EXPERIMENTAL INVESTIGATION OF THE FLUID DYNAMIC EFFICIENCY OF A HIGH PERFORMANCE MULTI-VALVE INTERNAL COMBUSTION ENGINE DURING THE INTAKE PHASE.

INFLUENCE OF VALVE-VALVE INTERFERENCE PHENOMENA

Angelo ALGIERI

Mechanics Department, University of Calabria
Via P. Bucci - Cubo 44C, 87030 - Arcavacata di Rende (CS), Italy
E-mail: a.algieri@unical.it

The purpose of the present work is the analysis of the fluid dynamic behaviour of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterised at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA) technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves.

The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

Key words: Internal combustion engines, intake phase, flow coefficients, LDA, valve deactivation, interference phenomena.

1. Introduction

Nowadays, the detailed characterisation of the fluid dynamic behaviour of internal combustion engines represents an essential step to developing and optimising modern internal combustion engines (ICEs) [1-5]. A profound knowledge of the intake process, in fact, is necessary both when the purpose is to meet the more and more stringent regulations on the exhaust gas emissions and when the goal is to increase the performances of race engines [1,6-8]. Specifically, in multi-valve high performance engines, extreme head designs are often adopted in order to maximise torque and power. The distance between the inlet valves is significantly decreased and noticeable valve-to-valve interference phenomena are produced during the intake phase.

Furthermore, to reduce fuel consumption and increase engine efficiency at low loads, the deactivation of an inlet valve is considered an interesting strategy [9-12]. As an example, Moore et al. investigated the influence of valve deactivation strategy on the fuel consumption and emissions considering a 2 litre gasoline direct injection (GDI) engine with a dual independent cam phasing (DICP) [9]. The analysis showed that the use of valve deactivation guarantees a significant improvement in fuel economy with respect to the base engine for loads lower than 6 bar and an interesting improvement in combustion stability. Specifically, the authors reported up to 11%
reduction in brake specific fuel consumption at 2000 rpm for the engine fuelled with 91 RON gasoline. Similar results were found by Patel et al., that focused their attention on a single-cylinder direct injection spark ignition engine fuelled with 95 RON gasoline [12]. The experimental analysis demonstrated that, at low load (2.7 bar) and speed (2000 rpm), the deactivation of one of the two valves and the adoption of reduced valve lift assures a 5.8% decrease in the indicated specific fuel consumption compared with the standard engine operation.

The results confirm that engine performances are noticeably effected by the in-cylinder flow and that the characterization of the intake phase is fundamental. To this purpose, several investigative tools, based on CFD codes or experimental approaches [13-17], are available to examine in detail the fluid dynamic behaviour of real engines. Specifically, the steady flow rig is a widely employed tool, due to the proper simulation of the real phases and the possibility of using real engines and components [18-22].

Studies are typically based on global and/or local analyses. To this purpose, dimensionless flow coefficients [23-26] are adopted to provide global information on the fluid dynamic efficiency of engines during the intake process and supply useful advice to engine designers and tuners on the location and sizing of ducts and valves [21]. At the same time, non-intrusive Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) techniques [27-30] can be used to define in more detail the flow distribution within the ducts and cylinders of modern internal combustion engines.

The present work aims at analysing the fluid dynamic behaviour of a high performance four-valve spark-ignition engine during the intake phase and evaluating the interference phenomena between the intake valves and the influence of the valve deactivation on the head breathability. In fact, few quantitative studies on the effect of the valve-to-valve interaction and on the influence of the valve deactivation on the engine permeability are available in the literature, despite the significant impact on the engine performances. To this purpose, the intake system was characterised at a steady flow rig adopting the dimensionless discharge coefficients and the Laser Doppler Anemometry technique.

2. Experimental apparatus

The experimental analysis has been focused on a high performance internal combustion engine. The engine is part of a multi-cylinder race engine, characterized by four valves per cylinder. Table 1 lists the main engine characteristics.

The fluid dynamic efficiency of the intake apparatus has been investigated at a steady flow rig, enabling air to be forced through the system by means of a blower while the valve lift is fixed to a selected value (Figure 1). Temperature and pressure transducers have been used to characterise the conditions of the ambient and inside the cylinder, while a laminar flow meter system has been adopted to measure the global mass flow rate [31].

