NATURAL CONVECTION IN SQUARE ENCLOSURES DIFFERENTIALLY HEATED AT SIDES USING ALUMINA-WATER NANOFLOUIDS WITH TEMPERATURE-DEPENDENT PHYSICAL PROPERTIES

by

Marta CIANFRINI, Massimo CORCIONE*, Alessandro QUINTINO

DIAEE Sezione Fisica Tecnica - Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy

Laminar natural convection of Al₂O₃ + H₂O nanofluids inside square cavities differentially heated at sides is studied numerically. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum and energy transfer governing equations. Assuming that the nanofluid behaves like a single-phase fluid, these equations are the same as those valid for a pure fluid, provided that the thermophysical properties appearing in them are the nanofluid effective properties. The thermal conductivity and dynamic viscosity of the nanofluid are calculated by means of a couple of empirical equations based on a wide variety of experimental data reported in the literature. The other effective properties are evaluated by the conventional mixing theory. Simulations are performed for different values of the nanoparticle volume fraction in the range 0–0.06, the diameter of the suspended nanoparticles in the range 25–100 nm, the temperature of the cooled sidewall in the range 293–313 K, the temperature of the heated sidewall in the range 298–343 K, and the Rayleigh number of the base fluid in the range 10⁴–10⁷. All computations are executed in the hypothesis of temperature-dependent effective properties. The main result obtained is the existence of an optimal particle loading for maximum heat transfer, that is found to increase as the size of the suspended nanoparticles is decreased, and the nanofluid average temperature is increased.

Key words: Nanofluid, Temperature-dependent physical properties, Natural convection, Side-heated enclosure, Numerical analysis.

1. Introduction

Buoyancy-induced heat transfer in enclosures differentially heated at sides is of great practical importance in a multitude of engineering applications, such as the cooling of electronic assemblies and the collection of solar energy, to name a few. Actually, thermal designers often prefer to avoid the use of mechanical equipment for the fluid circulation, especially when a small power consumption, a negligible operating noise, and a high reliability of the system, are main concerns. However, the intrinsic low performance of natural convection, in comparison with equivalent or similar forced convection situations, represents a substantial restriction to heat transfer. A possible solution to mitigate the problem could be the replacement of traditional heat transfer fluids (such as water,
ethylene glycol and mineral oils) with nanofluids, i.e. liquid suspensions of nano-sized solid particles, whose effective thermal conductivity is known to be higher than that of the corresponding pure base liquid. On the other hand, a survey of the articles dealing with natural convection of nanofluids in vertical cavities reveals that the question if the use of nanoparticle suspensions is really advantageous with respect to pure liquids seems to be not yet answered. In fact, according to some authors, the addition of nanoparticles to a base liquid implies a more or less remarkable enhancement of the heat transfer rate [1-7], whilst, according to others, a deterioration may occur [8-10].

The reason for such conflicting results can be explained by considering that the heat transfer performance of nanofluids in natural convection flows is a strict consequence of the two opposite effects arising from the increase of the effective thermal conductivity and dynamic viscosity occurring as the volume fraction of the suspended nanoparticles is augmented. In other words, the dispersion of a given concentration of nanoparticles into a base liquid can bring to either an enhancement or a degradation of the heat transfer performance, depending on whether the increased thermal conductivity effect is larger or smaller than the increased viscosity effect.

Now, the majority of the studies available in the literature are numerical studies based on the common assumption that nanofluids behave more like single-phase fluids rather than like conventional solid–liquid mixtures. This means that the mass, momentum and energy transfer governing equations for pure fluids can be directly extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties. Of course, the use of robust theoretical models or empirical equations, capable to predict the nanofluid effective properties as more accurately as possible, is crucial for obtaining realistic data. Unfortunately, most of the studies cited above miss this requirement, for one reason or another, thus leading to unreliable results.

Typically, erroneous results derived from the calculation of the effective thermal conductivity and dynamic viscosity by the Maxwell-Garnett model [11] and the Brinkman equation [12], which belong to the category of the traditional mean-field theories, originally developed for composites and mixtures with micro-sized and milli-sized inclusions. In fact, the Maxwell-Garnett model, and the other traditional models commonly used to predict the effective thermal conductivity (such as the Hamilton–Crosser model [13] and the Bruggemann model [14]), appear to be suitable to this end when the nanofluid is at ambient temperature (see e.g. Eapen et al. [15] and Buongiorno et al. [16]), but tend to fail dramatically when the temperature of the suspension is one or some tens degrees higher than 20–25°C (as e.g. shown experimentally by Das et al. [17], Li and Peterson [18], and Yu et al. [19]). In its turn, the Brinkman equation is known to underestimate the actual values of the dynamic viscosity of nanofluids, with a degree of underestimation that increases significantly as the nanoparticle diameter decreases and the nanoparticle concentration increases (as e.g. demonstrated by Chen et al. [20, 21] and Chevalier et al. [22]). Same considerations apply to the Einstein equation [23, 24], sometimes used instead of the Brinkman equation to evaluate the effective dynamic viscosity. In other cases, misleading conclusions were achieved because the nanofluid effective properties were evaluated by either partly inconsistent semi-empirical models, or correlations based on experimental data whose values are inexplicably in contrast with the main body of the literature results, or equations whose validity was restricted to situations very different from those investigated.

As far as the experimental studies are concerned, the first of them was performed in 2003 by Putra et al. [25], who used a horizontal cylindrical vessel differentially heated at ends, containing Al2O3 (dp = 131.2 nm) + H2O or CuO (dp = 87.3 nm) + H2O with volume fractions of 1% and 4%. The
average Nusselt number of the enclosure was found to decrease with increasing the nanoparticle volume fraction. The common interpretation of this result is that a heat transfer deterioration occurred with increasing the concentration of the suspended nanoparticles. Indeed, owing to the increase of the effective thermal conductivity, k, a decrease of the Nusselt number does not necessarily mean that the heat transfer rate decreases. In fact, it may occur that for a given nanoparticle volume fraction, ϕ, the coefficient of convection of the nanofluid, h, is higher than that of the pure base liquid, h_f (thus meaning that the addition of nanoparticles to the base liquid enhances the thermal performance of the enclosure), but if $\frac{\partial h}{\partial k} < 0$ the average Nusselt number of the nanofluid is smaller than that of the pure base liquid. This is exactly the case of the Nusselt numbers reported by Putra and colleagues for $\phi = 0.01$. Indeed, if these data are properly rearranged in order to obtain the values of the ratio h/h_f, a heat transfer enhancement may be clearly observed. Vice versa, at $\phi = 0.04$ a slight heat transfer degradation occurred for both nanofluids investigated, thus implying the existence of an optimal particle loading.

