THE YANG-FOURIER TRANSFORMS TO HEAT-CONDUCTION IN A SEMI-INFINITE FRACTAL BAR

by

Ai-Min YANG a,b,* , Yu-Zhu ZHANG a,c, and Yue LONG c

a College of Mechanical Engineering, Yanshan University, Qinhuangdao, China
b College of Science, Hebei United University, Tangshan, China
c College of Metallurgy and Energy, Hebei United University, Tangshan, China

Original scientific paper
DOI: 10.2298/TSCI120826074Y

1-D fractal heat-conduction problem in a fractal semi-infinite bar has been developed by local fractional calculus employing the analytical Yang-Fourier transforms method. The simplicity and the accuracy of the method are discussed.

Key words: heat-conduction equation, fractal bar, Yang-Fourier transforms, local fractional calculus

Introduction

The number of applicable mathematical and engineering problems successfully solved by the tools of the fractional calculus is continuously growing in last five decades [1-7]. Most of the fractional differential equations have exact analytic solutions, whilst others need either analytical approximations or numerical techniques to be applied, among them: fractional Fourier and Laplace transforms [8], heat-balance integral method [9-11], variational iteration method (VIM) [12-14], decomposition method [15], homotopy perturbation method [16], fractional variational homotopy perturbation iteration method [17], finite element method [18], fractional sub-equation method [19], Mellin integral transform [20], homotopy analysis method [21, 22], finite difference method [23], Taylor series expansion method [24], wavelet operational method [25], etc.

The memory properties of fractional derivatives and integrals of the classical calculus implicitly mean smooth spaces and fails when local and fractal behaviors should be modeled. However, problems in fractal media can be successfully solved by local fractional calculus theory with problems for non-differential functions [25-32]. Local fractional differential equations have been applied to model complex systems of fractal physical phenomena [30-40] with a variety of methods such as local fractional VIM [35-37], local fractional Fourier series method [38], Yang-Fourier transform [39, 40], Yang-Laplace transform [40], etc. The heat conduction in fractal media requires modelling by local fractional derivatives as it was demonstrated a series of articles [32, 33, 35], and the reference therein).

The present communication addresses a transient heat conduction problem in a fractal semi-infinite bar solved by the Yang-Fourier transform [39, 40].

Yang-Fourier transform and its properties

Suppose that \(f(x) \) is local fractional continuous at the interval \((-\infty, \infty)\), we denote as \(f(x) \in \mathcal{C}_a(-\infty, \infty) \) (see [32, 33, 35], and the reference therein).

* Corresponding author; e-mail: aimin_heut@163.com
Let $f(x) \in C_{a}(\infty, \infty)$. The Yang-Fourier transform is written in the form \[30, 31, 39, 40\]:

$$F_{a}\{f(x)\} = F_{a}^{F-a}(\alpha) = \frac{1}{\Gamma(1+a)} \int_{-\infty}^{\infty} E_{a}(-i^{a} \omega^{a} x^{a}) f(x)(dx)^{a}$$ \hspace{1cm} (1)

Then, the local fractional integration is given by \[30-32, 35-37\]:

$$\frac{1}{\Gamma(1+a)} \int_{a}^{b} f(t)(dt)^{a} = \frac{1}{\Gamma(1+a)} \lim_{t_{j} \rightarrow 0} \sum_{j=0}^{N-1} f(t_{j})(\Delta t_{j})^{a}$$ \hspace{1cm} (2)

where $\Delta t_{j} = t_{j+1} - t_{j}$, $\Delta t = \max \{\Delta t_{1}, \Delta t_{2}, \Delta t_{j}\}$ and $[t_{j}, t_{j+1}]$, $j = 0, ..., N-1$, $t_{0} = a$, $t_{N} = b$, is a partition of the interval $[a, b]$.

