta(\eta, p)}{\partial \eta^m} \bigg|_{p=0}$$

The series in above two equations is strongly dependent upon h_1 and h_0. The values of h_1 and h_0 are selected by a processes that the series converge at $p = 1$. Hence:

$$f(\eta) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta)$$

$$\theta(\eta) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta)$$

mth-order deformation problems

At this stage problems are given by:

$$\mathcal{L} [f_m(\eta) - \chi_m f_{m-1}(\eta)] = h_1 R_m(\eta)$$

$$\mathcal{L} [\theta_m(\eta) - \chi_m \theta_{m-1}(\eta)] = h_2 R_m(\eta)$$

$$f_{m}(0) = f_{m}(0) = f_{m}(\infty) = 0, \quad \theta_{m}(0) - \gamma \theta_{m}(0) = \theta_{m}(\infty) = 0$$

$$R_m(\eta) = f_{m-1}(\eta) + \sum_{k=0}^{m-1} f_{m-1-k} f_k^* - f_{m-1-k} f_k^* + K \sum_{k=0}^{m-1} 2 f_{m-1-k} f_k^* - f_{m-1-k} f_k^* - f_{m-1-k} f_k^*$$

$$R_m(\eta) = \theta_{m-1} + Pr \sum_{k=0}^{m-1} \theta_{m-1-k} f_k$$

$$\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases}$$

The resulting series solutions are:

$$f_m(\eta) = f_m^*(\eta) + C_1 + C_2 e^{\eta} + C_3 e^{-\eta}$$

$$\theta_m(\eta) = \theta_m^*(\eta) + C_4 e^{\eta} + C_5 e^{-\eta}$$

in which f_m^* and θ_m^* indicate the special solutions.
Convergence of homotopy solutions

Obviously the series solutions contain the non-zero auxiliary parameters h_f and h_q. Such parameters adjust and control the convergence of the series solutions. For range of admissible values of h_f and h_q the h-curves have been displayed for 20th order of approximations. Figure 1(a), (b), and (c) indicates that the range for admissible values of h_f and h_q are $h_f \leq -1.6 \leq -0.1$ and $-1.8 \leq h_q \leq -0.2$. Further, the series also converge in the whole region of η when $h_f = h_q = -1.0$ (tab. 1).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Order of approximation & $-f''(0)$ & $-\theta''(0)$ \\
\hline
1 & 0.246001 & 0.308586 \\
10 & 0.233492 & 0.287484 \\
15 & 0.233472 & 0.287393 \\
25 & 0.233472 & 0.287393 \\
30 & 0.233472 & 0.287393 \\
35 & 0.233472 & 0.287393 \\
\hline
\end{tabular}
\caption{Convergence of homotopy solution for different order of approximations when $K = 0.2$, $\alpha = 0.3$, $Pr = 1.0$, $S = 0.5$, $\gamma = 0.5$ and $h_f = h_q = -1.0$}
\end{table}

Graphical results and discussion

This section highlights the influence of different parameters on velocity field f' and temperature profile θ. Figures 2-8 show the influence of different parameters α, K, S, Pr, and γ on f' and θ. The effects of α on velocity profile f' are shown in fig. 2. This figures indicates that there is no flow and the fluid velocity is zero when $\alpha = 0$. The fluid velocity f' increases when there is an increase in α. Figure 3 is plotted for the variations of second grade parameter K on f'. The velocity profile f'' increases and the boundary layer thickness decreases when K is increased. Figure 4 shows the variation of suction parameter S on f'. As expected f' decreases by increasing S. The variations of S on f' are quite opposite when compared with K.

![Figure 1(a)](image1a.png)
![Figure 1(b)](image1b.png)
![Figure 1(c)](image1c.png)
Figures 5-8 have been displayed for the effects of Pr, α, S, and γ on the temperature profile θ. Figure 5 depicts the variations of Pr on θ. The temperature profile θ decreases when Pr increases. Figure 6 represents the effects of stretching parameter α on θ. The temperature profile θ is a decreasing function of α. The variations of S on θ is presented in fig. 7. From fig. 7 we see that S has similar effects on temperature profile θ when compared with velocity profile f’. Figure 8 has been prepared for effects of γ on θ. We found that when γ = 0 then there is no heat transfer and the temperature is zero. The temperature profile θ clearly increases when γ increases. The influence of the Ec is shown in fig. 9. It is observed that θ is an increasing function of Ec. This is because heat energy is stored in fluid due to frictional heating. Thus the effect of increasing Ec, is to enhance the temperature at any point.

<table>
<thead>
<tr>
<th>γ</th>
<th>Pr</th>
<th>α</th>
<th>Ec</th>
<th>Nu/ Re^{1/2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.092916</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.3</td>
<td>0.250132</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.334452</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.040229</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.214365</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
<td>0.356172</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.356192</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.242896</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>0.242184</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.241265</td>
</tr>
</tbody>
</table>
The boundary layer thickness also increases when Ec increases. Table 2 depicts the variation of heat transfer at the wall –θ'(0) for some values of Pr, Ec, γ, and α when K = 0.2 and S = 0.

![Figure 6. Influence of α on θ](image)

![Figure 7. Influence of S on θ](image)

![Figure 8. Influence of γ on θ](image)

![Figure 9. Influence of Ec on θ](image)

Concluding remarks

We studied the heat transfer analysis on the flow of a second grade fluid over a stretching wall with convective boundary conditions. The HAM has been applied for the series solutions. The graphical results for emerging parameters are discussed. Numerical values of local Nusselt number are computed. The main results have been summarized as follows.

- The velocity field f' increases by increasing α and K.
- The effects of K and S on f' are quite opposite.
- The variations of Pr and α on θ are qualitatively similar.
- Behavior of Ec and Pr on the temperature θ are opposite.
- The heat transfer effects are absent when γ = 0.
- The local Nusselt number increases as Pr increases and decreases when Ec increases.
Acknowledgment

First author thanks the support of King Saud University of Saudi Arabia. Further, we are much grateful for the constructive suggestions of the reviewers regarding an earlier version of this paper.

Nomenclature

\[a \] – constant parameter, [s\(^{-1}\)]
\[b \] – stretching sheet parameter, [s\(^{-1}\)]
\[Ec \] – Eckert number, [-]
\[K \] – second grade fluid parameter, = \(\alpha \cdot a \cdot \mu \), [-]
\[k \] – thermal conductivity, [W m\(^{-1}\) K\(^{-1}\)]
\[Nu \] – Nusselt number, [-]
\[Pr \] – Prandtl number, [-]
\[Re \] – Reynolds number, [-]
\[q_w \] – rate of heat transfer, [W m\(^{-2}\)]
\[u, v \] – velocity components along x- and y-axes, respectively, [m s\(^{-1}\)]
\[x, y \] – Cartesian co-ordinates along x- and y-axes

Greek symbols

\[\gamma \] – Biot number, [-]
\[\theta \] – dimensionless temperature
\[\mu \] – coefficient of viscosity [kg m\(^{-1}\) s\(^{-1}\)]
\[\nu \] – kinematic viscosity [m\(^2\) s\(^{-1}\)]
\[\rho \] – density of fluid, [kg m\(^{-3}\)]

Superscript

\[^{'} \] – differentiation with respect to \(\eta \)

References

Paper submitted: October 14, 2010
Paper revised: June 13, 2011
Paper accepted: June 15, 2011