1-D HEAT CONDUCTION IN A FRACTAL MEDIUM
A solution by the Local Fractional Fourier Series Method

by

Yuzhu ZHANGa,b, Aimin YANGa,c, and Xiao-Jun YANGd,e,f*

a College of Mechanical Engineering, Yanshan University, Qinhuangdao, China
b College of Metallurgy and Energy, Hebei United University, Tangshan, China
c College of Science, Hebei United University, Tangshan, China
d Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, China
e Institute of Software Science, Zhengzhou Normal University, Zhengzhou, China
f Institute of Applied Mathematics, Qujing Normal University, Qujing, China

Short paper
DOI: 10.2298/TSCI130303041Z

In this communication 1-D heat conduction in a fractal medium is solved by the local fractional Fourier series method. The solution developed allows relating the basic properties of the fractal medium to the local heat transfer mechanism.

Key words: fractal medium, heat-conduction, local fractional Fourier series method

Introduction

The conventional 1-D heat conduction equation in smooth area of a rod described by the continuum approach is [1]:

\[
\frac{\partial u(x,t)}{\partial t} = a \frac{\partial^2 u(x,t)}{\partial x^2}
\] (1)

The general form of eq. (1) is the space-time-fractional (non-local) heat conduction equation:

\[
\frac{\partial^\alpha u(x,t)}{\partial t^\alpha} = a \frac{\partial^\beta u(x,t)}{\partial x^\beta}, \quad 0 < \alpha \leq 2, \quad 0 < \beta \leq 2
\] (2)

expressed by Caputo derivatives [2]. Equation (2) describes either the Fourier ($\alpha = \beta = 1$) and non-Fourier materials with memory effects (time fractional term, $\alpha < 1$) and space traps (the space fractional term). The non-local (non-integer order derivative in space and time) heat-conduction problems have been solved by numerous approximate analytical methods such as the Adomian decomposition method (ADM) [1], the variational iteration method (VIM) [3-5], the homotopy perturbation method (HPM) [6, 7], and the heat-balance integral method (HBIM) [8, 9].

However, eq. (2) refers to smooth spaces and cannot be applied directly to case where the heat propagates through fractal media. To account the non-smoothness of the fractal heat transfer, the fractional complex transform method [10] allows deriving the local fractional directly from eq. (1), namely:

\[\quad\]

\[\quad\]

* Corresponding author; e-mail: dyangxiaojun@163.com
The local fractional differential operator is defined through \(\Gamma(1+\alpha)\)

\[
D_x^\alpha f(x) = \lim_{\epsilon \to 0} \frac{\Delta^\alpha [f(x_0 + \epsilon) - f(x_0)]}{(x - x_0)^\alpha}
\]

with \(\Delta^\alpha [f(x) - f(x_0)] \approx \Gamma(1+\alpha)\Delta[f(x) - f(x_0)]\).

In eq. (3) the fractal heat diffusivity of the medium \(\alpha = K^{2\alpha}/\rho^{\alpha} c^{\alpha}\) is relate to the fractal dimensions of the medium. It is shown that fractal characteristics of the materials determine the heat transfer properties and is applied to describe the fractal heat conduction problems for the slag waste heat recovery. The fractal equation needs methods different from those applied to the non-local ones and local version of the aforementioned approached have been developed, among them: local fractional VIM \([11]\), local fractional Fourier series method (FSM) \([12, 14]\), local fractional Fourier transforms \([7, 14]\), and the local fractional Laplace transforms \([7, 14]\).

This brief note presents an efficient solution to a local fractional heat-conduction equation in a fractal heat medium performed by the local fractional FSM.

Local fractional Fourier series method

If \(f(x)\) is \(2\pi\)-periodic function, then the local fractional Fourier series of \(f(x)\) is defined as \([12, 14]\):

\[
f(x) = \sum_{k=1}^{\infty} \left(a_k \cos \frac{\pi x}{p^k} + b_k \sin \frac{\pi x}{p^k} \right)
\]

The local fractional Fourier coefficients given by \([5, 7]\):

\[
a_k = \frac{1}{p^k} \int_{-p}^{p} f(x) \cos \frac{\pi x}{p^k} (dx)^\alpha,
\]

\[
b_k = \frac{1}{p^k} \int_{-p}^{p} f(x) \sin \frac{\pi x}{p^k} (dx)^\alpha
\]

where the sine and cosine functions in fractal space are \([5,7]\):

\[
\sin_\alpha x^\alpha = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{\Gamma(1+\alpha(2k+1))},
\]

\[
\cos_\alpha x^\alpha = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{\Gamma(1+2\alpha k)}, \quad x \in \mathbb{R} \quad \text{and} \quad 0 < \alpha \leq 1
\]

Solution

We suggest a particular solution \(u(x, t) = \phi(x) T(t)\) of eq. (3) and taking the local fractional derivative, we can obtain:

\[
\frac{\partial^\alpha u(x, t)}{\partial t^\alpha} = \alpha \frac{\phi(2\alpha)(x)}{\phi(x)}
\]

If each side of eq. (8) is equal to the constant \(-\lambda^{2\alpha}\), then we get:
\[\phi^{(2\alpha)} + \lambda^{2\alpha} \phi = 0, \quad T^{(\alpha)} + \alpha \lambda^{2\alpha} T = 0 \] (9a,b)

In view of eq. (9a, b), we arrive at:

\[\phi = A \cos (\lambda^{\alpha} x^{\alpha}) + B \sin (\lambda^{\alpha} x^{\alpha}), \quad T + CE^{(\alpha)}(-\lambda^{2\alpha} t^{\alpha}) \] (10a,b)

where \(A, B, \) and \(C \) are constants to be determined.