If $F_{a}\{f(x)\} = F_{a}^{F-a}(\alpha)$, then its inversion formula takes the form \[30, 31, 39, 40\]:

$$f(x) = F_{a}^{-1}\{F_{a}^{F-a}(\alpha)\} = \frac{1}{(2\pi)^{a}} \int_{-\infty}^{\infty} E_{a}(i^{a} \omega^{a} x^{a}) f_{a}^{F-a}(\alpha)(d\omega)^{a}$$ \hspace{1cm} (3)

Some properties are shown as it follows \[30, 31\]:

Let $F_{a}\{f(x)\} = F_{a}^{F-a}(\alpha)$, and $F_{a}\{g(x)\} = F_{a}^{F-a}(\alpha)$, and let be two constants. Then we have:

$$F_{a}\{af(x) + bg(x)\} = aF_{a}\{f(x)\} + bF_{a}\{g(x)\}$$ \hspace{1cm} (4)

If \(\lim_{|x| \rightarrow 0} f(x) = 0 \), then we have:

$$F_{a}\{f^{(\alpha)}(x)\} = \alpha^{a} F_{a}\{f(x)\}$$ \hspace{1cm} (5)

In eq. (5) the local fractional derivative is defined as:

$$f^{(\alpha)}(x_{0}) = \frac{d^{a} f(x)}{dx^{a}} \bigg|_{x=x_{0}} = \lim_{x \rightarrow x_{0}} \frac{\Delta^{a}[f(x) - f(x_{0})]}{(x - x_{0})^{a}}$$ \hspace{1cm} (6)

where $\Delta^{a}[f(x) - f(x_{0})] = \Gamma(1+a)\Delta f(x) - f(x_{0})$.

As a direct result, repeating this process, when:

$$f(0) = f^{(\alpha)}(0) = ..., = f^{[(k-1)a]}(0) = 0$$ \hspace{1cm} (7)

we get:

$$F_{a}\{f^{(\alpha)}(x)\} = i^{a} \alpha^{a} F_{a}\{f(x)\}$$ \hspace{1cm} (8)

Heat conduction in a fractal semi-infinite bar

When a fractal body is subjected to a boundary perturbation, then the heat diffuses in depth modeled by a constitutive relation where the rate of fractal heat flux $q(x, y, z, t)$ is proportional to the local fractional gradient of the temperature \[32\], namely:

$$\hat{q}(x, y, z, t) = -K^{2a} \nabla^{a} T(x, y, z, t)$$ \hspace{1cm} (9)

Here the pre-factor K^{2a} is the thermal conductivity of the fractal material. Therefore, the fractal heat conduction equation without heat generation was suggested in \[32\] as:

$$K^{2a} \frac{d^{2a} T(x, y, z, t)}{dx^{2a}} = \rho^{a} c_{a} \frac{d^{2a} T(x, y, z, t)}{dx^{2a}}$$ \hspace{1cm} (10)

where ρ_{a} and c_{a} are the density and the specific heat of material, respectively.

The fractal heat-conduction equation with a volumetric heat generation $g(x, y, z, t)$ can be described as \[32\]:

THERMAL SCIENCE: Year 2013, Vol. 17, No. 3, pp. 707-713
The 1-D fractal heat-conduction equation \[32\] reads as:

\[K \frac{\partial^{2\alpha} T(x, t)}{\partial x^{2\alpha}} - \rho \alpha c \frac{\partial T(x, t)}{\partial t^\alpha} + g(x, t) = 0, \quad 0 < x < \infty, \quad t > 0 \]

with initial and boundary conditions are:

\[\frac{\partial T(0, t)}{\partial x^\alpha} = E_a(t^\alpha), \quad T(0, t) = 0 \]

The dimensionless forms of (12a, b, c) are [35]:

\[\frac{\partial^{2\alpha} T(x, t)}{\partial x^{2\alpha}} = \frac{\partial T(x, t)}{\partial x^\alpha} = 0 \]

\[\frac{\partial T(0, t)}{\partial x^\alpha} = E_a(t^\alpha), \quad T(0, t) = 0 \]

Based on eq. (12a), the local fractional model for 1-D fractal heat-conduction in a fractal semi-infinite bar with a source term \(g(x, t) \) is:

\[K \frac{\partial^{2\alpha} T(x, t)}{\partial x^{2\alpha}} - \rho \alpha c \frac{\partial T(x, t)}{\partial t^\alpha} = g(x, t), \quad -\infty < x < \infty, \quad t > 0 \]

with

\[T(x,0) = f(x), \quad -\infty < x < \infty \]