A smooth optimal particle loading for maximum heat transfer across a cavity filled with Al_2O_3 ($d_p = 27 \text{ nm}$) + H$_2$O was later discovered experimentally by Nnanna [26], who explained its existence as the consequence of an excessive increase in viscosity that occurred above a certain nanoparticle concentration. Such optimal nanoparticle concentration, whose existence can also be inferred from an attentive analysis of the experimental data recently published by Ho et al. [27] for a square enclosure filled with Al_2O_3 ($d_p = 33 \text{ nm}$) + H$_2$O, was calculated by Corcione [28] in a first-approach, theoretical work. In particular, the heat transfer enhancement and the optimal volume fraction were found to increase as the nanoparticle diameter was decreased and both the nanofluid average temperature and the aspect ratio of the enclosure were increased.

Framed in this general background, the aim of the present paper is to undertake a comprehensive numerical study on natural convection in a differentially heated vertical enclosure filled with a water suspension of alumina nanoparticles having temperature-dependent effective properties, with the primary scope to investigate the main features of heat transfer and fluid flow, and determine accurate correlations for predicting the optimal particle loading and the amount of heat transferred across the cavity.

2. Mathematical formulation

A square enclosure of width W containing an alumina–water nanofluid is differentially heated at the vertical walls, that are kept at uniform temperatures T_h and T_c, whilst the top and bottom walls are perfectly insulated, as depicted in fig. 1. A zero surface emissivity is assumed for the confining walls, which physically corresponds to perfectly polished surfaces, thus implying that the present situation involves pure natural convection, owing to the absence of any contribution by radiation.

According to the approach typically used in most studies performed on this same subject, the nanofluid is handled as a single-phase fluid. In fact, since the suspended nanoparticles have usually small size and concentration, the hypothesis of a solid–liquid mixture statistically homogeneous and isotropic can reasonably be advanced. This means that, under the further assumptions that the nanoparticles and base liquid are in local thermal equilibrium, and no slip motion occurs between the solid and liquid phases, to all intents and purposes the nanofluid can be treated as a pure fluid. Thus, the equations that govern the flow and heat transfer valid for pure fluids can be directly extended to
the nanoparticle suspension, provided that the thermophysical properties appearing in them are the nanofluid effective properties. Such a formulation finds experimental confirmation in the study performed by Chang et al. [29], who demonstrated that the same Nusselt–Rayleigh correlation valid for layers of pure water is applicable with good approximation to nanofluid layers consisting of Al2O3 (dp = 250 nm) + H2O if both Nusselt and Rayleigh numbers are calculated using the thermophysical properties of the suspension. Same type of experimental results were obtained for forced convection flows by Williams et al. [30], Sommers and Yerkes [31], and Rea et al. [32]. Additionally, the nanofluid is treated as a Newtonian fluid, which was e.g. demonstrated by Putra and co-workers [25, 33], Prasher et al. [34], He et al. [35], Chen et al. [20, 21], and Chevalier et al. [22].

Therefore, assuming that the flow is steady, two-dimensional, laminar and incompressible, with negligible viscous dissipation and pressure work, and that the nanofluid effective properties depend on temperature, the conservation equations of mass, momentum and energy reduce to (see e.g. Kays et al. [36]):

\[
\frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0
\]

\[
\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\frac{2\mu}{3} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right]
\]

\[
\rho \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left[\frac{2\mu}{3} \left(\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left[\mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] - \rho g
\]

\[
\rho u \frac{\partial (cT)}{\partial x} + \rho v \frac{\partial (cT)}{\partial y} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right),
\]

where x and y are the horizontal and vertical Cartesian coordinates, u and v are the x-wise and y-wise velocity components, p is the pressure, T is the temperature, g is the acceleration of gravity, \(\rho \) is the effective mass density, \(\mu \) is the effective dynamic viscosity, c is the effective specific heat at constant pressure, and k is the effective thermal conductivity.

![Figure 1. Sketch of the geometry and coordinate system](image-url)
Once the following dimensionless variables are introduced:

\[X = \frac{x}{W}, \quad Y = \frac{y}{W} \]

\[U = \frac{u}{\mu_r/(\rho_r W)}, \quad V = \frac{v}{\mu_r/(\rho_r W)}, \quad P = \frac{p - p_r}{\mu_r^2/(\rho_r W^2)}, \quad \theta = \frac{T - T_r}{T_h - T_c} \]

\[\rho^* = \frac{\rho}{\rho_r}, \quad \mu^* = \frac{\mu}{\mu_r}, \quad c^* = \frac{c}{c_r}, \quad k^* = \frac{k}{k_r} \]

the governing equations become

\[\frac{\partial (\rho^* U)}{\partial X} + \frac{\partial (\rho^* V)}{\partial Y} = 0 \]

\[\rho^* \left(U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} \right) = -\frac{\partial P}{\partial X} + \frac{\partial}{\partial X} \left[2 \mu^* \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \right] + \frac{\partial}{\partial Y} \left[\mu^* \left(\frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \right) \right] \]

\[\rho^* \left(U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y} \right) = -\frac{\partial P}{\partial Y} + \frac{\partial}{\partial Y} \left[2 \mu^* \left(\frac{\partial U}{\partial X} - \frac{\partial V}{\partial Y} \right) \right] + \frac{\partial}{\partial X} \left[\mu^* \left(\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} \right) \right] + \frac{\partial}{\partial Y} \left[\mu^* \left(\frac{\partial U}{\partial Y} + \frac{\partial V}{\partial X} \right) \right] + \frac{Ra}{Pr} \frac{\rho_r - \rho}{\rho_c - \rho_h} \]

\[\rho^* U \frac{\partial (c^* \theta)}{\partial X} + \rho^* V \frac{\partial (c^* \theta)}{\partial Y} = \frac{1}{Pr} \left[\frac{\partial}{\partial X} \left(k^* \frac{\partial \theta}{\partial X} \right) + \frac{\partial}{\partial Y} \left(k^* \frac{\partial \theta}{\partial Y} \right) \right] \]

where \(Ra \) and \(Pr \) are the effective Rayleigh and Prandtl numbers defined as

\[Ra = \frac{\rho_r c_t g (\rho_c - \rho_h) W^3}{k_r \mu_r}, \quad Pr = \frac{c_t \mu_r}{k_r}. \]

In the preceding equations the effective properties with subscript "r" are calculated at the reference temperature \(T_r \), that is conventionally set equal to the temperature \(T_c \) of the cooled sidewall of the enclosure, whereas \(\rho_h \) and \(\rho_c \) are the values of the effective mass density calculated at temperatures \(T_h \) and \(T_c \), respectively.

