DEHUMIDIFICATION PERFORMANCE INVESTIGATION OF RUN-AROUND MEMBRANE ENERGY EXCHANGER SYSTEM

by

Miklos KASSAI\textsuperscript{a*}, Gaoming Ge\textsuperscript{b}, Carey J. SIMONSON\textsuperscript{b}

\textsuperscript{a}Budapest University of Technology and Economics, Budapest, Hungary
\textsuperscript{b}Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada

\*Corresponding author:
E-mail: kas.miklos@gmail.com

Liquid-to-air membrane energy exchanger is a novel membrane base energy exchanger, which allows both heat and moisture transfer between air and a salt solution. It uses semi-permeable membrane to eliminate entrainment of liquid desiccant as aerosols in air stream and allow simultaneous heat and moisture transfer between salt solution flow and airflow. The heat and mass transfer performance of a single liquid-to-air membrane energy exchanger is significantly dependent on two dimensionless parameters. They are the number of heat transfer units (NTU) and the ratio of heat capacity rates between solution flow and air flow (Cr*). The liquid-to-air membrane energy exchangers can also be applied in a run-around membrane energy exchanger system, which is mainly comprised of two liquid-to-air membrane energy exchangers and a closed loop of aqueous desiccant solution and used as a passive energy recovery system to recover the energy (both heat and moisture) from the exhaust air to precondition the supply air in air conditioning systems. In this study the dehumidification capacity of a run-around membrane energy exchanger is investigated numerically at different exhaust air temperatures and Cr* values. Increasing the exhaust air temperature or the Cr* would enhance the dehumidification capacity of the a run-around membrane energy exchanger system under Cr* \leq 1, but the improvement is limited. The dehumidification capacity at low Cr* is much lower than that under the optimal Cr* value (Cr*=3.2) where the maximum latent effectiveness is obtained.

Key words: run-around membrane energy exchanger, dehumidification capacity, ventilation, energy efficiency

Introduction

Heating, ventilating and air conditioning systems (HVAC) are essential for the maintenance of a comfortable and healthy indoor environment for building occupants. In the field of sustainable building and its assessment, not only thermal comfort and indoor air quality but also energy efficiency have been recognized as essential parameters of indoor environmental design [1]. In developed countries the HVAC systems consume around a third of the total energy consumption of the whole society. On the other hand, energy saving in buildings is being strictly regulated by official requirements and local authorities. Nowadays, the role of heat gains in the energy balance of a building is becoming more and more important. In a modern building, the ventilation losses may become more than 50% of total thermal losses [2]. Taking into account the above cited facts, the
improvement of the efficiency in buildings ventilating systems in order to reduce their environmental impact constitutes a key issue [3,4].

In the case of many buildings the 100% fresh air in HVAC systems results a significant increasing in the building cooling/heating loads [5,6]. For such systems, it is necessary to use energy recovery systems to reduce this load. The operating objective of the energy recovery systems is to use the exhaust air of the room to pre-condition the outdoor air. By this way a substantial amount of energy is recovered which reduces the overall HVAC energy consumption. The development of energy recovery systems has led to improved performance and capability in recovering both sensible and latent energy [7]. Enthalpy energy exchangers that utilize a porous membrane as the heat and moisture transfer surface is one device that can recover both sensible and latent energy [8]. Energy recovery systems are commonly used in HVAC systems nowadays. They reduce the operation costs for conditioning ventilation air by both decreasing the required energy to the condition air and auxiliary energy consumption. Significant energy savings from these systems have been shown in several situations [9-11]. There are many types of energy recovery systems which are now cost effective in a wide range of ventilation designs. These systems include heat or enthalpy wheels, flat plate exchangers (heat/enthalpy), or runaround glycol loops. The operation and performance of these systems is well described in literature [12]. The liquid-to-air membrane energy exchanger is a new membrane-based liquid desiccant device, which uses semi-permeable membranes to eliminate entrainment of liquid desiccant as aerosols in air stream and allow simultaneous heat and moisture transfer between salt solution flow and airflow. Liquid-to-air membrane energy exchangers can be used as air dehumidifiers for supply air or desiccant solution regenerators in liquid desiccant air conditioning systems. Over the past years, the performance of single liquid-to-air membrane energy exchangers has been comprehensively studied, including the steady-state effectiveness [13-15] and transient performance [16-17] under different operating conditions (e.g. air dehumidification and solution regeneration conditions). Up to 95% total effectiveness for the single liquid-to-air membrane energy exchanger can be achieved, and its effectiveness (sensible, latent and total) increases as the NTU and Cr* values increase [18].