The facility also enables local velocity measurements with Laser Doppler Anemometer (LDA). To this purpose, optical access to the cylinder was obtained through a window perpendicular to the cylinder axis. The LDA system is a one-colour system (i.e. capable of measuring one component of the velocity) in a backscattering configuration, with a Bragg-cell frequency shifter. The system uses a continuous Argon-Ion Laser as light source (2W on the green line, at \(\lambda = 514.5 \) nm) and
optical fibres for both transmitting and collecting optics. The transmitting optics include a beam splitter and a focusing lens, while the receiving optics consists of a focusing lens, a photodetector and an interference filter. The main geometrical data of the optical system are:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>beam spacing</td>
<td>38</td>
<td>mm</td>
</tr>
<tr>
<td>focal length</td>
<td>400</td>
<td>mm</td>
</tr>
<tr>
<td>probe volume width</td>
<td>0.194</td>
<td>mm</td>
</tr>
<tr>
<td>probe volume length</td>
<td>4.09</td>
<td>mm</td>
</tr>
<tr>
<td>number of fringes</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>fringe spacing</td>
<td>5.42</td>
<td>µm</td>
</tr>
</tbody>
</table>

If a frequency shifter module is used, the number of fringes depends on other parameters, such as record length, centre frequency and band width used by the signal processor. In the case of the reported measurements, the resulting number of fringes was 48.

The movement of the LDA probe is obtained by using a micrometer x-y traversing system. The probe can also be rotated around its axis and moved vertically (z-axis). A dedicated signal processor, which performs fast-Fourier transform (FFT) processing of the original signal in order to extract the Doppler frequency, is used for the analysis of the Doppler signal and ensures rejection of the signal produced by different particles that may be present within the measuring volume at the same time. The processor is linked to a computer in order to store and analyse the data.

![Figure 1: Steady flow rig.](image)

<table>
<thead>
<tr>
<th></th>
<th>Four-stroke spark-ignition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>10</td>
</tr>
<tr>
<td>Number of cylinders, N_c</td>
<td>10</td>
</tr>
<tr>
<td>Number of valves per cylinder, N_v</td>
<td>4</td>
</tr>
<tr>
<td>Stroke/Bore, L/B</td>
<td>0.431</td>
</tr>
<tr>
<td>Intake valve diameter/Bore, D_i/B</td>
<td>0.417</td>
</tr>
<tr>
<td>Exhaust valve diameter/Bore, D_e/B</td>
<td>0.349</td>
</tr>
</tbody>
</table>
For the seeding system a fluidised bed-like scheme was employed. A fraction of the inlet air is first dried and then passed through a horizontal porous diaphragm on the top of which a layer of silica “micro-balloons” is deposited. The air stream then carries the particles and is subsequently mixed with the main intake air at the engine inlet.

3. Methodology

A twofold approach has been employed to analyse the fluid dynamic behaviour of the intake system. The engine head has been examined in terms of global performances and in terms of local velocity measurements. In particular, the discharge coefficients are used to define the head breathability, while the Laser Doppler Anemometry (LDA) technique is adopted to determine the flow field inside the combustion chamber.

The configurations with both inlet valves open and with only one valve open have been compared in order to evaluate the interference phenomena between the two intake valves and to study the effect of the valve deactivation strategy.

3.1 Discharge Coefficients

The discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system [1]. Specifically, the dimensionless coefficient is defined as the ratio of the measured mass flow rate \dot{m}_{meas} to reference mass flow rate \dot{m}_r:

$$C_d = \frac{\dot{m}_{\text{meas}}}{\dot{m}_r}$$

If the flow is subsonic, the reference mass flow rate is given by:

$$\dot{m}_r = A_r \cdot \frac{p_0}{\sqrt{R \cdot T_0}} \left(\frac{p_C}{p_0} \right)^{\frac{1}{\gamma}} \cdot \left\{ \frac{2 \cdot \gamma}{\gamma - 1} \left[1 - \left(\frac{p_C}{p_0} \right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{\frac{1}{2}}$$ \hspace{1cm} (2)

