Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform

Yu-Zhu ZHANG 1,2, Ai-Min YANG 2,3,*, Yue LONG 1

1 College of Metallurgy and Energy, Hebei United University, 063009, Tangshan, China
2 College of Mechanical Engineering, Yanshan University, 066004, Qinhuangdao, China
3 College of Science, Hebei United University, 063009, Tangshan, China
E-mail: aimin_heut@163.com

Abstract
Analytical solution of transient heat conduction through a semi-infinite fractal medium is developed. The solution focuses on application of a local fractional derivative operator to model the heat transfer process and a solution through the Yang-Laplace transform.

Keywords:
Initial boundary value problem, heat equation, fractal media, Yang-Laplace transform.

1 Introduction

Boundary value problems in heat conduction [1-4] are ever attractive due to their significant practical and academic aspects and commonly solved by numerical [5] or analytical [6] techniques such as variational iteration methods [7], Adomian's decomposition method [8] and the homotopy analysis method [9].

In case of fractional difference models of heat conduction [10-14] describing anomalous transport of thermal energy [15] in fractal media, the boundary value problems are described by fractional diffusion equations [16,17] solved numerically or analytically [18-21]. Moreover, especially in the case of heat conduction, this leads to non-differentiable transport problems [22-27] solved in a variety ways, among them: local fractional variation iteration method [22, 23], local fractional Fourier series method [26], local fractional Laplace variational iteration method [27], etc.

This communication addresses a solution of transient heat conduction problem through a semi-infinite fractal medium [26] and developed by the Yang-Laplace transform. The Yang-Laplace transform [27-29] was conceived to solve some differential equations expressed through local fractional derivatives.

2 The mathematical method

For seek of clarity of the explanation, the properties for Yang-Laplace transform are briefly outlined. The Yang-Laplace transform is defined as [27-29]

\[L_\alpha \{ f(x) \} = f_\alpha^L (s) = \frac{1}{\Gamma(1+\alpha)} \int_0^\infty E_\alpha \left(-s^\alpha x^\alpha \right) f(x)(dx)^\alpha, \ 0 < \alpha \leq 1 \] (1)

and its inverse formula is defined as [27-29]
\[f(x) = L^{-1}_α \{ f^{L,α}(s) \} = \frac{1}{(2\pi)^α} \int_{β→∞}^{β→α} E_α \left(s^α x^α \right) f^L_α(s)(ds)^α, \]
(2)

where \(f(x) \) is local fractional continuous, \(s^α = β^α + i^α x^α \) and \(\text{Re}(s^α) = β^α \).

The following properties for Yang-Laplace transform are valid [28]:
\[L_α \{ f^{(α)}(x) \} = s^α L_α \{ f(x) \} - f(0), \quad L_α \{ x^{α} \} = \frac{Γ(1+ka)}{s^{(k+1)a}}, \quad L_α \{ f(ax) \} = \frac{1}{a^α} f^{L,α}_α\left(\frac{s}{a} \right), a > 0. \]
(3a,b,c)

For the more details of local fractional derivatives and integrals, see [26, 28].

3 Fractal heat equation in the semi-infinite region and its solution

The first law of thermodynamic states in fractal media reads as [26]
\[\frac{1}{Γ(1+α)} \int_0^T \left[\int_{v(0)}^{v(T)} \int_{t(0)}^{t(T)} \left(K^{2α} \frac{∂^α u}{∂t^α} + g - ρ_α c_α \frac{∂^α u}{∂t^α} \right) dV^{(r)} \right] dt^{α} = 0, \]
(4a)
which leads to the following equation [25, 26]
\[K^{2α} \frac{∂^α u}{∂t^α} + g - ρ_α c_α \frac{∂^α u}{∂t^α} = 0, \]
(4b)
where the volume integral is the local fractional volume integral [26]. When the fractal dimension is equal to 1, eq. (4b) becomes the classical Fourier equation.

Making use of \(g = 0 \) and \(ρ_α c_α = K^{2α} \), the one-dimensional heat conduction through a semi-infinite fractal medium is modelled by [26, 27, 30]
\[\frac{∂^α u(x,t)}{∂t^α} - \frac{∂^{2α} u(x,t)}{∂x^{2α}} = 0, \quad x > 0, \quad t > 0. \]
(5a)
\[u(x, 0) = 0, u(0,t) = u_0. \quad (5b,c) \]

With the Yang-Laplace transform, the model (5a,b,c) can be transformed into
\[s^α u(x) - (u, 0) - \frac{∂^{2α} u(x)}{∂x^{2α}} = 0, \quad u(0,s) = \frac{u_0}{s^α}. \]
(6a,b)
Then, from Eq.(6a), we get
\[s^α u(x,s) - \frac{∂^{2α} u(x,s)}{∂x^{2α}} = 0, \]
(7)
where the initial value condition is Eq.(6b).