Therefore, the general solution can be expressed as:

\[u(x, t) = CE^{(\alpha)}(-\lambda^{2\alpha} t^{\alpha}) \cos (\lambda^{\alpha} x^{\alpha}) + B \sin (\lambda^{\alpha} x^{\alpha}) \] (11)

In view of eqs. (4a) and (11), we have:

\[u(x, t) = AC E^{(\alpha)}(-\lambda^{2\alpha} t^{\alpha}) \cos (\lambda^{\alpha} x^{\alpha}) \] (12a)

From eqs. (4b) and (11) we have that \(\sin (\lambda^{\alpha} x^{\alpha}) = 0 \) so that \(\lambda = m\pi/l \). Then, we obtain:

\[u(x, t) = AC E^{(\alpha)}(-\lambda^{2\alpha} t^{\alpha}) \cos (m\pi x/l) \] (12b)

Considering the fractal condition, eq. (4c), we can construct the local fractional Fourier series as:

\[u(x, t) = \sum_{m=1}^{\infty} A_{m} E^{(\alpha)} \left(\frac{-m^{2\alpha} \pi^{2\alpha} l^{2\alpha}}{l^{2\alpha}} \right) \cos \left(\frac{m^{\alpha} \pi^{\alpha} x^{\alpha}}{l^{\alpha}} \right) \] (13a)

which leads to:

\[u(x, 0) = \frac{A_{0}}{2} + \sum_{m=1}^{\infty} A_{m} \cos \left(\frac{m^{\alpha} \pi^{\alpha} x^{\alpha}}{l^{\alpha}} \right) \] (13b)

with local fractional Fourier coefficients:

\[a_{0} = \frac{1}{l^{\alpha}} \int_{l}^{x^{\alpha}} \left[\frac{\Gamma(l + \alpha)}{\Gamma(l)} \right] (dx)^{\alpha} = 0 \] (14)

\[A_{m} = \frac{1}{l^{\alpha}} \int_{l}^{x^{\alpha}} \left[\frac{\Gamma(l + \alpha)}{\Gamma(l) \sqrt{\pi} \Gamma(1 + \alpha)} \right] \cos \left(\frac{m^{\alpha} \pi^{\alpha} x^{\alpha}}{l^{\alpha}} \right) (dx)^{\alpha} = \left(\frac{2m^{2\alpha} \pi^{2\alpha} l^{2\alpha}}{l^{2\alpha}} \right) \cos \left(\frac{m^{\alpha} \pi^{\alpha}}{l^{\alpha}} \right) \] (15)

Hence, the local fractional series solution is:

\[u(x, t) = \sum_{m=1}^{\infty} \left(\frac{2m^{2\alpha} \pi^{2\alpha} l^{2\alpha}}{l^{2\alpha}} \right) \cos \left(\frac{m^{\alpha} \pi^{\alpha}}{l^{\alpha}} \right) E^{(\alpha)} \left(\frac{-m^{2\alpha} \pi^{2\alpha} l^{2\alpha}}{l^{2\alpha}} \right) \cos \left(\frac{m^{\alpha} \pi^{\alpha} x^{\alpha}}{l^{\alpha}} \right) \] (16)

Equation (16) is a Weierstrass-like but discontinuous function and satisfies the fractal conditions [3-7]:

\[|u(x, t) - u(x_{0}, t)| \leq C_{1} |x - x_{0}|^{\alpha} \quad \text{and} \quad |u(x, t) - u(x, t_{0})| \leq C_{2} |t - t_{0}|^{\alpha} \] (constants \(C_{1}, C_{2} \)) (17a,b)

Conclusions

This brief communication refers to 1-D heat-conduction equation in fractal space described by a local fractional equation and a solution by the local fractional Fourier series method. The solution developed is a nowhere-differentiable function related to the local fractal behavior of the medium (material).
Acknowledgments

The work was supported by National scientific and technological support projects (No.2012BAE09B00), the National Natural Science Foundation of China (No. 11126213 and No. 61170317) and the National Natural Science Foundation of Hebei Province (No. E2013209123).

Nomenclature

\[a \] heat diffusivity \((= k/C_v)\), \([m^2s^{-1}]\)

\[C_v \] heat capacity, \([Jkg^{-1}]\)

\[k \] heat conductivity, \([Wm^{-2}K^{-1}]\)

\(l \) period of \(f(x) \)

\(u(x,t) \) the temperature function, \([K]\)

\(t \) time, \([s]\)

Greek symbols

\(\alpha \) time fractional order, \([-\] \)

\(\beta \) fractional-space order, \([-\] \)

References