The dimensionless form of the model (14a, b) is:

\[\frac{\partial^{2\alpha} T(x, t)}{\partial x^{2\alpha}} - \frac{\partial T(x, t)}{\partial t^\alpha} = 0, \quad -\infty < x < \infty, \quad t > 0 \]

\[T(x,0) = f(x), \quad -\infty < x < \infty \]

Solution by the Yang-Fourier transform method

Let us consider that \(F(\alpha) \{ T(x, t) \} = T_{\omega}^{\alpha}(\omega, t) \) is the Yang-Fourier transform of \(T(x, t) \), regarded as a non-differentiable function of \(x \). Applying the Yang-Fourier transform to the first term of eq. (15a), we obtain:

\[F(\alpha) \left\{ \frac{\partial^{2\alpha} T(x, t)}{\partial x^{2\alpha}} \right\} = i^{2\alpha} \omega^{2\alpha} T_{\omega}^{\alpha}(\omega, t) = -\omega^{2\alpha} T_{\omega}^{\alpha}(\omega, t) \]

On the other hand, by changing the order of the local fractional differentiation and integration in the second term of eq.(15a), we get:

\[F(\alpha) \left\{ \frac{\partial T(x, t)}{\partial t^\alpha} \right\} = \frac{\partial T_{\omega}^{\alpha}(\omega, t)}{\partial t^\alpha} \]

For the initial value condition, the Yang-Fourier transform provides:

\[F(\alpha) \{ T(x,0) \} = T_{\omega}^{\alpha}(\omega, 0) = F(\alpha) \{ f(x) \} = f_{\omega}^{\alpha}(\omega) \]
Hence, from eqs. (16a, b,c), we obtain:
\[
\frac{\partial^{2\alpha} T_{a}^{F,a} (\omega, t)}{\partial t^{2\alpha}} + \omega^{2\alpha} T_{a}^{F,a} (\omega, t) = 0, \quad t > 0, \quad T_{a}^{F,a} (\omega, 0) = f_{a}^{F,a} (\omega)
\] (17)

This is an initial value problem of a local fractional ordinary differential equation with \(t \) as independent variable and \(\omega \) as a parameter. Now, by the help of (A.4), in the Appendix the solution of eq.(17) is:
\[
T(\omega, t) = f_{a}^{F,a} (\omega) E_{\alpha} (-\omega^{2\alpha} t^{\alpha}) \] (18a)

Consequently, using inversion formula, see eq. (3), we obtain:
\[
T(x, t) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{-\infty}^{\infty} E_{\alpha} \left(i^{\frac{d}{2}} \omega^{\frac{d}{2}} x^{\alpha} \right) f_{a}^{F,a} (\omega) E_{\alpha} (-\omega^{2\alpha} t^{\alpha}) (d\omega)^{\frac{d}{2}} = (Mf)(x) \] (18b)
\[
M_{a}^{F,a} = \frac{1}{(2\pi)^{\frac{d}{2}}} E_{\alpha} (-\omega^{2\alpha} t^{\alpha}) \] (18c)

In view of (A.9), we get:
\[
F_{a} \left\{ E_{\alpha} \left(-\frac{\omega^{\frac{d}{2}}}{C^{\frac{d}{2}}} \right) \right\} = \frac{C^{\frac{d}{2}}}{\Gamma(1+\alpha)} E_{\alpha} \left(-\frac{C^{\frac{d}{2}} \omega^{\frac{d}{2}}}{4^{\frac{d}{2}}} \right) \] (19a)

Let \(C^{\frac{d}{2}}/4^{\frac{d}{2}} = r^{\alpha} \). Then we obtain:
\[
F_{a} \left\{ E_{\alpha} \left(-\frac{\omega^{\frac{d}{2}}}{4^{\frac{d}{2}} r^{\alpha}} \right) \right\} = \frac{4^{\frac{d}{2}} r^{\frac{d}{2}} \omega^{\frac{d}{2}}}{\Gamma(1+\alpha)} E_{\alpha} (-\omega^{2\alpha} t^{\alpha}) = \frac{4^{\frac{d}{2}} r^{\frac{d}{2}} \omega^{\frac{d}{2}}}{\Gamma(1+\alpha)} M_{a}^{F,a} (\omega) \] (19b)

