A NUMERICAL EVALUATION OF PREDICTION ACCURACY OF CO₂ ABSORBER MODEL FOR VARIOUS REACTION RATE COEFFICIENTS

by

S.M., Shim¹, S.J., Lee² and W.S., Kim³

¹Department of Mechanical Engineering, Hanyang University, Seoul, Korea South
 E-mail: smshim1029@gmail.com

²STX Institute of Technology, Energy Research Department, Seoul, Korea South
 E-mail: sjlee0107@gmail.com

³Department of Mechanical Engineering, Hanyang University, Korea South
 E-mail: wskim@hanyang.ac.kr

The performance of the CO₂ absorber column using mono-ethanolamine (MEA) solution as chemical solvent are predicted by a One-Dimensional (1-D) rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO₂-H₂O system are considered to predict the equilibrium pressure of CO₂ in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO₂ absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO₂ loading and the CO₂ removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO₂ absorber column using MEA solution.

Key words: CO₂ Capture and Storage (CCS), 1-D rate-based model, Kinetics, Reaction rate, Mass transfer, Monoethanolamine (MEA)

1. Introduction

The major cause of global warming is carbon dioxide (CO₂) released into atmosphere by
consuming fossil fuels. CO₂ emissions are mainly generated by large CO₂ sources such as fossil fuel power plant, cement plant, steel plant and refinery. Therefore, effective strategies such as Carbon Capture and Storage (CCS) are essentially required to reduce the CO₂ emission from a large CO₂ source.

The CO₂ capture technologies are usually divided into three main-categories: post-combustion, pre-combustion and oxy-fuel combustion. Among these technologies, the post-combustion technology is effective at low CO₂ concentration about 3~15% and includes absorption, adsorption, membrane and cryogenics. Koukouzas et al. conducted a case study to evaluate the possibilities for CCS including CO₂ capture, transportation and storage in the Komotini NGCC power plant [1]. In the post-combustion technology, chemical absorption technology using an aqueous solution of chemical base is used most widely for the CO₂ capture in fossil fuel power plants, since this has the advantage that it can be retrofitted to existing plant. In chemical absorption, the mainly used solution is aqueous alkanolamine solutions, such as monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) and etc. Among these solutions, MEA is the most commonly used solvent for CO₂ capture [2]. In addition, a investigation for CO₂ looping cycles using CaO-based sorbent was performed by Manovic and Anthony [3].

The widely used approaches for modeling and design of a reactive absorption process are the equilibrium-based approach and the rate-based approach to predict the behavior of CO₂ absorber column. The equilibrium-based approach subdivides the absorber column into several segments and assumes that the vapor and liquid phase reach equilibrium at each stage [4]. The rate-based approach is called as non-equilibrium approach and calculates the mass and heat transfer between the vapor and liquid phase [5]. Based on these approaches, various absorber column models at different levels of complexity were developed by previous researchers. Kenig et al. classified various forms of models into 5 levels according to complexity for mass transfer and reaction model [6]. In CO₂ absorber column using aqueous alkanolamine solution, vapor and liquid phase equilibrium is rarely achieved at each stage, because CO₂ absorption process is a rate-based-controlled phenomenon [7]. Therefore, the rate-based approach is more appropriate for modeling the CO₂ absorber column than the equilibrium-based approach.

The investigations for the chemical reactions of MEA-CO₂-H₂O system were widely conducted by various researchers. Hikita et al. [8], Versteeg et al. [9], Horng and Li [10] investigated the reaction rate for MEA-CO₂-H₂O system at very narrow ranges of temperature. Freguia [11] adjusted the reaction rate coefficient suggested by Hikita et al. [8] and Kvamsdal and Rochelle [12] modified the latter even further. At high CO₂ loaded aqueous MEA solution, Aboudheir et al. [13] developed a termolecular kinetics model for MEA-CO₂- H₂O system over the temperature range from 293 to 333 K. Vaidya and Kenig summarized the previous researches for the reaction kinetics of CO₂ absorption into aqueous MEA solution [14].