while, if the flow is choked, the mass flow is formalized as follows:

$$\dot{m}_r = A_r \cdot \frac{p_0}{\sqrt{R \cdot T_0}} \cdot \gamma^{\frac{1}{2}} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

where: \(p_0 \) is the intake system pressure;
\(p_C \) is the cylinder pressure;
\(T_0 \) is the intake system temperature;
\(A_r \) is the reference area.
Specifically, the reference area A_{ref} is the valve curtain area and, therefore, it is a linear function of valve lift L_v [18][18]:

$$A_v = \pi \cdot D_v \cdot L_v$$ \hfill (4)

Furthermore, absolute discharge coefficients C_{abs} were defined to characterise the intake system efficiency independently of the valve lift [32]:

$$C_{\text{abs}} = \frac{\phi_{\text{Am}}}{\phi_{\text{Ad}}}$$ \hfill (5)

where ϕ_{Ad} represents the dimensionless theoretical flow rate downstream of the valve, based on the isentropic flow condition:

$$\phi_{\text{Ad}} = \sqrt[\gamma-1]{\frac{2}{\gamma} \left(\left(\frac{p_C}{p_0} \right)^\gamma - \left(\frac{p_C}{p_0} \right)^{\gamma+1} \right)}$$ \hfill (6)

while ϕ_{Am} is the dimensionless actual flow rate, averaged over the dimensionless valve lift:

$$\phi_{\text{Am}} = \int_0^{(L_v/D_v)_{\text{max}}} \frac{m_{\text{max}}}{A_v \cdot \rho_0 \cdot a_0 \cdot d} \cdot \frac{L_v}{D_v}$$ \hfill (7)

where:
- ρ_0 is the air density;
- a_0 is the sound speed.

Measurements have been taken for a fixed ambient-cylinder pressure drop (7.3 kPa), while the dimensionless valve lift (L_v/D_v) has been set in the 0.050-0.400 interval. The overall uncertainty of dimensionless flow coefficients - evaluated according to literature [33,34] - was consistently lower than 3%, and it decreased with valve lift.

3.2 LDA Measurements

The local characterisation of the flow around the valve curtains has been achieved by defining 16 measuring points around each intake valve (Figure 2). The measuring points are divided into four sectors, which are referred to as sector A (valve-wall interaction zone), sector B (backward flow zone), sector C (valve-valve interaction zone) and sector D (forward flow zone).

At each point, two velocity components (along the x and y directions) have been recorded in a plane perpendicular to the valve axis. Ten thousand samples have been collected for each velocity component. The relative uncertainty on the LDA measurements, which is mainly due to the set-up of the electronic system, was lower than 2.2% [35,36]. The valve lift has been fixed at $L_v/D_v = 0.375$ with an ambient-cylinder pressure drop $\Delta p = 7.3$ kPa, and the measuring plane has been located at 3/4 of
the valve lift. To verify the previous measurements, a third component has been acquired and it has been compared to the value calculated from the x and y components, recording a good agreement.

Figure 2: Measuring points around the intake valves.

4. Results

The global fluid dynamic efficiency of the four-valve internal combustion engine has been investigated in terms of discharge coefficients as a function of the dimensionless valve lift (L_v/D_v). To this purpose, the wide open throttle (WOT) configuration has been considered and the ambient-cylinder pressure drop Δp has been set to 7.3 kPa.

Figure 3 compares the head permeability of the configurations with both inlet valves open and with only one valve open. The analysis highlights the presence of three regions, which correspond to different flow regimes, in line with the literature [1,37]. In particular, for low valve lift, high values of the discharge coefficient and a progressive increase with the valve lift are observed. In these conditions the flow remains attached to the valve seat and head, due to the high viscous phenomena, and the entire curtain area is properly used. When the valve lift increases, a flow separation occurs at the valve head. As a consequence, a reduction in the effective flow area is produced and a progressive decrease in the head volumetric performances is registered. Successively, the presence of separation phenomena also at the valve seat reduces the fluid dynamic efficiency of the intake system with a further fall in the discharge coefficient.