Fixed \(T_r = T_c \), the thermal boundary conditions expressed in the proper dimensionless form are: (a) \(\theta = 1 \) at the heated sidewall; (b) \(\theta = 0 \) at the cooled sidewall; and (c) \(\partial \theta / \partial Y = 0 \) at the adiabatic top and bottom walls. As regards the velocity boundary conditions, the no-slip condition \(U = V = 0 \) is assumed along the four confining walls.

Obviously, at any location inside the enclosure the effective physical properties \(\rho, \mu, c \) and \(k \) must be calculated at the location own temperature \(T = T_c + \theta(T_h - T_c) \). This means that, although the governing equations are expressed in dimensionless form (which seems convenient for comparison purposes), the dependence of the effective physical properties on temperature requires that the set of independent variables must include both dimensional temperatures of the heated and cooled sidewalls, \(T_h \) and \(T_c \), respectively.

The effective thermal conductivity and dynamic viscosity, \(k \) and \(\mu \), respectively, are calculated through the following empirical correlations obtained by Corcione [37] on the basis of a wide variety of experimental data available in the literature:
\[
\frac{k}{k_f} = 1 + 4.4 \frac{Re^{0.4}}{Pr_f^{0.66}} \left(\frac{T}{T_{fr}} \right)^{10} \left(\frac{k_s}{k_f} \right)^{0.03} \varphi^{0.66} \quad (13)
\]

\[
\frac{\mu}{\mu_f} = \frac{1}{1 - 34.87(d_p/d_f)^{-0.3} \varphi^{1.03}} \quad ,
\]

where \(k_f\) is the thermal conductivity of the base fluid, \(Re\) is the nanoparticle Reynolds number, \(Pr_f\) is the Prandtl number of the base fluid, \(T_{fr}\) is the freezing point of the base fluid, \(k_s\) is the thermal conductivity of the solid nanoparticles, \(\mu_f\) is the dynamic viscosity of the base fluid, \(d_f\) is the equivalent diameter of a base fluid molecule, and \(\varphi\) is the nanoparticle volume fraction. The standard deviations of error of eqs. (13) and (14) are 1.86% and 1.84%, respectively.

The Reynolds number of the suspended nanoparticles, \(Re\), is defined as \(\frac{\rho_f u_B d_p}{\mu_f}\), in which \(\rho_f\) is the mass density of the base fluid, and \(u_B\) is the nanoparticle Brownian velocity; \(u_B\) is defined as the ratio between \(d_p\) and the time required to cover such a distance \(\tau_D = (d_p)^2/6D\), where \(D = (k_B T)/(3 \pi \mu_f d_p)\) is the Einstein diffusion coefficient, see Keblinski et al. [38]. Accordingly, the following relation holds:

\[
Re = \frac{2 \rho_f k_b T}{\pi \mu_f^2 d_p} .
\]

wherein \(k_b = 1.38066 \times 10^{-23} \text{ J/K}\) is the Boltzmann constant.

The equivalent diameter of a base fluid molecule is calculated at the reference temperature \(T_0 = 293\ \text{K}\) on the basis of the relation \(M = \rho_0 V_m N\), where \(M\), \(\rho_0\) and \(V_m\) are the molar mass, the mass density at \(T_0\) and the molecular volume of the base fluid, whilst \(N = 6.022 \times 10^{23} \text{ mol}^{-1}\) is the Avogadro number. If we express \(V_m\) as \((4/3) \pi (d_f/2)^3\), we obtain:

\[
d_f = \left[\frac{6M}{N \pi \rho_0} \right]^{1/3} .
\]

The effective mass density of the nanofluid, \(\rho\), is given by [39]

\[
\rho = (1 - \varphi) \rho_f + \varphi \rho_s ,
\]

where \(\rho_f\) and \(\rho_s\) are the mass densities of the base fluid and the solid nanoparticles, respectively.

Finally, the heat capacity at constant pressure per unit volume of the nanofluid, \(\rho c\), is calculated as [40]

\[
\rho c = (1 - \varphi)(\rho c)_f + \varphi(\rho c)_s ,
\]

where \((\rho c)_f\) and \((\rho c)_s\) are the heat capacities at constant pressure per unit volume of the base fluid and the solid nanoparticles, respectively. Hence, the effective specific heat at constant pressure of the nanofluid, \(c\), is given by

\[
c = \frac{(1 - \varphi)(\rho c)_f + \varphi(\rho c)_s}{(1 - \varphi)\rho_f + \varphi \rho_s} .
\]

Once the effective physical properties are properly evaluated, the effective Rayleigh and Prandtl numbers, \(Ra\) and \(Pr\), that must be used in eqs. (10) and (11), can be expressed as functions of the Rayleigh and Prandtl numbers of the base fluid, \(Ra_f\) and \(Pr_f\), by the following relations:
\[
Ra = Ra_f \left(\frac{\rho_f}{\rho_r} \right) \left(\frac{c/c_f}{\mu/\mu_f} \right) \frac{\rho_c - \rho_h}{(\rho_r)_c - (\rho_r)_h}, \quad Pr = Pr_f \left(\frac{c/c_f}{\mu/\mu_f} \right) \frac{k/k_f}{r} \tag{20}
\]

where \((\rho_f)_h\) and \((\rho_f)_c\) are the values of the mass density of the base fluid calculated at temperatures \(T_h\) and \(T_c\), respectively.

The system of governing equations (8)–(11) in conjunction with the boundary conditions stated earlier is solved through a control-volume formulation of the finite-difference method. The pressure-velocity coupling is handled through the SIMPLE-C algorithm described by Van Doormaal and Raithby [41], which is essentially a more implicit variant of the SIMPLE algorithm developed by Patankar and Spalding [42], whose details are thoroughly described in Patankar [43]. The advection fluxes are evaluated by the QUICK discretization scheme proposed by Leonard [44]. The computational spatial domain is filled with a non-uniform grid, having a higher concentration of grid lines near the boundary walls, and a lower uniform spacing throughout the remainder interior of the cavity. Starting from the first-approximation fields of the dependent variables across the cavity, i.e. uniform dimensionless temperature set to 0 and nanofluid at rest, the discretized system of algebraic governing equations is solved iteratively by way of a line-by-line application of the Thomas algorithm. A standard under-relaxation technique is enforced in all steps of the computational procedure to ensure adequate convergence. The numerical solution of the velocity and temperature fields is considered to be converged when the maximum absolute values of the mass source, as well as the percentage changes of the dependent variables at any grid-node between two consecutive iterations, are smaller than the pre-specified values, i.e. \(10^{-4}\) and \(10^{-6}\), respectively. In addition, the further condition that the relative difference between the incoming and outgoing heat transfer rates at the heated and cooled sidewalls is smaller than the pre-assigned value of \(10^{-4}\), must be verified.

