NEW MULTI-SOLITON SOLUTIONS FOR GENERALIZED BURGERS-HUXLEY EQUATION

by

Jun LIU*, Hong-Ying LUOa, Gui MUa, Zhengde DAIb, and Xi LIUc

a College of Mathematics and Information Science, Qujing Normal University, Qujing, China
b School of Mathematics and Statistics, Yunnan University, Kunming, China
c School of Information Science and Engineering, Yunnan University, Kunming, China

Short paper
DOI: 10.2298/TSCI1305486L

The double exp-function method is used to obtain a two-soliton solution of the generalized Burgers-Huxley equation. The wave has two different velocities and two different frequencies.

Key words: solitary solution, non-linear evolving equation, double exp-function method

Introduction
The Burgers-Huxley equation is encountered in the description of many non-linear wave phenomena \cite{1}. It can be written \cite{1}:

\[u_t + \alpha u^n u_x - u_{xx} - \beta u(u^n - \gamma)(1 - u^n) = 0 \] \hspace{1cm} (1)

where α, β, γ, and n are constants.

This equation can be solved by various analytical methods, such as the variational iteration method \cite{2}, the homotopy perturbation method \cite{3-5}, and the exp-function method \cite{6, 7}. A complete review on various analytical methods is available in \cite{8, 9}. In this paper the double exp-function method \cite{10} is adopted to elucidate the different velocities and different frequencies in the travelling wave.

Double exp-function method
The multiple exp-function method was first proposed in \cite{10}, and the double exp-function method was used to search for double-soliton solutions in \cite{11}. Assume that the solution of eq. (1) can be expressed in the form:

\[u = \frac{a_1 e^\xi + a_2 e^{-\xi} + a_3 e^\eta + a_4 e^{-\eta}}{k_1 e^\xi + k_2 e^{-\xi} + k_3 e^\eta + k_4 e^{-\eta}} \] \hspace{1cm} (2)

where $\xi = c_1 x + c_2 t$, and $\eta = c_3 x + c_4 t$.

* Corresponding author; e-mail: liujunxie@126.com
Substituting eq. (2) into eq. (1) and equating all coefficients of $e^{i(\xi + \eta)}$ to zero, we have a set of algebraic equations. Solving the resulting system with the aid of some mathematical software, we can identify the constants in eq. (2).

Case 1. One-soliton solution

$$u(x,t) = \frac{a_5}{k_1 e^{\xi} + a_5 + k_4 e^{-\xi}}$$

(3)

where $k_1, k_4,$ and a_5 are free parameters, and:

$$\xi = \frac{\alpha}{4} - \frac{\sqrt{\alpha^2 + 8\beta}}{4} x + c_2 t$$

Case 2. Two-soliton solution

$$u(x,t) = \frac{sk_3 k_4 e^{\xi} + k_2 e^{-\xi} + s k_3 e^{\eta} + k_4 e^{-\eta}}{k_1 e^{\xi} + k_2 e^{-\xi} + k_3 e^{\eta} + k_4 e^{-\eta}}$$

(4)

where

$$\xi = \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) x + (2c_3 - \alpha) \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) t$$

$$\eta = c_3 x + \left\{-\frac{1}{2} \alpha c_3 - \frac{\beta - 1}{2} \alpha \gamma c_3 + \frac{\beta \gamma^2}{2} + \frac{1}{2} \alpha - 2c_3 - \frac{1}{2} \alpha \gamma \right\} \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) t$$

$$\delta = 8 \beta \gamma^2 - 16 \beta \gamma + 8 \beta + \alpha^2 \gamma^2 - 2 \alpha^2 \gamma + \alpha^2$$

Alternatively by the following transformation:

$$u = \frac{1}{v}$$

eq. (1) becomes:

$$v v_t + \alpha n^2 v_x + \left(1 - \frac{1}{n}\right) v_x - v v_{xx} + \beta n^2 (v - 1)(v - \gamma) = 0$$

(6)

By the similar solution process as above, we have:

Case 1. One-soliton solution

$$u(x,t) = \frac{\gamma k_5}{k_3 e^{\xi} + k_5}$$

(7)
where k_3 and k_5 are some free parameters, and:

$$
\xi = c_3 x + c_4 t
$$

$$
c_3 = \left[\frac{\alpha n - \sqrt{(\alpha n)^2 + 4\beta n^2(1+n)}}{1+n} \right]^{1+n}
$$

$$
c_4 = \frac{n\lambda[\beta\gamma + c_3 \alpha - \beta(1+n)]}{1+n}
$$

Case 2. One-soliton solution

$$
\eta = c_1 x + c_2 t
$$

$$
c_1 = \left[\frac{\alpha n - \sqrt{(\alpha n)^2 + 4\beta n^2(1+n)}}{1+n} \right]^{1+n}
$$

$$
c_2 = \frac{-n\lambda[\beta\gamma + c_3 \alpha - \beta(1+n)]}{1+n}
$$

Case 3. Two-soliton solution

$$
\eta = c_1 x + c_2 t
$$

$$
c_1 = \frac{-2c_3 (1+n) + \alpha n^2 + \sqrt{\delta}}{2(1+n)}
$$

$$
c_2 = -c_4 + \beta n\gamma \left[\frac{\alpha n^2 - 2c_3 (1+n) + \sqrt{\delta}}{2(1+n)} \right] + (-\beta\lambda^2 n - \gamma n\alpha c_3)(1+n)^{-1}
$$

$$
\delta = \gamma^2 n^2 \left[\alpha^2 \gamma^2 n^2 + 4\beta(1+\gamma n) \right]
$$

Conclusions

Using the double exp-function method, new two-soliton solutions are obtained for generalized Burgers-Huxley equation. This method can also be applied to solve other types of non-linear evolution equations.

Acknowledgments

The work was supported by Chinese Natural Science Foundation Grant No. 11061028, 11361048, Yunnan NSF Grant No. 2010CD086, 2011Y012 and Qujin Normal University NSF Grant No. 2012QN016, 2010QN018.
References

Paper submitted: March 20, 2013
Paper revised: April 3, 2013
Paper accepted: May 1, 2013