The general solution of Eq.(7) can be expressed in the form
\[u(x,s) = AE_α \left(\frac{α}{s^2 x^α} \right) + BE_α \left(-\frac{α}{s^2 x^α} \right), \]
(8)
In the expression (8) the pre-factors A and B are constants. However, taking into account that the temperature function is bounded, we get $A = 0$. Hence, from Eq.(8) we have

$$u(x,s) = \frac{u_0}{s^\alpha} E_\alpha \left(-\frac{a}{s^2} x^\alpha \right).$$ \hspace{1cm} (10)

Now, taking into account the transforms

$$L_\alpha \left\{ t^{2\alpha} f(t) \right\} = \frac{\partial^{2\alpha} T(s)}{\partial s^{2\alpha}}, \quad L_\alpha \left\{ t^{-\alpha} f(t) \right\} = \frac{\partial^{\alpha} T(s)}{\partial s^\alpha} \quad \text{and} \quad L_\alpha \left\{ f(t) \right\} = T(s) = E_\alpha \left(-\frac{a}{s^2} \right).$$

We may obtain

$$\frac{\partial^{\alpha} f(t)}{\partial t^\alpha} + mf(t) = 0, \quad m = \frac{4^\alpha t^\alpha - 1}{4^\alpha t^{2\alpha}}, \quad \mu = \frac{\Gamma(1+2\alpha)}{\Gamma(1+\alpha)} - \frac{\Gamma(1-\alpha/2)}{\Gamma(1-3\alpha/2)}. \quad (12a,b,c)$$

Following (12d) we have

$$f(t) = \frac{1}{2^\alpha \Gamma \left(1-\frac{\alpha}{2} \right) t^{\frac{3\alpha}{2}}} E_\alpha \left(-\frac{\Gamma \left(1-\frac{5\alpha}{2} \right)}{4^\alpha \mu \Gamma \left(1-\frac{3\alpha}{2} \right)} \times \frac{1}{t^\alpha} \right).$$ \hspace{1cm} (13)

Now, applying the Yang-Laplace transform we have

$$L_\alpha \left\{ E_\alpha \left(-\frac{a}{s^2} \right) \right\} = \frac{1}{2^\alpha \Gamma \left(1-\frac{\alpha}{2} \right) t^{\frac{3\alpha}{2}}} E_\alpha \left(-\frac{\Gamma \left(1-\frac{5\alpha}{2} \right)}{4^\alpha \mu \Gamma \left(1-\frac{3\alpha}{2} \right)} \times \frac{1}{t^\alpha} \right)$$

and

$$L_\alpha \left\{ E_\alpha \left(-\frac{a}{s^2} x^\alpha \right) \right\} = \frac{1}{2^\alpha \Gamma \left(1-\frac{\alpha}{2} \right) \Gamma(1+\alpha)} \int_0^t \frac{1}{\tau^{\frac{3\alpha}{2}}} E_\alpha \left(-\frac{\Gamma \left(1-\frac{5\alpha}{2} \right)}{4^\alpha \mu \Gamma \left(1-\frac{3\alpha}{2} \right)} \times \frac{1}{\tau^\alpha} \right) \left(\tau^\alpha \right) \alpha. \quad (14b)$$

From Eq.(14b) we obtain the non-differentiable solution of Eq.(5a) in the form

$$u(x,t) = \frac{u_0 x^{2\alpha}}{2^\alpha \Gamma \left(1-\frac{\alpha}{2} \right) \Gamma(1+\alpha)} \times \int_0^t \frac{1}{\left(\frac{\tau}{x^\alpha} \right)^{\frac{3\alpha}{2}}} E_\alpha \left(\frac{1}{\tau} \right)^\alpha \left(\Gamma \left(1+2\alpha \right) \Gamma \left(1+\alpha \right) \Gamma \left(1-\frac{3\alpha}{2} \right) \right) \alpha. \quad (15)$$

The solution (15) is a fractal function in accordance with the local fractional continuity concept [26].
4 Conclusions

The Yang-Laplace transform was successfully applied to solve an initial boundary value problem for fractal heat equation in the semi-infinite region, with local fractional derivatives and non-differentiable conditions. The result differs from those developed in [10-14] due to differences in the employed fractal operators. The solution allows, when the fractal dimension is \(\alpha = \frac{\ln 2}{\ln 3} \) a solution on Cantor sets to be developed.

Nomenclature

\(c_\alpha \) is the specific heat of fractal material, \(Jkg^{-1} \)
\(g \) is energy generation term,
\(K^{2\alpha} \) the thermal conductivity of the fractal material, \(Wm^{-\alpha}K^{-1} \)
\(L_\alpha (f(x)) \)-Yang-Laplace transform of \(f(x) \)
\(L_\alpha^{-1}(f_s^{L\alpha}(s)) \)-inverse version of Yang-Laplace transform of \(f_s^{L\alpha}(s) \)
\(u(x,t) \) the temperature function,
\(K \)
\(x \)-space co-ordinate,
\(m \)
\(t \)-time,
\(\alpha \) - fractal dimensional order (dimensionless)
\(\rho_\alpha \) is the density, \(kgm^{-3} \)

Acknowledgements

This work was supported by National scientific and technological support projects (No.2012B AE09B00), the National Natural Science Foundation of China (No.11126213 and No.61170317) and the National Natural Science Foundation of Hebei Province (No.A2012209043 and No. E2013209215).

References