HOMOTOPY PERTURBATION METHOD FOR VISCOUS HEATING IN PLANE COUETTE FLOW

by

Yin-Shan YUNa* and Chaolu TEMUERb

a College of Sciences, Inner Mongolia University of Technology, Hohhot, China
b College of Arts and Sciences, Shanghai Maritime University, Shanghai, China

Original scientific paper
DOI: 10.2298/TSCI1305355Y

In this paper, the problem of viscous heating in plane Couette flow is considered by the homotopy perturbation method. The non-linear terms are expanded to Taylor series of the homotopy parameter. The obtained solutions are shown graphically and are compared with the exact solutions. The obtained results illustrate the efficiency and convenience of the method.

Key words: homotopy perturbation method, homotopy equation, Taylor series, plane Couette flow, viscous dissipation

Introduction

We consider the steady flow of an incompressible Newtonian fluid between two infinite parallel plates, one of which is moving. The governing equations of the problem are [1]:

\[
\frac{d}{dx}\left(\mu \frac{dv}{dx}\right) = 0, \quad \frac{d}{dx}\left(k \frac{dT}{dx}\right) + \mu \left(\frac{dv}{dx}\right)^2 = 0
\]

with the boundary conditions:

\[
x = 0: \quad v = 0, T = T_0, \quad x = b: \quad v = V, T = T_0
\]

where \(v \) is the axial velocity, \(T \) – the temperature, \(\mu \) – the viscosity, \(k \) – the thermal conductivity, \(b \) – the distance of the two infinite parallel plates, \(T_0 \) – the temperature around the two plates, and \(V \) – the velocity of the moving plate. Here, one consider constant thermal conductivity \(k = k_0 \) and viscosity with exponential temperature dependence, \(\mu = \mu_0 \exp[-\alpha(T - T_0)] \), where \(\alpha \) is a constant. Through the following dimensionless transformations:

\[
\theta = \frac{T - T_0}{T_0}, \quad y = \frac{x}{b}, \quad u = \frac{v}{V}, \quad \beta = \alpha T_0, \quad \epsilon = \frac{\mu_0 V^2}{k_0 T_0}
\]

the governing eqs. (1) and the boundary conditions (2) are rewritten as:

\[
\frac{d}{dy}\left(\exp(-\beta \theta) \frac{du}{dy}\right) = 0, \quad \frac{d^2 \theta}{dy^2} + \epsilon \exp(-\beta \theta) \left(\frac{du}{dy}\right)^2 = 0
\]

* Corresponding author; e-mail: yyinshan@sina.com
with
\[y = 0: \quad u = 0, \theta = 0, \quad y = 0: \quad u = 1, \theta = 0 \]
\[(5) \]

In this paper, a powerful analysis technique, the homotopy perturbation method (HPM), is employed to solve the problem. The HPM was proposed by He \cite{2, 3} and was further developed and improved by himself \cite{4-9}. For the effectiveness and convenience of HPM, many other mathematicians and engineers are attracted to study its improvement, convergence and applications in many areas. A new modification of HPM was proposed by adding and subtracting a linear term in the considered original equations in \cite{10}. Two algorithms for constructing the homotopy equation were given and applied to solve quadratic Riccati differential equation of fractional order in \cite{11}. Combination of the Laplace transform and HPM was studied in \cite{12}. Combination of the variational iteration method and HPM was studied in \cite{13}. HPM was improved by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation in \cite{14}. The multistage homotopy-perturbation method was proposed and used to solve the Lorenz system in \cite{15}. A new extended homotopy perturbation method was proposed in \cite{16}. The convergence of HPM was investigated in \cite{17-19}. The applications of the HPM on many areas were also investigated such as the high-order boundary value problems \cite{20-23}, Static pull-in instability \cite{24}, Lane-Emden type singular IVPs problem \cite{25}, integro-differential equations \cite{26}, inverse problem \cite{27}, Hamilton-Jacobi-Bellman equation \cite{28}, heat transfer problem \cite{29, 30} et al.

In \cite{29}, this problem was considered by the same technique. In order to improve those results of \cite{29}, we construct the homotopy equation only based on one of equations instead of all equations as \cite{29}. Meanwhile, the non-linear terms are expanded to Taylor series with respect to the homotopy parameter \(p \). The obtained solutions are shown graphically and are compared with the exact solutions. The computational results show that the approximate solution obtained in this paper has higher accuracy than that in \cite{29}.

Solution by HPM

Through denoting the non-linear terms as:
\[N_1[\theta, u] = \exp(-\beta \theta) \frac{d u}{dy}, \quad N_2[\theta, u] = \exp(-\beta \theta) \left(\frac{d u}{dy} \right)^2 \]

the eqs. (4) are rewritten as:
\[\frac{d}{dy} N_1[\theta, u] = 0, \quad \frac{d^2 \theta}{dy^2} + c N_2[\theta, u] = 0 \]
\[(6) \]

Following the HPM, the expressions of \(u(y) \) and \(\theta(y) \) are assumed:
\[\theta(y) = \theta_0(y) + p \theta_1(y) + \cdots + p^n \theta_n(y) + \cdots, \quad u(y) = u_0(y) + p u_1(y) + \cdots + p^n u_n(y) + \cdots \]
\[(7) \]