In Lawal et al. [15], a dynamic absorber column model was developed based on the rate-based approach. In this model, it was assumed that the chemical reactions are at equilibrium for considering the mass transfer. Lawal et al.’s results showed that the rich solvent loading and the CO₂ absorption level were in good agreement with the experimental data obtained by Dugas [16]. On the other hand, this model showed poor prediction for the liquid temperature profile in the absorber column. In Kvamsdal et al. [17], a dynamic model for absorber column was developed by using enhancement factor for consideration of rate-based mass transfer. In this work, the height of packing
and the flue gas flow rate were adjusted in gPROMS to obtain the similar CO\textsubscript{2} absorption efficiency as measured in the experiment.

In the present work, a rate-based model is used to predict the performance of CO\textsubscript{2} absorber column. One dimensional mass and heat balance equations for vapor and liquid phase are used to obtain the distribution of each species concentration and temperature along the height of column. These governing equations are coupled with the mass transfer through vapor-liquid interface and the chemical reaction for CO\textsubscript{2} absorption into aqueous MEA solution. The mass transfer across vapor-liquid interface can be explained by using the two-film theory. To consider the chemical reaction for CO\textsubscript{2} absorption into aqueous MEA solution, an enhancement factor is used. It is assumed that the chemical reaction only occurs in liquid film and the equilibrium stage is attained at the bulk liquid region. To consider the rate-based mass transfer, the following chemical reactions are considered: ionization of water, dissociation of dissolved CO\textsubscript{2} through carbonic acid, dissociation of bicarbonate, carbamate reversion to bicarbonate, dissociation of protonated MEA and overall reaction of MEA and CO\textsubscript{2}. Equilibrium constant proposed by Edwards et al. [18] and Kent et al. [19] are applied for the vapor-liquid equilibrium model.

In this work, various types of reaction rate coefficient of the CO\textsubscript{2}/aqueous MEA reaction are applied to the rate based model. The rate based model used in this study is validated by comparing the simulation results with experimental and simulation results given in the literature. Then the proper reaction rate coefficient is chosen for predicting the temperature profile and CO\textsubscript{2} removal efficiency of CO\textsubscript{2} absorber column.

2. Modeling

This section describes the absorber model based on the rate based approach for predicting the phenomena that happen in the CO\textsubscript{2} absorber column using aqueous MEA solution. Fig. 1 shows a schematic of CO\textsubscript{2} absorber column and a control volume used in the present study. It is assumed that the CO\textsubscript{2} absorber column is a packed column and vapor phase species are CO\textsubscript{2}, MEA, H\textsubscript{2}O and N\textsubscript{2}, while the liquid phase species are CO\textsubscript{3}, MEA, H\textsubscript{2}O, N\textsubscript{2}, MEA+, HCO\textsubscript{3}-, OH-, MEACOO- and H\textsubscript{3}O+. CO\textsubscript{2} rich gas enters at the bottom and flows upward through the packing while the CO\textsubscript{2} lean MEA solution is uniformly distributed at the top of the packing and flows downward. It is assumed that the each control volume is composed of bulk vapor phase, bulk liquid phase, vapor film and liquid film, then the mass transfer is occurred through the interface between vapor and liquid film.

![Fig. 1. Schematic of CO\textsubscript{2} absorber column and a control volume](image-url)
2.1 Mass and heat balance equations

The partial differential equations (PDEs) are used to simulate the time and spatial behavior of concentration and temperature of the CO₂ absorption process in a plug flow reactor. Mass and heat balance equations of vapor and liquid phase are summarized below [17].

The total mass balance equations for the vapor and liquid phases are, respectively:

\[
\frac{dF_v}{dt} = -u_v \frac{\partial F_v}{\partial z} + u_v a_w \sum N_i
\]
\[
\frac{dF_l}{dt} = -u_l \frac{\partial F_l}{\partial z} - u_l a_w \sum N_i
\]

where \(\varepsilon_v \) and \(\varepsilon_l \) are the vapor and liquid holdup, \(F_v \) and \(F_l \) are the molar flow rate for the vapor and liquid phase, \(u_v \) and \(u_l \) are the vapor and liquid velocities, \(a_w \) is the effective interfacial area of packing and \(N_i \) is the mass flux of component \(i \).

The species mass balance equations for the vapor and liquid phases are, respectively:

\[
\frac{dC_v^i}{dt} = -u_v \frac{\partial C_v^i}{\partial z} + a_w N_i
\]
\[
\frac{dC_l^i}{dt} = -u_l \frac{\partial C_l^i}{\partial z} - a_w N_i
\]

where \(C_v^i \) and \(C_l^i \) are the concentration component \(i \) for the vapor and liquid phase.