After convergence of the velocity and temperature fields is satisfactorily attained, the effective local Nusselt numbers \((Nu_Y)_h\) for the heated sidewall and \((Nu_Y)_c\) for the cooled sidewall are calculated with the expressions

\[
(Nu_Y)_h = \frac{(h_Y)_h W}{k_h} = \frac{q_h W}{k_h(T_h - T_c)} = - \frac{\partial \theta}{\partial X}_{X=0}
\]

\[
(Nu_Y)_c = \frac{(h_Y)_c W}{k_c} = \frac{q_c W}{k_c(T_c - T_h)} = - \frac{\partial \theta}{\partial X}_{X=1}
\]

where \((h_Y)_h\) and \((h_Y)_c\) are the local coefficients of convection at the heated and cooled sidewalls, respectively, \(q_h\) and \(q_c\) are the heat fluxes at the heated and cooled sidewalls, respectively, and \(k_h\) and \(k_c\) are the values of the effective thermal conductivity calculated at temperatures \(T_h\) and \(T_c\), respectively. The temperature gradients in eqs. (21) and (22) are evaluated by a second-order temperature profile embracing the wall-node and the two adjacent fluid-nodes. Similarly, the corresponding pair of effective average Nusselt numbers \(Nu_h\) and \(Nu_c\) are

\[
Nu_h = \frac{h_h W}{k_h} = \frac{Q_h}{k_h(T_h - T_c)} = - \int_0^1 \frac{\partial \theta}{\partial X}_{X=0} dY
\]

\[
Nu_c = \frac{h_c W}{k_c} = \frac{Q_c}{k_c(T_c - T_h)} = - \int_0^1 \frac{\partial \theta}{\partial X}_{X=1} dY
\]

where \((\rho_f)_h\) and \((\rho_f)_c\) are the values of the mass density of the base fluid calculated at temperatures \(T_h\) and \(T_c\), respectively.
where \(h_h \) and \(h_c \) are the average coefficients of convection at the heated and cooled sidewalls, respectively, and \(Q_h \) and \(Q_c \) are the heat transfer rates per unit length added to the nanofluid by the heated sidewall and withdrawn from the nanofluid by the cooled sidewall, respectively. As far as the integrals appearing in eqs. (23) and (24) are concerned, they are computed numerically by means of the trapezoidal rule.

Of course, because at steady-state the incoming and outgoing heat transfer rates per unit length are the same, i.e. \(Q_h = -Q_c = Q \), the following relationship between \(N_u_h \) and \(N_u_c \) holds:

\[
N_u_h k_h = N_u_c k_c. \tag{25}
\]

Numerical tests related to the dependence of the results on the mesh-spacing have been methodically performed for several combinations of the five controlling parameters, namely \(R_a, d_p, \phi, T_c, \) and \(T_h \). The optimal grid-size values, i.e. those used for computations, are such that further refinements do not produce noticeable modifications either in the heat transfer rates or in the flow field. Specifically, the percentage changes of \(N_u_h \) and \(N_u_c \), and those of the maximum velocity components \(U_{max} \) and \(V_{max} \), lie in the ranges between 40\(\times \)40 and 120\(\times \)120. Selected results of the grid sensitivity analysis are presented in tab. 1, in which the values of \(N_u_h, N_u_c, U_{max}, \) and \(V_{max}, \) and their respective percent changes between consecutive mesh sizes, are reported for \(T_c = 303 \text{ K} \) and \(T_h = 313 \text{ K} \). It may be seen that a denser grid is required at higher Rayleigh numbers (note that a mesh size of 50\(\times \)50 is deemed to be adequate at \(R_a = 10^4, \phi = 0.01 \) and \(d_p = 25 \text{ nm} \), whilst a mesh size of 100\(\times \)100 is necessitated at \(R_a = 10^6, \phi = 0.01 \) and \(d_p = 25 \text{ nm} \)). In contrast, the grid-spacing is practically insensitive to the concentration of the suspended nanoparticles (at \(R_a = 10^6 \) and \(d_p = 25 \text{ nm} \) the same mesh size of 100\(\times \)100 gives acceptable results for both volume fractions \(\phi = 0.01 \) and \(\phi = 0.04 \), as well as to the nanoparticle size (at \(R_a = 10^6 \) and \(\phi = 0.04 \) the 100\(\times \)100 mesh size is adequate for both diameters \(d_p = 25 \text{ nm} \) and \(d_p = 100 \text{ nm} \)). Moreover, some test runs have also been executed with the first-approximation uniform value of \(\theta \) set to 0.5 or 1, rather than 0, with the aim to determine what effect these starting conditions could have on the flow and temperature patterns. Solutions practically identical to those obtained assuming \(\theta = 0 \) throughout the enclosure were obtained for all the configurations examined. Finally, with the scope to validate the numerical code used for the present study, the solutions obtained for a differentially heated square cavity filled with air, whose physical properties were assumed to be constant, have been compared with the benchmark results derived by de Vahl Davis [45] through a standard finite-difference method, as shown in tab. 2.

It may be seen that the average Nusselt numbers as well as the maximum horizontal and vertical velocity components, on the vertical and horizontal midplanes of the enclosure, respectively, are well within 1% of the benchmark data listed in column BM1. The following additional benchmark solutions are also reported for further comparison: (a) the results obtained through finite-volume methods by Mahdi and Kinney [46], for \(R_a = 10^3 \), and by Hortman et al. [47], for \(R_a = 10^4-10^6 \), are listed in column BM2; (b) the results obtained through a finite-element method by Wan et al. [48] are listed in column BM3; (c) the results obtained through a discrete singular convolution algorithm by Wan et al. [48] are listed in column BM4. It is worth noticing that our dimensionless velocity results have been multiplied by the Prandtl number before being inserted in tab. 2, so as to account for the choice of the ratio between kinematic viscosity of the fluid and characteristic length as scale factor for
the velocity, instead of the ratio between thermal diffusivity of the fluid and characteristic length used in refs. [45-48]. In addition, the values of the average Nusselt number computed numerically under the assumption of constant physical properties for Pr = 7 (which corresponds to water) and Rayleigh numbers in the range 10^3–5×10^7 have been compared with the usually recommended Berkovsky–Polevikov correlation based on experimental and numerical data of laminar natural convection in a rectangular cavity heated and cooled from the side with an aspect ratio near unity (see e.g. Bejan [49] and Incropera et al. [50]). The comparative analysis, displayed in fig. 2, demonstrates that the correspondence between numerical results and literature data is widely satisfactory.