Furthermore, the results put in evidence the large influence of interference phenomena between the two valves on the global efficiency of the intake system. Specifically, the absence of flow interactions between the two intake valves leads to a better filling of the cylinder when a single valve is open and $L_v/D_v \leq 0.275$. For higher lift, the previous trend is inverse, probably due to significant irregularities that are generated in the flow at the bifurcation of the intake ducts when only one valve is open. The largest differences are registered in the valve lift range 0.200 - 0.225, with a 6% higher value when a valve is deactivated.
Figure 3: Influence of valve deactivation and interference phenomena on discharge coefficient. Wide open throttle (WOT) configuration.

Table 2 shows the absolute and maximum discharge coefficients for the two configurations. The data illustrate that higher values are registered when only one valve is open and that the difference between the two arrangements is about 1.8% and 2.7% in terms of absolute and maximum discharge coefficients respectively. Furthermore, the analysis put in evidence that when $L_v/D_v \leq 0.225$ the discharge coefficients maintain values larger than the absolute coefficient, which corresponds to about 82.5% of the maximum discharge coefficient.

Table 2: Absolute and mean discharge coefficients for the intake system

<table>
<thead>
<tr>
<th>Analysed system</th>
<th>2 valves open</th>
<th>1 valve open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throttle configuration</td>
<td>WOT</td>
<td>WOT</td>
</tr>
<tr>
<td>Absolute discharge coefficient, C_{dAbs}</td>
<td>0.571</td>
<td>0.581</td>
</tr>
<tr>
<td>Maximum discharge coefficient, C_{dMax}</td>
<td>0.688</td>
<td>0.706</td>
</tr>
</tbody>
</table>

To examine the flow distribution within the combustion chamber and to evaluate the influence of the valve-valve interaction in more detail, the Laser Doppler Anemometry (LDA) technique has been adopted. Specifically, measurements around the intake valve curtain have been carried out by fixing the valve lift ratio at $L_v/D_v = 0.375$ and by locating the measuring plane at 3/4 of the lift. The ambient-cylinder pressure drop has been imposed equal to 7.3 kPa and the WOT configuration has been considered.

Figure 4 highlights the mean velocity distribution around the intake valve when the other inlet valve is completely deactivated. The mean flow appears quite uniform, with lower velocities registered in sector A and the maximum values found towards the centre of the combustion chamber (sector C). Furthermore, the figure shows that the mean velocity direction is close to the radial direction, with some deviation at points 8-9 (owing to the intake duct orientation), on the arc 15-3 (due to the influence of the cylinder wall), and at points 12-14 (due to the wake of the valve stem).

A significant distortion in the mean flow is registered when both valves are open (Figure 5). Specifically, the valve-valve interference phenomena produce a significant decrease in the mean
velocity magnitudes and a reorientation of the velocity vectors towards the y-axis in region C. The comparison in the valve-valve interaction zone put in evidence a mean 30\% reduction in the velocity magnitudes when both intake valves are open and a 43\% decrease at point 9, where the largest interference phenomena are present. When the two valves are open the higher velocities are registered in the region between points 10 and 1, with the maximum located at point 16 (73.5 m/s).

The influence of the valve-valve interference phenomena can be observed also on the rms velocity distribution in the valve curtain area. To this purpose, Figure 6 shows the velocity standard deviation on the radial velocity for the two head configurations. When a valve is deactivated, more uniform standard deviations are observed. The highest rms values are found in region B as a result of

![Figure 4: Velocity vectors around the intake valve when the other inlet valve is deactivated.](image)

![Figure 5: Velocity vectors around the intake valve when the two valves are open.](image)
the high distortion in the flow pathlines due to the flow inversion in the intake duct, while the arc 10-15-2 is characterised by rms values lower than 10 m/s. If the two valves are open, the largest rms values move to region C, owing to the high interference between the fluxes from the intake valves, and the maximum is found at point 9 (16.4 m/s). In the “valve-valve interference” zone, a mean increase of about 30% in the rms values is registered with respect to the configuration with only one valve open. On the other hand, points 12-13-14 and 1-2-3 exhibit rms values always lower than 7.5 m/s.

Figure 6: Rms velocity values around the intake valve for the configuration with only one valve open (a) and for the configuration with two valves open (b).