The heat balance equations for the vapor and liquid phases are, respectively:

\[
\frac{dT_v}{dt} = -u_v \frac{\partial T_v}{\partial z} + \frac{a_w}{\sum(C_l C_{p,l})_v} h_{v/l}(T_l - T_v)
\]
\[
\frac{dT_l}{dt} = -u_l \frac{\partial T_l}{\partial z} - \frac{a_w}{\sum(C_l C_{p,l})_l} \{h_{v/l}(T_l - T_v) - \Delta H_r N_{CO_2} - \Delta H_{vap} N_{H_2O}\}
\]

where \(T_v \) and \(T_l \) are the vapor and liquid temperature, \(C_{p,l} \) is the specific heat capacity of component \(i \), \(h_{v/l} \) is the interfacial heat transfer coefficient, \(\Delta H_r \) is the absorption heat of CO₂ and \(\Delta H_{vap} \) is the vaporization heat of H₂O.

2.2 Interfacial mass transfer model

In this paper, the flux of CO₂, MEA and H₂O is defined as follows:

\[
N_i = K_{ov,l}(P_{i}^{eq,*} - P_{i}^v)
\]

where \(K_{ov,l} \) is the overall mass transfer coefficient, \(P_{i}^{eq,*} \) is the equilibrium partial pressure of component \(i \) in the liquid phase and \(P_{i}^v \) is the partial pressure of component \(i \) in the vapor phase.

In this study, the mass transfer in the vapor-liquid interface is described by the two-film model. In two film theory, the overall mass transfer coefficient is defined in terms of the resistance to mass transfer in the vapor and liquid film. In case of MEA and H₂O, the resistance to mass transfer in
the liquid film can be ignored since the MEA and H$_2$O concentrations are high in the liquid phase. Therefore, the overall mass transfer coefficient of MEA and H$_2$O is expressed by

$$K_{ov,i} = \frac{k_v^p}{RT_v}$$

where k_v^p is the vapor side mass transfer coefficient, R is the gas constant.

The overall mass transfer coefficient of CO$_2$ is given by

$$\frac{1}{K_{ov,CO_2}} = \frac{RT_v}{k_v^pCO_2} + \frac{H_{CO_2}}{k_{CO_2}^l E_{CO_2}}$$

where H_{CO_2} is the Henry’s law constant of CO$_2$, $k_{CO_2}^l$ is the mass transfer coefficient of liquid film and E_{CO_2} is the enhancement factor of CO$_2$ absorption. The first and the second term of right hand side of Eq. (9) respectively represent the resistance to mass transfer in gas and liquid phase. The correlations given by Onda et al. [20] for vapor and liquid side mass transfer coefficient are applied in this model.

In this work, the pseudo first order enhancement factor is used for CO$_2$ absorption in MEA solution. The enhancement factor is defined as follows:

$$E_{CO_2} = \sqrt{\frac{k_{r,CO_2} C_{MEA}^* D_{CO_2}}{k_{CO_2}^l}}$$

where k_{r,CO_2} is the reaction rate coefficient for the reaction of CO$_2$ with the MEA solution, C_{MEA}^* is the free MEA concentration in liquid and D_{CO_2} is the diffusion coefficient of CO$_2$ in MEA solution.

2.3 Vapor-Liquid Equilibrium model

For the prediction of the mass transfer in the vapor-liquid interface, it is necessary to estimate the equilibrium pressure of CO$_2$ and the liquid concentration of all components existing in the aqueous MEA solution. Therefore, the vapor-liquid equilibrium model is adopted for analysis of kinetics in MEA-CO$_2$-H$_2$O system. The chemical reactions considered are as follows: [13]

Ionization of water:

$$2H_2O \leftrightarrow OH^- + H_3O^+$$

Dissociation of dissolved CO$_2$ through carbonic acid:

$$CO_2 + 2H_2O \leftrightarrow HCO_3^- + H_3O^+$$

Dissociation of bicarbonate:

$$HCO_3^- + H_2O \leftrightarrow CO_3^{2-} + H_3O^+$$

Carbamate reversion to bicarbonate:
\[RNHCOO^- + H_2O \rightleftharpoons RNH_2 + HCO_3^- \]
(15)