The liquid-to-air membrane energy exchangers can also be applied in a run-around membrane energy exchanger system, which is mainly comprised of two liquid-to-air membrane energy exchangers and a closed loop of aqueous desiccant solution and used as a passive energy recovery system to recover the energy (both heat and moisture) from the exhaust air to pre-condition the supply air in air conditioning systems [19]. The steady-state and transient effectiveness as well as energy savings potential of run-around membrane energy exchanger systems have been experimentally measured and numerically simulated [20-25]. Early test results showed that a 55% total effectiveness could be achieved by run-around membrane energy exchanger systems using two laboratory-constructed counter-cross-flow liquid-to-air membrane energy exchanger exchangers for energy recovery from the exhaust air (i.e. higher than the minimum total effectiveness 50% required by ASHRAE Standard 90 [26]. In the run-around membrane energy exchanger system, the effectiveness always increases as the NTU value increases, while the effectiveness increases with Cr* at lower Cr* values until it reaches the peak value, after which the effectiveness decreases as the Cr* increases. The optimal Cr* is dependent on the operating condition (i.e. outdoor air state) and the heat and mass transfer performance of the system. For example, the maximum total effectiveness of a run-around membrane energy exchanger system in our previous study was achieved at Cr*=1.5 and 2.5 in AHRI winter and summer test conditions, respectively [27]. Using hourly simulations for an office building and a hospital building in four different North American cities, Rasouli et al. [28-30] found that a RAMEE provided up to 40%–60% annual heating energy saving and up to 20% annual cooling energy saving in the office and hospital buildings respectively, depending on the climate and RAMEE effectiveness. The life-cycle cost analysis showed that the payback period of the energy recovery ventilator (ERV) was within two years in cold climates and 1–5 years in hot climates. The payback period of ERVs was about two years sooner for the hospital building than in the office building [30]. This difference is caused mostly by the higher ventilation rates required for a hospital.

Working principle of the run-around membrane energy exchanger system is, more or less, similar to the energy wheel which is a well-developed and widely applied energy recovery device in building HVAC systems. The energy wheel rotates slowly (i.e. 20–30 r/min) within the supply and exhaust air streams and recovers energy from the exhaust air. When the exhaust air is heated (i.e.
70–80°C or even higher) and rotation speed is reduced (i.e. 3–5 r/min), the dehumidification capacity of the wheel increases substantially [31]. The wheel is commonly defined as desiccant wheel in these operating conditions, and it is mainly used to dry air flow. Similarly, the impacts of exhaust air temperatures and Cr* values (i.e. desiccant solution flow rates) on the dehumidification capacity of a run-around membrane energy exchanger system are numerically investigated under low Cr* values (Cr*<1) in this study.

**Liquid-to-air membrane energy exchanger**

The liquid-to-air membrane energy exchanger is a flat-plate energy exchanger constructed with multiple air and liquid flow channels each separated by a semi-permeable membrane, which is permeable to water vapor but impermeable to liquid water. In this study, a small-scale single-panel liquid-to-air membrane energy exchanger with a counter-cross-flow configuration for air and solution flows is tested during dehumidification operating conditions. The small-scale single-panel liquid-to-air membrane energy exchanger was designed to minimize the sources of errors in liquid-to-air membrane energy exchanger performance evaluation, and facilitate research and development of liquid-to-air membrane energy exchangers by saving the money and time. The LiCl solution flows from top to bottom in the small-scale liquid-to-air membrane energy exchanger. Fig. 1 shows the air and solution flow configurations of the tested liquid-to-air membrane energy exchanger. Two grooved plastic liquid-flow panels are each enclosed by a semi-permeable membrane to form two solution channels, one on each side of the air channel. An air spacer is used to form an air channel of constant thickness. The small-scale liquid-to-air membrane energy exchanger specifications and membrane properties are presented in tab. 1.