Therefore, \(M_{a}^{F,a} (\omega) \) have the inverse, namely:
\[
\frac{1}{(2\pi)^{\frac{d}{2}}} \int_{-\infty}^{\infty} E_{\alpha} \left(i^{\frac{d}{2}} \omega^{\frac{d}{2}} x^{\alpha} \right) M_{a}^{F,a} (\omega) (d\omega)^{\frac{d}{2}} = \frac{\Gamma(1+\alpha)}{4^{\frac{d}{2}} r^{\frac{d}{2}} \omega^{\frac{d}{2}} (2\pi)^{\frac{d}{2}}} E_{\alpha} \left(-\frac{\omega^{\frac{d}{2}}}{4^{\frac{d}{2}} r^{\alpha}} \right) \] (19c)

Finally, we obtain:
\[
T(x, t) = (Mf)(x) = \frac{\Gamma(1+\alpha)}{4^{\frac{d}{2}} r^{\frac{d}{2}} \omega^{\frac{d}{2}} (2\pi)^{\frac{d}{2}}} E_{\alpha} \left(-\frac{\omega^{\frac{d}{2}}}{4^{\frac{d}{2}} r^{\alpha}} \right) \] (20)

Conclusions

The communication, successfully presented an analytical solution of 1-D heat conduction in fractal semi-infinite bar through the Yang-Fourier transform of non-differentiable functions. The solution clearly shows show the accuracy and reliable results. The method is applied to a fractional partial equation defined on a Cantor set in a manner useful for practical purposes.

Acknowledgements

This work was supported by National scientific and technological support projects (No. 2012BAE09B00), the National Natural Science Foundation of China (No.11126213 and No. 61170317) and the National Natural Science Foundation of Hebei Province (No. A2012209043 and No. E2013209215).

Nomenclature
\[
\begin{align*}
F_{a} & \quad \text{– Yang-Fourier transform of } f(x) \\
k & \quad \text{– heat conductivity, } [\text{Wm}^{-2}\text{K}^{-1}] \\
t & \quad \text{– time, } [\text{s}] \\
u & \quad \text{– the temperature function, } (= x, t), [\text{K}] \\
x & \quad \text{– space co-ordinate, } [\text{m}] \\
\alpha & \quad \text{– time fractal dimensional order, } [-]
\end{align*}
\]
References

In a Cantor type circle co-ordinate [32], we have:

\[
\begin{align*}
\sqrt{R^2 - r^2} &= R^2 \cos \theta \cos a \\
\sqrt{R^2 - r^2} &= R^2 \sin \theta \sin a
\end{align*}
\]

(A.1)

we have [32]:

\[
\frac{1}{\Gamma(1+\alpha)} \int_{\mathcal{S}} (d\theta)^{\alpha} = \frac{1}{\Gamma(1+\alpha)} \int_{\mathcal{S}} \frac{R^a}{(1+\alpha)} (d\theta)^{\alpha} (dR)^{\alpha} = \\
= \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2\pi} (d\theta)^{\alpha} \int_{0}^{1} \frac{R^a}{\Gamma(1+\alpha)} (dR)^{\alpha} = \left(\frac{2\pi}{\Gamma(1+\alpha)}\right) + \frac{R^{2\alpha}}{\Gamma(1+2\alpha)}
\]

(A.3)

For a given fractal region \(S = \{(x,y): x^{2\alpha} + y^{2\alpha} = R^{2\alpha}\} \), its area is [32]:

\[
\frac{1}{\Gamma(1+\alpha)} \int_{\mathcal{S}} (d\theta)^{\alpha} = \frac{1}{\Gamma(1+\alpha)} \int_{\mathcal{S}} \frac{R^a}{\Gamma(1+\alpha)} (d\theta)^{\alpha} (dR)^{\alpha} = \\
= \frac{1}{\Gamma(1+\alpha)} \int_{0}^{2\pi} (d\theta)^{\alpha} \int_{0}^{1} \frac{R^a}{\Gamma(1+\alpha)} (dR)^{\alpha} = \left(\frac{2\pi}{\Gamma(1+\alpha)}\right) + \frac{R^{2\alpha}}{\Gamma(1+2\alpha)}
\]