Dissociation of protonated MEA:

\[RNH_3^+ + H_2O \rightleftharpoons RNH_2 + H_3O^+ \]
(16)

The liquid concentration of all species shown in the chemical reactions and their equilibrium partial pressure of species can be obtained by solving the following equations: [13]

MEA balance:

\[[RNH_2] + [RNH_3^+] + [RNHCOO^-] = [RNH_2]_0 \]
(16)

Carbon balance:

\[[CO_2] + [HCO_3^-] + [CO_2^2^-] + [RNHCOO^-] = \alpha[RNH_2]_0 \]
(17)

Charge balance:

\[[RNH_3^+] + [H_3O^+] = [HCO_3^-] + [OH^-] + 2[CO_2^2^-] + [RNHCOO^-] \]
(18)

Equilibrium constants:

\[K_1 = [OH^-][H_3O^+] \]
(19)

\[K_2 = [HCO_3^-][H_2O^+]/[CO_2] \]
(20)

\[K_3 = [CO_2^2^-][H_3O^+]/[HCO_3^-] \]
(21)

\[K_4 = [RNH_2][HCO_3^-]/[RNHCOO^-] \]
(22)

\[K_5 = [RNH_2][H_3O^+]/[RNH_3^+] \]
(23)

The equilibrium pressure of each species:

\[P_{eq}^{CO_2} = H_{E,CO_2}C_{CO_2} \]
(24)

\[P_t^{eq} = x_tP_t \]
(25)

where \(\alpha \) is the CO_2 loading, \(C_{CO_2} \) is the free CO_2 concentration at equilibrium, \(x_t \) is the free MEA and H_2O mole fraction and \(P_t \) is the partial pressure of MEA and H_2O. Table 1 shows the equilibrium constants used in this study.

| Table 1 Equilibrium constants used in the VLE model [18,19] |
|---------------------------------|--------|--------|--------|------------------|
| Reaction | \(a_1 \) | \(a_2 \) | \(a_3 \) | Reference |
| 12 | -13445.90 | -22.4773 | 140.93200 | Edwards et al. [18] |
| 13 | -12092.10 | -36.7816 | 235.48200 | Edwards et al. [18] |
| 14 | -12431.70 | -35.4819 | 220.06700 | Edwards et al. [18] |
| 15 | -3090.83 | 0.0000 | 6.69425 | Kent and Eisenberg [19] |
| 16 | -5851.11 | 0.0000 | -3.36360 | Kent and Eisenberg [19] |

\[K_{eq} = \exp \left(\frac{a_1}{T} + a_2\ln T + a_3 \right) \]
3. Model validation

3.1 Numerical method

The algebraic and partial differential equations were calculated by in-house code. The Broyden’s method is applied for solving the nonlinear equation. The method of backward finite differences over a uniform grid of 200 elements is used to discretize the spatial variables.

3.2 Validation of Vapor-Liquid Equilibrium model

For validation of the equilibrium constants used in this study, the present results were compared with the numerical data predicted by Liu et al. [21]. The CO₂ loading was varied from 0 to 1 in a 2.5 M MEA solution at 313 K. The concentration of each component was shown in Fig. 2. The present results are in good agreement with those of Liu et al. [21]. With increasing CO₂ loading in the aqueous solution, MEA concentration is decreased. Otherwise the concentrations of main product, such as [RNH₂⁺], [RNHCOO⁻] and [HCO₃⁻] are increased because of the reaction between CO₂ and MEA. When the CO₂ loading is over 0.5, the concentration of [RNH₂] is increased because of carbamate reversion to bicarbonate. However, [RNH₂] is rapidly protonated by reverse reaction of dissociation of protonated MEA and then the concentration of [RNH₂⁺] is gradually increased with increasing CO₂ loading. In Fig. 3, partial pressure of CO₂ at the vapor-liquid interface is also validated by comparing the present result with experimental data [22]. At 30 wt% MEA concentration, the numerical result of CO₂ partial pressure for solution temperature of 40°C, 60°C, 80°C, 100°C and 120°C indicates a very good representation of experimental results. Consequently, vapor-liquid equilibrium model used in this work is appropriate for the prediction of the mass transfer in the vapor-liquid interface.