The non-linear terms are expanded to Taylor series with respect to \(p \) on \(p = 0 \):
\[N_1[\theta, u] = \sum_{n=0}^{\infty} A_n \ p^n, \quad N_2[\theta, u] = \sum_{n=0}^{\infty} A^n \ p^n \]
where
\[A_n' = \frac{1}{n!} \frac{d^n}{dy^n} \left[N_1 \left(\sum_{n=0}^{\infty} \frac{\theta^n}{n!} \sum_{p=0}^{\infty} u_p^n \right) \right] \quad , n = 0, 1, 2, \cdots , \]
\[A_n^* = \frac{1}{n!} \frac{d^n}{dy^n} \left[N_2 \left(\sum_{n=0}^{\infty} \frac{\theta^n}{n!} \sum_{p=0}^{\infty} u_p^n \right) \right] \quad , n = 0, 1, 2, \cdots . \]

Thus, the eqs. (6) are rewritten:
\[\frac{d}{dy} \sum_{n=0}^{\infty} A_n' p^n = 0 \]
\[\frac{d^2 \theta}{dy^2} + \epsilon \sum_{n=0}^{\infty} A_n^* p^n = 0 \]

The homotopy equation is constructed only based on the eq. (10):
\[\frac{d^2 \theta}{dy^2} + \epsilon \sum_{n=0}^{\infty} A_n^* p^n = 0 \]

Substituting the expressions of solutions (7) to the eq. (9) and the homotopy eq. (11), then setting the coefficients of \(p^i \) (\(i = 0, 1, \ldots, n, \ldots \)) are zero, we obtain a series of linear boundary problems:
\[p^0 \begin{cases} \theta_0 (y) = 0 \\ \theta_0 (0) = 0, \quad \theta_0 (l) = 0 \end{cases} \]
\[p^0 \begin{cases} u_0 (y) - \beta u_0 (y) \theta_0 (y) = 0 \\ u_0 (0) = 0, \quad u_0 (l) = 1 \end{cases} \]
\[p^1 \begin{cases} \epsilon e^{-\beta \theta_0 (y)} u_0 (y)^2 + \theta_1 (y) = 0 \\ \theta_1 (0) = 0, \quad \theta_1 (l) = 0 \end{cases} \]
\[p^1 \begin{cases} \beta^2 \theta_1 (y) u_0 (y) \theta_0 (y) - \beta u_1 (y) \theta_0 (y) - \beta u_0 (y) \theta_1 (y) - \beta u_0 (y) \theta_1 (y) - u_1 (y) = 0 \\ u_1 (0) = 0, \quad u_1 (l) = 0 \end{cases} \]

Solving these linear problems, the solutions are obtained:
\[\theta_0 = 0 \]
\[\theta_1 = \frac{\epsilon y}{2} - \frac{y^2 \epsilon}{2} \]
\[\theta_2 = \frac{1}{24} y (y(y^2 - 2y + 2) \beta \epsilon^2 - \beta \epsilon^2) \]

\[u_0 = y \]

\[u_1 = -\frac{1}{6} y^3 \beta \epsilon + \frac{1}{4} y^2 \beta \epsilon - \frac{y \beta \epsilon}{12} \]

\[u_2 = -\frac{1}{960} (1 - 2y)^5 \beta^2 \epsilon^2 - \frac{1}{480} y \beta^2 \epsilon^2 + \frac{\beta^2 \epsilon^2}{960} \]

Thus the \(n \)-order approximate solutions of \(\theta(y) \) and \(u(y) \) are obtained by let \(p = 1 \):

\[\theta(y) \approx \Xi_n(y) = \theta_0(y) + \theta_1(y) + \cdots + \theta_{n-1}(y), \quad u(y) \approx U_n(y) = u_0(y) + u_1(y) + \cdots + u_{n-1}(y) \]

These approximate solutions may be compared with the exact solution of [1] which is given by:

\[\exp \left[\beta \theta(y) \right] = \left(\frac{\epsilon \beta}{8} \right)^{1/2} \cosh \left\{ \left(2y - 1\right) \text{arcsinh} \sqrt[2]{\frac{\epsilon \beta}{8}} \right\}, \]

\[u = \frac{1}{2} \left\{ \frac{8}{1 + \frac{8}{\epsilon \beta}} \tanh \left[\left(2y - 1\right) \text{arcsinh} \sqrt[2]{\frac{\epsilon \beta}{8}} \right] + 1 \right\} \]

This comparison of \(\theta \) is given in fig.1 when \(\beta = 1 \) and a range of values of \(\epsilon \). The graphs of the deviation of the present results from the exact solution are depicted in fig. 2 when \(\beta = 1 \) and a range of values of \(\epsilon \).

Figure 1. Temperature distribution in a plane Couette flow, \(\beta = 1 \).
(Dots: the 3-order approximate solutions in the present work, Solid line: the exact solution)

Figure 2. Deviation of the 3-order approximate solution from the exact solution, \(\beta = 1 \)

Conclusions

In this paper the homotopy equation is constructed based on one of two governing equations. The HPM is also combined with Taylor series. The approximate solutions of the problem of viscous heating in plane Couette flow are obtained with high accuracy. The efficiency and convenience of the HPM have confirmed again once.
Acknowledgments

The present work was supported by the National Natural Science Foundation of China (No.11071159, 61072147) and Natural Science Foundation of Shanghai Maritime Univ. (No. 20110008).

References