PERIODIC SOLUTION TO GENERAL CONDUCTION PROBLEMS

by

Gui MUα*, Zhengde DAIβ, Jun LIUα, and Jie FUα

α College of Mathematics and Information Science, Qujing Normal University, Qujing, China
β School of Mathematics and Statics, Yunnan University, Kunming, China

Short paper
DOI: 10.2298/TSCI1305494M

In this paper, we present a modified exp-function method, where hyperbolic cosine and cosine functions are used. The hyperbolic cosine functions are responsible for energy localization while cosine functions reveal the periodic effect. A general conduction problem is used as an example to illustrate the solution process.

Key words: non-linear equation, exp-function method, solitary solution

Introduction

Many kinds of soliton equations have been discovered up to now, for examples, non-linear Schrodinger equation, KdV equation, Sine-Gordon equation, and others. All of these equations can be transformed into bilinear forms by some special transformations [1] including the rational transformation, the logarithmic transformation, and the bi-logarithmic transformation. Once we get the bilinear forms of these equations, we can directly construct N-soliton solutions following the Hirota’s basic assumptions. Furthermore, bilinear forms have some special intrinsic properties, which can bring us some free considerations. Own to these bilinear forms, Lou [2, 3] constructed many localized structure by the variable separation method, Hirota [1] obtained determinants and pfaffians solutions. Recently, Dai et al. [4] proposed the three-wave method for non-linear evolution equations (NEE), and He and Wu suggested the exp-function method for solitary solutions [5, 6]. Review on various methods is available in [7-9]. In this paper, we will suggest a modification of the exp-function method.

Consider a (2+1) dimensional non-linear evolution equation of the general form:

\[F(u, u_x, u_y, u_{xx}, u_{yy}) = 0 \] \hspace{1cm} (1)

where \(F \) is a polynomial of \(u(x, y, t) \) and its derivatives.

We consider a bilinear equation of the form:

\[G(D_t, D_x, D_y, \cdots) f \cdot f = 0 \] \hspace{1cm} (2)

where \(G \) is a general polynomial in \(D_t, D_x, \) and \(D_y \), where the \(D \)-operator is defined by:

\[
D^n_t D^m_x F(x, y, t) \cdot G(x, y, t) = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^m \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^n F(x, y, t) G(x', y', t') \bigg|_{x'=x, y'=y, t'=t} \]

Traditionally, one obtains \(N \) soliton solutions using the assumption:

* Corresponding author; e-mail: actuary2010@163.com
According to the exp-function method [5-9], we assume that:

$$f = \sum_{i=1}^{m} a_i \left[\exp(\xi_i) + \exp(-\xi_i) \right] + \sum_{j=1}^{n} b_j \left[\exp(\eta_j) + \exp(-\eta_j) \right]$$

or equivalently:

$$f = 2 \sum_{i=1}^{m} a_i \cosh(\xi_i) + 2 \sum_{j=1}^{n} b_j \cos(\eta_j)$$

where $\xi_i = k_i x + l_i y + c_i t$ and $\eta_j = d_j x + e_j y + f_j t$.

In eq. (5), cosh functions are responsible for energy localization but trigonometric cos functions reveal periodic effect in real physical background.

Application to (2+1) dimensional NLEE equation

In this work, we study the following general conduction problem arising in fluid mechanics [5]:

$$u_{xxx} + 3u_x u_{xx} + 3u_x u_{xy} + 2u_{xt} = 0$$

Bekir [10] has studied its Painleve property. By the dependent variable transformation $u = 2(\ln \phi)_x$, then, eq. (6) is reduced to Hirota bilinear form:

$$(D_x D_t + D_x^3) \phi \cdot \phi = 0$$

One soliton solution is assumed to have the form:

$$\phi = 1 + e^{k x + l y + c t}$$

Inserting eq. (8) into eq. (7), and after simple calculation, we obtain:

$$u(x,t) = \frac{2k_1 e^{k x + l y - k t}}{1 + e^{k x + l y - k t}}$$

Two soliton solutions can be constructed by substituting:

$$\phi = 1 + e^{k_1 x + l_1 y + c_1 t} + e^{k_2 x + l_2 y + c_2 t} + a_{12} e^{k_1 x + l_1 y + c_1 t + k_2 x + l_2 y + c_2 t}$$

into eq. (7) and solving for the phase shift a_{12}, we find two-soliton solution in the form:

$$u(x,t) = \frac{2 \left(k_1 e^{k_1 x + l_1 y - k_1 t} + k_2 e^{k_2 x + l_2 y - k_2 t} + a_{12} e^{k_1 x + l_1 y - k_1 t + k_2 x + l_2 y - k_2 t} \right)}{1 + e^{k_1 x + l_1 y - k_1 t} + e^{k_2 x + l_2 y - k_2 t} + a_{12} e^{k_1 x + l_1 y - k_1 t + k_2 x + l_2 y - k_2 t}}$$

Alternatively, we assume that:

$$\phi = \cosh(k_1 x + l_1 y + c_1 t) + \cos(k_2 x + l_2 y + c_2 t) + a_3 \cosh(k_3 x + l_3 y + c_3 t)$$

(10)
Substituting eq. (10) into eq. (7), we have the following relations:

\[c_1 = -k_3^2(-1 + 3l_3^2 - 6l_3^2a_3^2 + 3l_3^4a_3^4), \quad c_2 = -k_3l_3^2(1 - a_3^4)(l_3^2 - 2l_3^2a_3^2 + a_3^4l_3^2 - 3), \]

\[c_3 = k_3^2(-1 + 3l_3^2 - 6l_3^2a_3^2 + 3l_3^4a_3^4), \quad k_1 = -k_3, \quad k_2 = l_3k_3(1 - a_3^4), \quad l_2 = 1, l_1 = l_3 \]

where \(l_3 \), \(a_3 \), and \(k_3 \) are free parameters. This case leads to a breath-kink solitary solution:

\[
\begin{align*}
 u(x,t) &= \frac{2[k_1 \sin(k_1x + l_3y + c_1t) - k_3 \sin(k_3x + l_3y + c_2t) + a_3k_3 \sin(k_3x + l_3y + c_2t)]}{\cosh(k_1x + l_3y + c_1t) + \cos(k_2x + l_3y + c_2t) + a_3 \cosh(k_3x + l_3y + c_2t)}
\end{align*}
\]

This solution shows periodic breathing resulting from cosine function in above expressions.

Conclusions

Generally, \(N \)-soliton solution of non-linear evolution equation can be obtained by a similar manner illustrated. In this article, by the modified exp-function method, we obtain various solutions including the multiple kink solution and the breath-kink solitary solution. The method is proved to be an effective method to construct new exact solutions of non-linear evolution equation.

Acknowledgment

The work was supported by Chinese Natural Science Foundation Grant No. 11061028, 11361048, Yunnan NSF Grant No. 2010CD086 and Qujin Normal University NSF Grant No. 2010QN018.

References