Fig. 2. Liquid phase concentration in 2.5 M MEA solution with respect to CO₂ loading at 313 K
3.3 Validation of the rate-based model

In this study, the data from Dugas [16] is used for validation of the rate based model. Table 2 shows the information of absorber column and packing material. The CO$_2$ absorber column of the pilot plant is a packed column with a diameter of 0.427 m, a total height of 11.1 m and total packing height of 6.1 m. The packing in the absorber column is IMTP-40 with a void fraction of 0.98, a nominal packing size of 0.04 m and a specific surface of 154 m2/m3.

Table 3 shows the operating conditions of absorber column used to validate the present model. The reaction rate of Aboudheir et al. [13] is applied for validation of the rate based model used in this work.

<table>
<thead>
<tr>
<th>Table 2 Absorber column and packing material data [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber column</td>
</tr>
<tr>
<td>Column inside diameter (m)</td>
</tr>
<tr>
<td>Column height (m)</td>
</tr>
<tr>
<td>Packing material data</td>
</tr>
<tr>
<td>Packing type</td>
</tr>
<tr>
<td>Height of packing (m)</td>
</tr>
<tr>
<td>Void fraction</td>
</tr>
<tr>
<td>Nominal packing size (m)</td>
</tr>
<tr>
<td>Specific surface area (m2/m3)</td>
</tr>
</tbody>
</table>
Table 3 Operating conditions of absorber column for Case 47 [16]

<table>
<thead>
<tr>
<th></th>
<th>Temperature(K)</th>
<th>Flow rate(m³/s)</th>
<th>CO₂ fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue gas</td>
<td>332.38</td>
<td>509.60</td>
<td>0.1841</td>
</tr>
<tr>
<td>Lean MEA</td>
<td>313.37</td>
<td>1.81</td>
<td>0.281</td>
</tr>
</tbody>
</table>

Fig. 4 shows the liquid temperature profiles of the experimental data for the present simulation result. The present result shows that there is no temperature gradient at the top, middle and bottom of the absorber column. In the region it is assumed that the reaction of CO₂ absorption into MEA solution is not occurred because the packing doesn’t exist. The liquid temperature profiles in the present study are in good agreement with Dugas’s [16] result, except bottom and top of column. At the bottom and top of column, the interfacial contact area between liquid and vapor phase is sharply decreased than the packed region, since there is no packing. The possibility that the actually measured temperature is the vapor phase temperature is high. Therefore, the numerical and experimental results show the big discrepancy at the bottom and top of column. Table 4 shows the comparison of the experimental and the simulation result for the rich CO₂ loading and CO₂ removal efficiency. The present results show that the deviation of rich CO₂ loading and CO₂ removal efficiency is about 5.0 % and 7.8 %, respectively. Therefore, the analysis model used in this work shows good agreement with the experimental results for the temperature profile, CO₂ loading and CO₂ removal efficiency of CO₂ absorber column.

![Fig. 4. Comparison of the simulation result and experiment [16]](image-url)
Table 4 Comparison of the experiment [16] and simulation result

<table>
<thead>
<tr>
<th></th>
<th>Exp.</th>
<th>Sim.</th>
<th>% dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich CO₂ loading (mol/mol)</td>
<td>0.539</td>
<td>0.512</td>
<td>5.0</td>
</tr>
<tr>
<td>CO₂ removal efficiency (%)</td>
<td>69.0</td>
<td>63.6</td>
<td>7.8</td>
</tr>
</tbody>
</table>

4. Results and discussions

The comparison of simulation results using various reaction rate coefficients suggested by Hikita et al. [8], Versteeg et al. [9], Horng and Li [10], Freguia [11], Kvamsdal and Rochelle [12] and Aboudheir et al. [13] with the pilot-scale experimental data from Dugas [16] is performed in the present study. Table 5 presents the reaction rate coefficients between CO₂ and MEA as suggested by previous literatures [8-13]. Table 6 indicates the operating conditions of absorber column. Four cases which has 8.3, 6.6, 4.5 and 3.1 of L/G, respectively were selected to choose the appropriate reaction rate coefficient covering over all experimental range.

