NOZZLE DESIGN IN A FIBER SPINNING PROCESS
FOR A MAXIMAL PRESSURE GRADIENT

by

Zhanping YANG.a, Li ZHANG.a, Rouxi CHENb, Ji-Huan HEb,*, Jian-Hua CAOa, and Minfeng SONGa

a Nantong Cellulose Fibers Co., Ltd, Nantong, China
b National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, Suzhou, China

Short paper
DOI: 10.2298/TSCI1305529Y

The thickness of a spinneret is always a geometrical constraint in nozzle design. The geometrical form of a nozzle has a significant effect on the subsequent spinning characteristics. This paper gives an optimal condition for maximal pressure gradient through the nozzle.

Key words: nozzle, spinneret, analytic solution, optimal design

Introduction

The nozzle is one of the most important parts of a spinneret in various fiber spinning processes, its form will greatly affect the morphology of its productions and output. Figure 1 shows a widely used spinneret and its nozzle structure.

The top size of the nozzle section is determined by the number of nozzle in a spinneret, while its low size and its geometrical form are determined by fiber requirements. The thickness of a spinneret is a main geometrical constraint in many practical applications. This paper is to optimally design a nozzle with maximal pressure drop in the nozzle.

Theory

Assuming that the flow through a nozzle follows the Darcy law, that is:

\[u = \kappa \nabla p \]

(1)

where \(\kappa \) is the constant, \(u \) – the flow speed, and \(\nabla p \) – the pressure gradient through a nozzle.

In order to improve its output, a high spinning velocity is predicted, that means a higher pressure gradient in a nozzle is an appropriate choice in the design of a nozzle.

For a cone nozzle, the velocity distribution on its section can be expressed as:

\[u = k(R^2 - r^2) \]

(2)

* Corresponding author; e-mail: hejihuan@suda.edu.cn
where \(k \) is the constant, and \(R \) – the inner radius of the nozzle.

The constant \(k \) in eq. (2) can be determined by the mass conservation law, which requires:

\[
Q = \frac{2\pi k \rho r(R^2 - r^2)}{2} = \frac{1}{2} \pi R^4 \rho k
\]

where \(Q \) is the flow rate, and \(\rho \) – the density of the flow. From eq. (3), we have:

\[
k = \frac{2Q}{\pi R^4 \rho}
\]

The constant \(k \) in eq. (2) can be determined by the mass conservation law, which requires:

\[
Q = \int_0^R 2\pi k \rho r(R^2 - r^2)dr = \frac{1}{2} \pi R^4 \rho k
\]

The velocity in a nozzle can be obtained, which reads:

\[
u = \frac{2Q}{\pi R^4 \rho} (R^2 - r^2)
\]

Due to geometrical constraint of the thickness of a spinneret, complex nozzles appear in many applications. Assume that the radii of the top and low sections of the nozzle are \(r_1 \) and \(r_3 \), respectively, and its thickness is \(h \) as illustrated in fig. 2.

The velocity distribution in each section of the nozzle can be determined by eq. (5). Assume that the flow in the nozzle is viscous and incompressible; the flow is laminar and there is no acceleration of fluid in the nozzle, the momentum equation becomes:

\[
\frac{1}{\rho} \frac{d^2u}{dz^2} = \mu \frac{d^2u}{dz^2}
\]

where \(\mu \) is the viscosity coefficient.

In practical applications, the nozzle height is thin (e. g. 1 mm), so the second derivative of the velocity can be approximately expressed:

\[
\frac{d^2u}{dz^2} \approx \frac{h_1(u_3 - u_2) - h_2(u_2 - u_1)}{h_1h_2^2}
\]

Equation (6) becomes:

\[
\Delta p = \rho h \mu \frac{h_1(u_3 - u_2) - h_2(u_2 - u_1)}{h_1h_2^2} = \rho h \mu \frac{(h - h_2)(u_3 - u_2) - h_2(u_2 - u_1)}{(h - h_2)h_2^2}
\]

The pressure drop at \(r = 0 \) is:

\[
\Delta p(r = 0) = \rho h \mu \frac{(h - h_2)(u_3 - u_2) - h_2(u_2 - u_1)}{(h - h_2)h_2^2} = \rho h \mu \frac{h(u_3 - u_2) - h_2(u_3 - u_1)}{(h - h_2)h_2^2}
\]

where \(u_1, u_2, \) and \(u_3 \) are maximal flow speed at the top, middle, and low sections of the nozzle, respectively.
In practical applications, \(r_1, r_3, \) and \(h \) are constants, and \(r_2 \) and \(h_2 \) should be such determined that its pressure drop at \(r = 0 \) through the nozzle is maximal, that requires:

\[
\frac{d\Delta p}{dh_2}(r = 0) = \rho h \mu \left(\frac{-(h - h_2)h_2^3(\bar{u}_3 - \bar{u}_1) - (2hh_2 - 3h_2^2)[h(\bar{u}_3 - \bar{u}_2) - h_2(\bar{u}_3 - \bar{u}_1)]}{(h - h_2)h_2^{-7}} \right) = 0 \tag{13}
\]

From eq. (13), \(\bar{u}_2 \) can be determined, which reads:

\[
\bar{u}_2 = \frac{(h - h_2)h_2^3(\bar{u}_3 - \bar{u}_1) + (2hh_2 - 3h_2^2)[h(\bar{u}_3 - h_2(\bar{u}_3 - \bar{u}_1)]}{hh_2(2h - 3h_2)} \tag{14}
\]

According to eq. (12), for a fixed \(h_2 \), its nozzle section can be determined:

\[
r_2 = \sqrt{\frac{2Q}{\pi \rho \bar{u}_2}} = \frac{2Q}{\pi ^2 \rho (h - h_2)h_2^3(\bar{u}_3 - \bar{u}_1) + (2hh_2 - 3h_2^2)[h(\bar{u}_3 - h_2(\bar{u}_3 - \bar{u}_1)]} \tag{15}
\]

Equation (15) can be used for practical design of a nozzle.

Conclusions

In this paper, we adopt approximately a difference definition for the second derivative of the velocity in the derivation, and obtain a formula, eq. (15), for determining the radius of the middle section of a nozzle for a maximal pressure drop in the nozzle.

Acknowledgment

The work is supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), National Natural Science Foundation of China under grant No. 61303236 and No.11372205 and Project for Six Kinds of Top Talents in Jiangsu Province under grant No. ZBZZ-035, Science & Technology Pillar Program of Jiangsu Province under grant No. BE2013072.

References