3. Results and discussion

Numerical simulations are performed for different values of (a) the nanoparticle volume fraction, ϕ, in the range between 0 and 0.06, (b) the diameter of the suspended nanoparticles, d_p, in the range between 25 nm and 100 nm, (c) the temperature of the cooled sidewall, T_c, in the range between 293 K and 313 K, (d) the temperature of the heated sidewall, T_h, in the range between 298 K and 343 K (correspondingly, the temperature difference between the sidewalls, $\Delta T = T_h - T_c$, spans from 5 K to 50 K), and (e) the Rayleigh number of the base fluid, R_{af}, in the range between 10^3 and 10^7.

Table 1. Grid sensitivity analysis for $T_c = 303$ K and $T_h = 313$ K.

<table>
<thead>
<tr>
<th>R_{af}</th>
<th>ϕ</th>
<th>d_p (nm)</th>
<th>mesh size</th>
<th>N_u_h</th>
<th>%</th>
<th>N_u_c</th>
<th>%</th>
<th>U_{max}</th>
<th>%</th>
<th>V_{max}</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>0.01</td>
<td>25</td>
<td>20 \times 20</td>
<td>2.210</td>
<td>-</td>
<td>2.321</td>
<td>-</td>
<td>2.96</td>
<td>-</td>
<td>3.50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 \times 30</td>
<td>2.179</td>
<td>-1.41</td>
<td>2.288</td>
<td>-1.42</td>
<td>2.97</td>
<td>$+0.45$</td>
<td>3.59</td>
<td>$+2.46$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 \times 40</td>
<td>2.167</td>
<td>-0.55</td>
<td>2.275</td>
<td>-0.58</td>
<td>2.985</td>
<td>$+0.51$</td>
<td>3.620</td>
<td>$+0.94$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 \times 50</td>
<td>2.161</td>
<td>-0.25</td>
<td>2.270</td>
<td>-0.25</td>
<td>2.988</td>
<td>$+0.12$</td>
<td>3.628</td>
<td>$+0.22$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 \times 60</td>
<td>2.158</td>
<td>-0.17</td>
<td>2.266</td>
<td>-0.17</td>
<td>2.989</td>
<td>$+0.00$</td>
<td>3.629</td>
<td>$+0.02$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 \times 80</td>
<td>2.154</td>
<td>-0.17</td>
<td>2.262</td>
<td>-0.17</td>
<td>2.985</td>
<td>-0.10</td>
<td>3.630</td>
<td>$+0.02$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 \times 100</td>
<td>2.141</td>
<td>-0.60</td>
<td>2.249</td>
<td>-0.58</td>
<td>2.985</td>
<td>$+0.00$</td>
<td>3.631</td>
<td>$+0.03$</td>
</tr>
<tr>
<td>10^6</td>
<td>0.01</td>
<td>25</td>
<td>40 \times 40</td>
<td>9.400</td>
<td>-</td>
<td>9.872</td>
<td>-</td>
<td>15.303</td>
<td>-</td>
<td>40.648</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 \times 50</td>
<td>9.180</td>
<td>-2.34</td>
<td>9.641</td>
<td>-2.34</td>
<td>15.146</td>
<td>-1.03</td>
<td>42.528</td>
<td>$+4.62$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 \times 60</td>
<td>9.057</td>
<td>-1.34</td>
<td>9.511</td>
<td>-1.35</td>
<td>15.066</td>
<td>-0.53</td>
<td>41.995</td>
<td>-1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 \times 80</td>
<td>8.932</td>
<td>-1.39</td>
<td>9.380</td>
<td>-1.37</td>
<td>14.975</td>
<td>-0.61</td>
<td>42.950</td>
<td>$+2.27$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 \times 100</td>
<td>8.873</td>
<td>-0.66</td>
<td>9.318</td>
<td>-0.66</td>
<td>14.922</td>
<td>-0.35</td>
<td>43.192</td>
<td>$+0.56$</td>
</tr>
<tr>
<td>10^6</td>
<td>0.04</td>
<td>25</td>
<td>40 \times 40</td>
<td>7.918</td>
<td>-</td>
<td>8.576</td>
<td>-</td>
<td>10.855</td>
<td>-</td>
<td>27.795</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 \times 50</td>
<td>7.769</td>
<td>-1.89</td>
<td>8.414</td>
<td>-1.89</td>
<td>10.758</td>
<td>-0.89</td>
<td>27.937</td>
<td>$+0.51$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 \times 60</td>
<td>7.687</td>
<td>-1.06</td>
<td>8.325</td>
<td>-1.06</td>
<td>10.695</td>
<td>-0.59</td>
<td>28.187</td>
<td>$+0.90$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 \times 80</td>
<td>7.603</td>
<td>-1.08</td>
<td>8.235</td>
<td>-1.09</td>
<td>10.627</td>
<td>-0.64</td>
<td>28.334</td>
<td>$+0.52$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 \times 100</td>
<td>7.564</td>
<td>-0.52</td>
<td>8.192</td>
<td>-0.51</td>
<td>10.613</td>
<td>-0.13</td>
<td>28.405</td>
<td>$+0.25$</td>
</tr>
<tr>
<td>10^6</td>
<td>0.04</td>
<td>100</td>
<td>40 \times 40</td>
<td>8.646</td>
<td>-</td>
<td>9.168</td>
<td>-</td>
<td>13.170</td>
<td>-</td>
<td>34.475</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50 \times 50</td>
<td>8.464</td>
<td>-2.10</td>
<td>8.975</td>
<td>-2.11</td>
<td>13.054</td>
<td>-0.88</td>
<td>35.315</td>
<td>$+2.44$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 \times 60</td>
<td>8.363</td>
<td>-1.20</td>
<td>8.867</td>
<td>-1.19</td>
<td>12.980</td>
<td>-0.57</td>
<td>35.022</td>
<td>-0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80 \times 80</td>
<td>8.261</td>
<td>-1.22</td>
<td>8.759</td>
<td>-1.22</td>
<td>12.894</td>
<td>-0.66</td>
<td>35.461</td>
<td>$+1.25$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100 \times 100</td>
<td>8.213</td>
<td>-0.58</td>
<td>8.709</td>
<td>-0.58</td>
<td>12.844</td>
<td>-0.39</td>
<td>35.816</td>
<td>$+1.00$</td>
</tr>
</tbody>
</table>
Table 2 – Comparison of the present solutions with the benchmark solutions of de Vahl Davis (BM1), Mahdi and Kinney + Hortman et al. (BM2), Wan et al. by FEM (BM3), and Wan et al. by DSC (BM4) for a differentially heated square cavity at steady state.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Present work</th>
<th>BM1</th>
<th>BM2</th>
<th>BM3</th>
<th>BM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra = 10^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{max}</td>
<td>3.654</td>
<td>3.649</td>
<td>3.649</td>
<td>3.489</td>
<td>3.643</td>
</tr>
<tr>
<td>V_{max}</td>
<td>3.708</td>
<td>3.697</td>
<td>3.690</td>
<td>3.686</td>
<td>3.686</td>
</tr>
<tr>
<td>Nu</td>
<td>1.116</td>
<td>1.118</td>
<td>1.113</td>
<td>1.117</td>
<td>1.073</td>
</tr>
<tr>
<td>Ra = 10^5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nu</td>
<td>2.254</td>
<td>2.243</td>
<td>2.244</td>
<td>2.254</td>
<td>2.155</td>
</tr>
<tr>
<td>Ra = 10^6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{max}</td>
<td>35.008</td>
<td>34.730</td>
<td>34.739</td>
<td>33.390</td>
<td>33.510</td>
</tr>
<tr>
<td>V_{max}</td>
<td>68.109</td>
<td>68.590</td>
<td>68.639</td>
<td>70.630</td>
<td>70.810</td>
</tr>
<tr>
<td>Nu</td>
<td>4.506</td>
<td>4.519</td>
<td>4.521</td>
<td>4.598</td>
<td>4.352</td>
</tr>
<tr>
<td>Ra = 10^7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{max}</td>
<td>65.226</td>
<td>64.630</td>
<td>64.836</td>
<td>65.400</td>
<td>65.550</td>
</tr>
<tr>
<td>V_{max}</td>
<td>221.598</td>
<td>219.360</td>
<td>220.461</td>
<td>227.110</td>
<td>227.240</td>
</tr>
<tr>
<td>Nu</td>
<td>8.879</td>
<td>8.800</td>
<td>8.825</td>
<td>8.976</td>
<td>8.632</td>
</tr>
</tbody>
</table>