Fig. 5 to 8 show the variations of the temperature in the liquid phase with respect to the reaction rate coefficients for Case 25, Case 39, Case 41 and Case 43, respectively. In Case 25, the temperature profile of present result using Aboudheir et al. [13] shows a good agreement with experimental data within the error of less than 2 K. However, the others used in the present study show

Table 5 Reaction rate coefficients of the CO₂/aqueous MEA reaction system

<table>
<thead>
<tr>
<th>Reference</th>
<th>Reaction rate coefficient (m³/mol s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hikita et al. [8]</td>
<td>$9.770 \times 10^7 \exp(-4955.0/T)$</td>
</tr>
<tr>
<td>Versteeg et al. [9]</td>
<td>$4.440 \times 10^8 \exp(-5400.0/T)$</td>
</tr>
<tr>
<td>Horng and Li [10]</td>
<td>$3.014 \times 10^8 \exp(-5376.2/T)$</td>
</tr>
<tr>
<td>Freguia [11]</td>
<td>$3.200 \times 10^3 \exp(-1348.0/T)$</td>
</tr>
<tr>
<td>Kvamsdal and Rochelle [12]</td>
<td>$2.950 \times 10^3 \exp(-1500.0/T)$</td>
</tr>
<tr>
<td>Aboudheir et al. [13]</td>
<td>$4600 \times \exp(-4412/T)[RNH_2] + 4.55 \times \exp(-3287/T)[CO_2]$</td>
</tr>
</tbody>
</table>

Table 6 Operating conditions of absorber column

<table>
<thead>
<tr>
<th></th>
<th>Case25</th>
<th>Case39</th>
<th>Case41</th>
<th>Case43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature(K)</td>
<td>328.12</td>
<td>328.39</td>
<td>325.50</td>
<td>326.66</td>
</tr>
<tr>
<td>Flow rate(m³/s)</td>
<td>679.23</td>
<td>680.96</td>
<td>678.96</td>
<td>679.04</td>
</tr>
<tr>
<td>CO₂ fraction</td>
<td>0.173</td>
<td>0.169</td>
<td>0.171</td>
<td>0.170</td>
</tr>
<tr>
<td>Lean MEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature(K)</td>
<td>313.11</td>
<td>313.34</td>
<td>313.34</td>
<td>313.17</td>
</tr>
<tr>
<td>Flow rate(m³/s)</td>
<td>6.254</td>
<td>4.994</td>
<td>3.402</td>
<td>2.360</td>
</tr>
<tr>
<td>CO₂ loading</td>
<td>0.278</td>
<td>0.228</td>
<td>0.235</td>
<td>0.231</td>
</tr>
<tr>
<td>Liquid to gas mass flow ratio (kg/kg)</td>
<td>8.3</td>
<td>6.6</td>
<td>4.5</td>
<td>3.1</td>
</tr>
</tbody>
</table>
the big difference between numerical and experimental results [16]. In Case 39, the temperature profiles of numerical results are similar with Case 25. The peak temperature of MEA solution is 7 K higher than that of Case 25. The height of peak temperature is shifted around 0.6 m from bottom, since the liquid flow rate is decreased.

Under the conditions of Case 41, the reaction rate coefficients used in this study show good agreement with experimental results [16]. Among these results, the reaction rate coefficient of Aboudheir et al. show higher prediction accuracy than any others. In Case 43, the reaction rate coefficient of Aboudheir et al. is also well agreement with experimental data [16]. The simulation results using the reaction rate coefficients except Aboudheir et al. [13] show 3 K higher peak temperature than experimental result [16] because CO₂ absorption into MEA solution is over estimated. The simulation results using the reaction rate coefficient suggested by Aboudheir et al. [13] are compared with the experimental data [16] as shown in Table 7. The deviation of the CO₂ loading and the CO₂ removal efficiency using the reaction rate coefficients of Aboudheir et al. [13] are below about 4.9 % and 5.2 %, respectively. This results show that the reaction rate coefficient suggested by Aboudheir et al. is appropriate to predict the performance of CO₂ absorber column using aqueous MEA solution. It is ascribed to more accurate reaction rate coefficient obtained by Aboudheir et al. [13] in wide range experiments of MEA concentration of 3~9 mol/L, CO₂ loading of 0.1~0.49 and liquid temperature of 293~333 K. The data from the experiments allow that the detailed variation of CO₂ absorption rate as a function of MEA concentration can be considered in the modified reaction rate coefficient suggested by Aboudheir et al. [13]. Hence, the results show that the reaction rate coefficient suggested by Aboudheir et al. [13] is the most appropriate one among candidates considered in the present study to predict the performance of CO₂ absorber column using aqueous MEA solution.