Figure 7: Influence of valve deactivation and interference phenomena on the percentage volumetric flow rate per sector.
Finally, the comparison between the two engine configurations (one and both valves open) has been done considering the mean flow rates per sector. To this purpose, the height of the column bars in Figure 7 is proportional to the percentage volumetric flow rate per zone. The histogram shows clearly that the interference phenomena influence significantly the distribution of the flow around the valves. In fact, when the two intake valves are open, a noticeable decrease (larger than 8.3%) in sector C is present. At the same time, the plot put in evidence that the interference phenomena produce a redistribution of the flow around the valves, with the flow that tends towards the region where a larger degree of freedom is present. Consequently, a 4.4% increase in the mean flow rate is registered in the valve-wall interference zone (region A) and a slight upsurge is also evident in sector D (the forward-flow zone) and in sector B (the backward-flow zone), with a 2.1 and 1.8% raise respectively.

5. Conclusions

An experimental investigation has been carried out to characterise the fluid dynamic efficiency of a high performance internal combustion engine. Specifically, the work has been focused on a four-valve engine during the intake phase. To this purpose, measurements have been performed at a steady flow rig. Discharge coefficients have been used to characterise the global engine permeability while the Laser Doppler Anemometry (LDA) technique has been employed to give information on the flow distribution around the intake valve curtain area and on the interference phenomena between the two valves.

The global analysis has revealed the noticeable effect of the valve lift on the volumetric efficiency of the intake system. Specifically, different flow regimes have been observed and flow separation phenomena at the valve head and seat have been noticed at medium and high valve lifts.

Moreover, the analysis has highlighted that the valve-valve interference phenomena has a large effect on the engine head breathability. To this purpose, the dimensionless coefficients of the usual configuration with the two intake valves open have been compared with the results registered when an intake valve is deactivated. The absence of flow interactions between the two intake valves leads to a better filling of the cylinder when a single valve is open at low and medium valve lift. Conversely, at high valve lifts the configuration with both intake valves open presents better results due to the reduction in the flow irregularities at the bifurcation of the intake ducts.

Furthermore, LDA measurements have permitted the analysis of the flow field within the combustion chamber and the more detailed definition of the influence of the valve-valve interference phenomena. When only one valve is open, the mean flow appears quite uniform and the velocity direction is quite close to the radial direction. A distortion of the flow field and a significant decrease in the velocity magnitude have been found in region C when the two intake valves are open. Moreover, a redistribution of the flow along the entire valve periphery has been observed, with an increase in the regions A, B and D. The analysis of the rms velocity distribution confirms the effect of the flow interference, with the highest values registered in the valve-valve interaction zone when the two intake valves are open.
Nomenclature

Symbols

- A: Area [mm2];
- a: Sound speed [m/s];
- B: Bore [mm];
- C_{abs}: Absolute flow coefficient [-];
- C_d: Discharge coefficient [-];
- D: Diameter [mm];
- D_v: Valve diameter [mm];
- L: Stroke [mm];
- L_v: Valve lift [mm];
- \dot{m}: Mass flow rate [kg/s];
- N: Number [-];
- T_0: Ambient temperature [$^\circ$C];
- p_0: Ambient pressure [Pa];
- p_c: Cylinder pressure [Pa].

Greek symbols

- Δp: Ambient-cylinder pressure drop [Pa];
- ϕ_{ad}: Dimensionless theoretical flow rate [-];
- ϕ_{am}: Dimensionless actual flow rate [-];
- λ: Wavelength of the laser beam [nm];
- ρ: Air density [kg/m3].

Subscripts

- 0: Ambient;
- abs: Absolute;
- c: Cylinder;
- i: Intake;
- e: Exhaust;
- $meas$: Measured;
- r: Reference;
- v: Valve.

Acronyms

- CFD: Computational Fluid Dynamics;
- DICP: Dual Independent Cam Phasing
- FFT: Fast Fourier Transform;
- GDI: Gasoline Direct Injection;
- ICE: Internal Combustion Engine;
- LDA: Laser Doppler Anemometry;
- PIV: Particle Image Velocimetry.
References