Figure 2. Comparison between the present numerical results and the Berkovsky–Polevikov correlation for a water-filled square enclosure differentially heated at sides.

Notice that, once the value of T_c is assigned, either the temperature difference between the sidewalls, ΔT, or the nanofluid average temperature, $T_{av} = (T_h + T_c)/2$, may be taken as an independent variable instead of T_h.

A selection of local results is presented in figs. 3–7, in which the isotherm and streamline contours are plotted for different sets of values of φ, d_p, T_c, T_h, and Ra, in order to highlight the effects of these independent variables on the temperature and velocity fields. The contour lines of the isotherm plots correspond to equally-spaced values of the dimensionless temperature θ in the range between 0 and 1. The contour lines of the streamline plots correspond to equally-spaced absolute
values of the normalized dimensionless stream function \(\Psi/|\Psi|_{\text{max}} \) in the range between 0 and 1, where \(\Psi \) is defined by the following relations:

\[
\rho^* U = \frac{\partial \Psi}{\partial Y}, \quad \rho^* V = -\frac{\partial \Psi}{\partial X}.
\]

(26)

As expected, for all the configurations examined the flow field consists of a single roll-cell that derives from the rising of the hot fluid adjacent to the heated sidewall and its descent along the opposite cooled sidewall. It may be observed that when \(\phi \) increases and \(d_p \) decreases (see figs. 3 and 4), the consequent growth of \(\mu \) entails a decrease in the motion intensity, as reflected by the expansion of the streamlines toward the core of the cavity. Typical profiles of the velocity components \(U \) and \(V \) along the vertical and horizontal midplanes of the enclosure, respectively, are displayed in fig. 8 for \(d_p = 25 \) nm, \(T_c = 303 \) K, \(T_h = 313 \) K, and \(Ra_t = 10^5 \), with \(\phi \) as a parameter. Correspondingly, the isotherm lines tend to be less compressed toward the heated and cooled sidewalls of the enclosure. However, since at same time also \(k \) increases, the decrease of the local temperature gradients at both sidewalls does not necessarily imply a degradation of the local heat transfer. This is clearly shown in fig. 9, where a set of typical distributions of the effective local Nusselt number along the heated sidewall \((Nu_Y)_h\), and the corresponding distributions of the local coefficient of convection \((h_Y)_h = (Nu_Y)_h k_h/\theta\), are displayed for the same values of \(\phi, d_p, T_c, T_h \) and \(Ra_t \) previously used in fig. 8. It may be seen that, fixed \(d_p = 25 \) nm, \(T_c = 303 \) K, \(T_h = 313 \) K, and \(Ra_t = 10^5 \), the amount of heat exchanged at \(\phi = 0.01 \) is higher than that transferred across the pure base fluid. Vice versa, at \(\phi = 0.04 \) and 0.06 the heat transfer rate is lower, which means that the diminution of the temperature gradients at the sidewalls prevails on the increase of the effective thermal conductivity.

As far as the effects of temperatures \(T_c \) and \(T_h \) are concerned (see figs. 5 and 6), the thermal field is affected much more by the increase of \(\Delta T \) for a fixed value of \(T_c \), than by the increase of \(T_c \) (or \(T_h \)) for a fixed value of \(\Delta T \), as denoted by the progressively more pronounced deformation of the isotherms that occurs as \(\Delta T \) is magnified. In fact, fixed \(T_c \), the degree of compression of the isotherm lines toward the heated sidewall must decrease with increasing \(\Delta T \) so as to ensure that the heat transfer rates at both sides of the enclosure are the same. Regarding the effects of \(T_c \) and \(T_h \) on the velocity field, the motion intensity increases as \(T_c \) and/or \(T_h \) are increased, which is due to the fact that \(\mu \) decreases with increasing \(T \) (following the same law of the pure base liquid).

Moreover, the degree of deformation of both the velocity and temperature fields with respect to the case of pure base liquid is practically insensitive to the Rayleigh number of the base fluid, at least for relatively high Rayleigh numbers, i.e. \(Ra_t > 10^5 \) (see fig. 7). Conversely, for \(Ra_t \leq 10^5 \) a decrease in the Rayleigh number leads to a reduction of the local temperature gradients and a less accentuated fluid stratification in the middle of the cavity. This could be imputed to the fact that the effect of the velocity diminution produced by the addition of solid nanoparticles to the base liquid (consequent to increase of \(\mu \)) is percentually more remarkable when the fluid motion intensity is low, i.e. at small Rayleigh numbers, at which a conduction-dominated regime may tend to establish.