![Variations of the temperature in the liquid phase with respect to the reaction rate coefficients in Case 25](image)

Fig. 5. Variations of the temperature in the liquid phase with respect to the reaction rate coefficients in Case 25
Fig. 6. Variations of the temperature in the liquid phase with respect to the reaction rate coefficients in Case 39

Fig. 7. Variations of the temperature in the liquid phase with respect to the reaction rate coefficients in Case 41
Fig. 8. Variations of the temperature in the liquid phase with respect to the reaction rate coefficients in Case 43

Table 7 Comparison of experiments [16] and simulation results

<table>
<thead>
<tr>
<th>Case</th>
<th>Rich CO₂ loading (mol/mol)</th>
<th>CO₂ removal efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp.</td>
<td>Sim</td>
</tr>
<tr>
<td>25</td>
<td>0.386</td>
<td>0.403</td>
</tr>
<tr>
<td>39</td>
<td>0.367</td>
<td>0.385</td>
</tr>
<tr>
<td>41</td>
<td>0.433</td>
<td>0.449</td>
</tr>
<tr>
<td>43</td>
<td>0.491</td>
<td>0.498</td>
</tr>
</tbody>
</table>

8. Conclusion

In the present study, the reaction rate coefficients suggested by Hikita et al. [8], Versteeg et al. [9], Horng and Li [10], Freguia [11], Kvamsdal and Rochelle [12] and Aboudheir et al. [13] are applied to the present model. Then the liquid temperature profile of the present numerical result with respect to the reaction rate coefficients is compared with that of experimental data [16]. Among 48 experiments with various conditions conducted by Dugas [16], four cases which cover almost range of the ratio of liquid to gas mass flow rate are selected for comparison of the reaction rate coefficients. The rate of liquid to gas mass flow rate of these cases is about 8.3, 6.6, 4.5 and 3.1, respectively. The liquid temperature profile using the reaction rate coefficient suggested by Aboudheir et al. [11] show the best result in the various reaction rate coefficients used in this study for Case 25, Case 39, Case 41 and Case 43 among candidates. The error of CO₂ loading and the CO₂ removal efficiency using the reaction rate coefficients of Aboudheir et al. [13] is within about 4.9 % and 5.2 %, respectively. It is shown that the reaction rate coefficient suggested by Aboudheir et al. is appropriate to predict the
performance of CO\textsubscript{2} absorber column using aqueous MEA solution due to more accurate data obtained by Aboudheir et al. [13] from experiments in various range than the previous literatures.

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2011-0017220)

Nomenclature

\(a_{\text{eff}}\) Effective interfacial area, \([m^2/m^3]\)
\(C\) Concentration, \([mol/m^3]\)
\(C_p\) Heat capacity, \([J/mol K]\)
\(D\) Diffusivity, \([m^2/s]\)
\(E\) Enhancement factor, [-]
\(H\) Henry’s law constant, \([m^3kPa/mol]\)
\(\Delta H_r\) Heat of reaction, \([J/mol]\)
\(\Delta H_{\text{vap}}\) Heat of vaporization, \([J/mol]\)
\(h\) Specific interfacial heat transfer coefficient, \([W/m^2K]\)
\(K_{eq}\) Equilibrium constant, \([mol^2/L^6],[mol/L^3]\)
\(K_{aw}\) Overall mass transfer coefficient, \([mol/m^2kPa s]\)
\(k\) Vapor and liquid side mass transfer coefficient, \([m/s]\)
\(k_r\) Reaction rate coefficient, \([m^3/mol s]\)
\(N\) Molar flux, \([mol/m^3s]\)
\(P\) Pressure, \([kPa]\)
\(R\) Gas constant, \([J/mol K]\)
\(T\) Temperature, \([K]\)
\(t\) Time, \([s]\)
\(u\) Velocity, \([m/s]\)
\(z\) Height, \([m]\)

Greek symbols

\(\alpha\) CO\textsubscript{2} loading, [-]
\(\varepsilon\) Holdup, \([m^3/m^3]\)

Subscripts

\(i\) Component
\(l\) Liquid
\(v\) Vapor

Superscripts

* Interface value of variable
References

Absorber Column for Post-combustion CO\textsubscript{2} Capture, \textit{Chemical Engineering and Processing}, 48(2009), 1, pp. 135-144