![Diagram of Liquid-to-air membrane energy exchanger](image)

**Figure 1. Configuration of a small-scale single-panel liquid-to-air membrane energy exchanger** [27]

**Table 1. Specifications and membrane properties of the small-scale liquid-to-air membrane energy exchanger** [27]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchanger length, [m]</td>
<td>0.99</td>
</tr>
<tr>
<td>Exchanger aspect ratio of the air-liquid contact area, [-]</td>
<td>10.5</td>
</tr>
<tr>
<td>Exchanger entrance ratio, [-]</td>
<td>0.025</td>
</tr>
<tr>
<td>Air gap thickness, [mm]</td>
<td>5</td>
</tr>
<tr>
<td>Solution gap thickness in each side panel, [mm]</td>
<td>1.2</td>
</tr>
<tr>
<td>Water vapor transmission resistance of membrane, [sm⁻¹]</td>
<td>24</td>
</tr>
<tr>
<td>Membrane thermal conductivity, [Wm⁻¹K⁻¹]</td>
<td>0.065</td>
</tr>
<tr>
<td>Membrane thickness, [mm]</td>
<td>0.265</td>
</tr>
</tbody>
</table>

**Run-around membrane energy exchanger**
Run-around membrane energy exchanger system

A run-around membrane energy exchanger system is comprised of two or more separated liquid-to-air membrane energy exchangers and an aqueous desiccant solution (in this research lithium chloride (LiCl) solution) that is pumped in a closed loop between the liquid-to-air membrane energy exchangers, as shown in fig. 2. In a typical run-around membrane energy exchanger system, one liquid-to-air membrane energy exchanger is located in the outdoor supply air stream entering the building, and another liquid-to-air membrane energy exchanger is located in the exhaust air stream leaving the building. Heat and moisture are transferred between the air and desiccant solution through the membrane in each liquid-to-air membrane energy exchanger. As a consequence, the run-around membrane energy exchanger system passively recovers energy from the exhaust air to precondition the supply air in the air conditioning system.

![Figure 2. Schematic of a counter-cross-flow run-around membrane energy exchanger [23]](image)

Performance factors

The heat and mass transfer performance of a single liquid-to-air membrane energy exchanger or a run-around membrane energy exchanger is significantly dependent on two dimensionless parameters. They are the number of heat transfer units (NTU) and the ratio of heat capacity rates between solution flow and air flow (Cr*), as defined by eq. (1) and (2) [32]:

\[
NTU = \text{Max} \left( \frac{2UA}{C_{\text{air}}} , \frac{2UA}{C_{\text{sol}}} \right) \tag{1}
\]

\[
Cr^* = \frac{C_{\text{min}}}{C_{\text{air}}} = \frac{\dot{m}_{\text{min}} c_{p,\text{min}}}{\dot{m}_{\text{air}} c_{p,\text{air}}} \tag{2}
\]

where A is the membrane surface area, C is heat capacity rate, \(\dot{m}\) is mass flow rate, and \(c_p\) is specific heat capacity.

Additionally if \(Cr^* \geq 1\), then \((\dot{m} \cdot c_p)_{\text{min}} = \dot{m}_{\text{air}} \cdot c_{p,\text{air}}\); if \(Cr^* < 1\), then \((\dot{m} \cdot c_p)_{\text{min}} = \dot{m}_{\text{sol}} \cdot c_{p,\text{sol}}\). Where the subscripts air and sol represent the air stream and solution flow.
For a run-around membrane energy exchanger system, the definition of effectiveness is similar to the single liquid-to-air membrane energy exchanger, but the inlet desiccant solution state is replaced by the corresponding inlet state of exhaust air. The effectiveness of the supply and exhaust exchangers are calculated by eq. (3) and (4), respectively. The overall effectiveness of the run-around membrane energy exchanger system is the average value of these two exchangers under steady state, as shown in eq. (5).