Finally, a comparison between the solutions obtained in the present study and the local fields that would have been derived by adopting the conventional Maxwell-Garnett and Brinkman models for the calculation of \(k \) and \(\mu \), in conjunction with the common assumption of constant physical properties, is presented in fig. 10, showing the failure of the simulation procedures based on the traditional mean-field theories. On the other hand, owing to the significant increase of \(k \) with \(T \), the hypothesis of constant physical properties should be avoided, at least when \(\Delta T \) is higher than 10 K.
Figure 3. Effect of the nanoparticle volume fraction on the isotherm and streamline contour plots for $Ra_f = 10^5$, $T_c = 303$ K, $\Delta T = 10$ K, and $d_p = 25$ nm, at $\phi = 0.01$ (left), $\phi = 0.04$ (middle) and $\phi = 0.06$ (right); dashed line plots refer to pure fluid.

Figure 4. Effect of the nanoparticle diameter on the isotherm and streamline contour plots for $Ra_f = 10^5$, $T_c = 303$ K, $\Delta T = 10$ K, and $d_p = 25$ nm (dashed line plots) and 100 nm (continuous line plots), at $\phi = 0.01$ (left), $\phi = 0.04$ (middle) and $\phi = 0.06$ (right).
Figure 5. Effect of the temperature of the cooled wall on the isotherm and streamline contour plots for $Ra_f = 10^5$, $\phi = 0.04$, $\Delta T = 10$ K, and $d_p = 25$ nm, with $T_c = 293$ K (left), $T_c = 303$ K (middle) and $T_c = 313$ K (right); dashed lines plots refer to pure fluid.

Figure 6. Effect of the sidewall temperature difference on the isotherm and streamline contour plots for $Ra_f = 10^5$, $\phi = 0.04$, $\Delta T = 10$ K, and $d_p = 25$ nm, with $\Delta T = 10$ K (left), $\Delta T = 30$ K (middle) and $\Delta T = 50$ K (right); dashed line plots refer to pure fluid.
Figure 7. Effect of the base-fluid Rayleigh number on the isotherm and streamline contour plots in Al₂O₃ + H₂O for \(\phi = 0.04, T_c = 303 \text{ K}, \Delta T = 10 \text{ K}, \text{and } d_p = 25 \text{ nm}, \text{at } Ra_f = 10^4 \) (left), \(Ra_f = 10^5 \) (middle) and \(Ra_f = 10^6 \) (right); dashed line plots refer to pure fluid.

Figure 8. Distributions of \(U \) vs. \(Y \) along the vertical midplane with \(\phi \) as a parameter (left) and \(V \) vs. \(X \) along the horizontal midplane with \(\phi \) as a parameter (right).

Figure 9. Distributions of the local effective Nusselt number (\(Nu_Y \)) vs. \(Y \) with \(\phi \) as a parameter (left) and the local coefficient of convection (\(h_Y \)) vs. \(Y \) with \(\phi \) as a parameter (right).
As far as the overall results are concerned, the increased heat transfer performance consequent to the dispersion of nanoparticles into the base liquid is expressed in terms of the heat transfer enhancement, E, defined as

$$E = \frac{h_h}{(h_f)_h} - 1 = \frac{Nu_h}{(Nu_f)_h} \left(\frac{k}{k_f} \right)_h - 1$$

where $(h_h)_h$ and $(Nu)_h$ are the coefficient of convection and the average Nusselt number at the heated sidewall for the pure base liquid, h_h and Nu_h are the corresponding effective quantities of the nanoparticle suspension, and $(k / k_f)_h$ is the value of the thermal conductivity ratio calculated at temperature T_h. Obviously, according to eq. (25), the same value of E can be obtained by replacing subscript "h" with "c" in eq. (27), that corresponds to make reference to the cooled sidewall rather than to the heated sidewall for the computation of the heat transfer enhancement.

The effects of the nanoparticle size, the buoyancy strength and the nanofluid temperature on the heat transfer performance of the enclosure are displayed in figs. 11–13. It is apparent that, owing to the dispersion of a progressively larger amount of solid nanoparticles into the base liquid, the heat transfer enhancement increases up to a point, which is due to the increased effective thermal conductivity. The value of ϕ corresponding to the peak of E is defined as the optimal particle loading for maximum heat transfer enhancement, denoted as ϕ_{opt}. As the volume fraction is further increased above ϕ_{opt}, the heat transfer enhancement decreases, which is due to the excessive growth of the effective viscosity. Obviously, when the increased viscosity effect outweighs the increased thermal conductivity effect, the
heat transfer enhancement becomes negative, which means that the use of the nanofluid brings to a
deterioration in the convective heat transfer performance. Notice that both E and \(\phi_{\text{opt}} \) increase as \(d_p \) is
decreased and \(T_{av} \) is increased, which is in full agreement with the theoretical data previously reported
and discussed in [28]. Additionally, E increases as Ra\(_f \) is increased (although such an increase is quite
moderate and tends to vanish at high Rayleigh numbers), whilst \(\phi_{\text{opt}} \) is practically independent of Ra\(_f \).
Regarding the temperature effects, the comparison of the diagrams shown in fig. 13 points out that, for
any assigned value of \(T_{av} \), the heat transfer enhancement is much more sensitive to increases in \(\Delta T \) for
a fixed value of \(T_c \), rather than increases in \(T_c \) for a fixed value of \(\Delta T \) (on the other hand, also the local
fields are affected much more by the value of \(\Delta T \) than by the value of \(T_c \), as discussed earlier). Another
peculiarity is that the temperature-dependence of \(\phi_{\text{opt}} \) can be expressed simply in terms of \(T_{av} \), at least
as long as \(\Delta T \) does not exceed 30 K. In this connection, the same dimensional algebraic equation
proposed in [28] can be used to evaluate the percentage optimal particle loading with a 2.95% standard
deviation of error:

\[
\phi_{\text{opt}}(\%) = \left(5 \times 10^{-4}\right)\left(t_{av}(°C)^{2.335}\left[d_p(\text{nm})\right]^{-0.19}\right)
\]

\[5 \text{ K} \leq \Delta T \leq 30 \text{ K} \text{ and } 10^4 \leq Ra_f \leq 10^7, \quad (28)\]

where \(t_{av}(°C) \) is the average temperature of the nanofluid expressed in degrees Celsius, and \(d_p(\text{nm}) \) is
the nanoparticle diameter in nm.