(A.3)

For a given fractal region \(S^{\theta(0)} = \{(x,y): x^{2\alpha} + y^{2\alpha} = R^{2\alpha}\} \), we have [32]:

\[
\frac{1}{\Gamma(1+\alpha)} \int_{S} E_{\alpha} (-x^{2\alpha}) (dx)^{\alpha} = \frac{1}{\Gamma(1+\alpha)} \int_{S} E_{\alpha} (-x^{2\alpha} + y^{2\alpha}) (dx)^{\alpha} (dy)^{\alpha} = \\
= \left[\frac{1}{\Gamma(1+\alpha)} \int_{0}^{2\pi} (d\theta)^{\alpha} \int_{0}^{1} \frac{R^{a}}{\Gamma(1+\alpha)} (dR)^{\alpha} \right] \left[\frac{1}{\Gamma(1+\alpha)} \int_{0}^{2\pi} \frac{R^{a}}{\Gamma(1+\alpha)} (dR)^{\alpha} \right] = \frac{\pi^\alpha}{\Gamma^2(1+\alpha)}
\]

(A.4)
Hence, we get:
\[
\frac{1}{\Gamma(1+\alpha)} \int_0^\infty E_x(-x^{2\alpha}) (\alpha x)^a \, dx = \frac{\pi^{\alpha/2}}{\Gamma(1+\alpha)} \tag{A.5}
\]
and
\[
\frac{1}{\Gamma(1+\alpha)} \int_0^\infty \left[\Gamma(1+\alpha) C^{a\pi^2/2} \right] (dx)^a = 1 \tag{A.6}
\]
where \(C > 0\).

If \(k > 0\), then local fractional equation [30-32]:

\[
\frac{d^a y}{dx^a} + ky = 0, \quad y(0) = y_0 \tag{A.7}
\]

has the one-parameter family of solutions:

\[
y(x) = y_0 E_0(-kx^a) \tag{A.8}
\]

\[
F_{\alpha} \left[E_\alpha \left(\frac{x^{2\alpha}}{C^{2\alpha}} \right) \right] = \frac{C^{a\pi^2/2}}{\Gamma(1+\alpha)} E_{4a} \left(-\frac{C^{2\alpha} \omega^{2\alpha}}{4^a} \right) \tag{A.9}
\]

Proof

\[
F_{\alpha} \left[E_\alpha \left(\frac{x^{2\alpha}}{C^{2\alpha}} \right) \right] = \frac{1}{\Gamma(1+\alpha)} \int_0^\infty E_\alpha \left(\frac{x^{2\alpha}}{C^{2\alpha}} \right) E_\alpha \left(-\omega x^a \right) (dx)^a \tag{A.10}
\]

In view of (A.9), we rewrite as:

\[
\frac{1}{\Gamma(1+\alpha)} \int_0^\infty E_\alpha \left(\frac{x^{2\alpha}}{C^{2\alpha}} - i\omega x^a \right) (dx)^a = \frac{E_\alpha \left(-\frac{C^{2\alpha} \omega^{2\alpha}}{4^a} \right)}{\Gamma(1+\alpha)} \int_0^\infty E_\alpha \left(\frac{i\omega - C^{2\alpha} \omega^{2\alpha}}{2} \right) (dx)^a \tag{A.11}
\]

Hence, we get:

\[
\frac{1}{\Gamma(1+\alpha)} \int_0^\infty E_\alpha \left(\frac{x^{2\alpha}}{C^{2\alpha}} - i\omega x^a \right) (dx)^a = \frac{C^{a\pi^2/2}}{\Gamma(1+\alpha)} E_{4a} \left(-\frac{C^{2\alpha} \omega^{2\alpha}}{4^a} \right) \tag{A.12}
\]