![Figure 11. Distributions of E(%) vs. \(\phi \) with \(d_p \) as a parameter](image1)

![Figure 12. Distributions of E(%) vs. \(\phi \) with Ra\(_f \) as a parameter](image2)
Finally, a semi-empirical correlation is developed for predicting the effective average Nusselt number of the cooled sidewall, N_{uc}, defined in eq. (25), as a function of the effective Rayleigh and Prandtl numbers, Ra and Pr, and the temperatures of the heated and cooled sidewalls, T_h and T_c:

$$N_{uc} = \left[0.34 \left(\frac{Pr}{0.326 + Pr} \right)^{0.27} \left(\frac{T_h - T_c}{T_c} \right)^{0.087} \right] - 0.6 . \quad (29)$$

The percent standard deviation of error and the percent range of error of eq. (29) are 1.12% and ±3.9%, respectively – see fig. 14. Notice that eq. (29) is valid for $293 \leq T_c \leq 313$ K, $298 \leq T_h \leq 343$ K, and $10^4 \leq Ra_f \leq 10^7$. Recall that Ra and Pr, defined in eq. (12), can be expressed in terms of Ra_f and Pr_f, respectively, through the relations given in eq. (20), and that the effective properties appearing in Ra and Pr must be calculated at the reference temperature $T_r = T_c$. Of course, once N_{uc} is known from eq. (29), the value of the effective average Nusselt number of the heated sidewall of the enclosure, N_{uh}, can be calculated through eq. (25).

4. Conclusions

Laminar natural convection of Al$_2$O$_3$ + H$_2$O nanofluids inside a square cavity differentially heated at sides has been studied numerically. Assuming that the nanofluid behaves like a single-phase fluid, the system of the mass, momentum, and energy transfer governing equations, in which the thermophysical
properties are the nanofluid effective properties, has been solved by a computational code based on the SIMPLE-C algorithm. The nanofluid has been assumed to be Newtonian with temperature-dependent effective properties. The effective thermal conductivity and dynamic viscosity have been estimated through a pair of empirical equations based on a wide variety of experimental data reported in the literature. The other effective physical properties have been calculated by the conventional mixing theory. Simulations have been performed for different values of the temperature of the cooled sidewall in the range 293–313 K, the temperature of the heated sidewall in the range 298–343 K, the Rayleigh number of the base fluid in the range $10^3–10^7$, the nanoparticle average diameter in the range 25–100 nm, and the nanoparticle volume fraction in the range 0–0.06.

The main results obtained in the present study may be summarized as follows:

a) the heat transfer enhancement consequent to the dispersion of solid nanoparticles into the base liquid increases with increasing the nanoparticle volume fraction up to an optimal particle loading at which the amount of heat transferred across the enclosure has a peak;
b) the optimal particle loading increases as the diameter of the suspended nanoparticle decreases;
c) the optimal particle loading increases as the nanofluid average temperature increases, much more if the temperature increase is obtained by increasing the temperature difference between the sidewalls, rather than increasing the temperatures of both sidewalls keeping unaltered their temperature difference;
d) the optimal particle loading is practically independent of the Rayleigh number.

Nomenclature

c effective specific heat at constant pressure [Jkg$^{-1}$K$^{-1}$]
c$_f$ specific heat at constant pressure of the base fluid [Jkg$^{-1}$K$^{-1}$]
c$_s$ specific heat at constant pressure of the solid nanoparticles [Jkg$^{-1}$K$^{-1}$]
c* dimensionless effective specific heat at constant pressure [–]
d$_e$ equivalent diameter of a base fluid molecule [m]
d$_p$ nanoparticle diameter [m]
E heat transfer enhancement [–]
g gravitational acceleration [ms$^{-2}$]
h coefficient of convection of the nanofluid [Wm$^{-2}$K$^{-1}$]
h$_f$ coefficient of convection of the base fluid [Wm$^{-2}$K$^{-1}$]
h$_Y$ local coefficient of convection of the nanofluid [Wm$^{-2}$K$^{-1}$]
k effective thermal conductivity [Wm$^{-1}$K$^{-1}$]
k$_b$ Boltzmann constant = 1.38066\times10$^{-23}$ [JK$^{-1}$]
k$_f$ thermal conductivity of the base fluid [Wm$^{-1}$K$^{-1}$]
k$_s$ thermal conductivity of the solid nanoparticles [Wm$^{-1}$K$^{-1}$]
k* dimensionless effective thermal conductivity [–]
M molar mass of the base fluid [kg-mol$^{-1}$]
N Avogadro number = 6.022\times1023 [mol$^{-1}$]
Nu effective Nusselt number (=hW/k) [–]
Nu$_f$ Nusselt number of the base fluid (=h$_f$W/k$_f$) [–]
Nu$_Y$ local effective Nusselt number (=h$_Y$W/k) [–]
P dimensionless pressure [-]
p pressure [Pa]
Pr effective Prandtl number (=cμ/k) [-]
Prf Prandtl number of the base fluid (=cμf/kf) [-]
Qc heat transfer rate per unit length added to the nanofluid by the heated sidewall [Wm⁻¹]
Qh heat transfer rate per unit length withdrawn from the nanofluid by the cooled sidewall [Wm⁻¹]
q̇c heat flux at the cooled sidewall [Wm⁻²]
q̇h heat flux at the heated sidewall [Wm⁻²]
Ra effective Rayleigh number (=ρcgsΔρW³/κμ) [-]
Raf Rayleigh number of the base fluid (=ρcgsΔρfW³/κfμf) [-]
Re nanoparticle Reynolds number (=2ρfkbT/πμf²dp) [-]
T temperature [K]
Tav average temperature of the enclosed fluid [K]
Tc temperature of the cooled sidewall of the enclosure [K]
Tfr freezing point of the base liquid [K]
Th temperature of the heated sidewall of the enclosure [K]
U dimensionless horizontal velocity component [-]
u horizontal velocity component [ms⁻¹]
V dimensionless vertical velocity component [-]
v vertical velocity component [ms⁻¹]
W width of the enclosure [m]
X dimensionless horizontal Cartesian coordinate [-]
x horizontal Cartesian coordinate [m]
Y dimensionless vertical Cartesian coordinate [-]
y vertical Cartesian coordinate [m]

Greek symbols
φ nanoparticle volume fraction [-]
μ effective dynamic viscosity [kg·m⁻¹s⁻¹]
μf dynamic viscosity of the base fluid [kg·m⁻¹s⁻¹]
μ* dimensionless effective dynamic viscosity [-]
θ dimensionless temperature [-]
ρ effective mass density [kg·m⁻³]
ρf mass density of the base fluid [kg·m⁻³]
ρs mass density of the solid nanoparticles [kg·m⁻³]
ρ* dimensionless effective mass density [-]
ψ dimensionless stream function [-]

Subscripts
c at the temperature of the cooled sidewall of the enclosure
f base fluid
h at the temperature of the heated sidewall of the enclosure
max maximum value
opt optimal value
r at the reference temperature
s solid phase

References