\[
\varepsilon_{X,sup} = \left( \frac{m_{air} \cdot c_{p,air}}{(m \cdot c_p)_{\text{min}}} \right) \cdot \frac{X_{air,in,sup} - X_{air,out,sup}}{X_{air,in,sup} - X_{air,in,exh}}
\]

\[
\varepsilon_{X,exh} = \left( \frac{m_{air} \cdot c_{p,air}}{(m \cdot c_p)_{\text{min}}} \right) \cdot \frac{X_{air,out,exh} - X_{air,in,exh}}{X_{air,in,sup} - X_{air,in,exh}}
\]

\[
\varepsilon_{o,X} = \frac{\varepsilon_{X,sup} + \varepsilon_{X,exh}}{2}
\]

Where \( \varepsilon_{X,sup} \), \( \varepsilon_{X,exh} \), and \( \varepsilon_{o,X} \) represent sensible and latent effectiveness of the supply liquid-to-air membrane energy exchanger, exhaust liquid-to-air membrane energy exchanger and the whole run-around membrane energy exchanger system, respectively. \( X \) represents the air temperature, moisture content or enthalpy values [32].

**Dehumidification performance of a run-around membrane energy exchanger at low Cr* conditions**

**Numerical modeling of a run-around membrane energy exchanger**

The validated numerical model of a single liquid-to-air membrane energy exchanger can also be used to predict the performance of a run-around membrane energy exchanger system when Cr*<1. By coupling two liquid-to-air membrane energy exchangers in a closed loop, the numerical model can simulate the steady-state energy performance of a run-around membrane energy exchanger system after enough iterations (e.g. >5000 iterations). The energy performance (i.e. effectiveness) of a run-around membrane energy exchanger system at low Cr* conditions would be estimated using numerical model.

An enthalpy pump system (EPS) code is used to numerically evaluate the performance of the small-scale LAMEE. The EPS code has been developed by the University of Saskatchewan RAMEE research group [27] and is modified based on the geometry and specifications of the small-scale single-panel LAMEE.

Some simplifying assumptions are made to reduce the complexity of the calculation process. These assumptions, which do not significantly affect the accuracy of the model, are:

1. The fluid flows in each exchanger are one dimensional and counter flow.
2. The heat and mass transfer processes occur only normal to each membrane and the membrane properties are constant and steady state.
3. Axial heat conduction and water molecular diffusion in the two fluids in the flow directions are negligible.
4. Phase change heat gain or loss due to adsorption/desorption of water vapor at the membrane surface occurs only on the liquid side.

Based on the above assumptions, the steady-state governing eq. for coupled heat and moisture transfer for each fluid in a LAMEE are [32]:

5
\[
\frac{\dot{m}_{\text{air}}}{H} c_{p,\text{air}} \frac{dT_{\text{air}}}{dx} + 2U(T_{\text{air}} - T_{\text{sol}}) = 0
\]  \quad (6)

\[
\frac{\dot{m}_{\text{sol}}}{H} c_{p,\text{sol}} \frac{dT_{\text{sol}}}{dx} - 2U_{m} (W_{\text{air}} - W_{\text{sol}}) h_{fc} - 2U(T_{\text{air}} - T_{\text{sol}}) = 0
\]  \quad (7)

\[
\frac{\dot{m}_{\text{air}}}{H} \frac{dW_{\text{air}}}{dx} + 2U(W_{\text{air}} - W_{\text{sol}}) = 0
\]  \quad (8)

\[
\frac{\dot{m}_{\text{sol}}}{H} \frac{dX_{\text{sol}}}{dx} - 2U_{m}(W_{\text{air}} - W_{\text{sol}}) = 0
\]  \quad (9)

where \(\dot{m}_{\text{air}}\) and \(\dot{m}_{\text{sol}}\) are the mass flow rates of dry air and salt solution through a single channel respectively, \(H\) is the height of energy exchanger, and \(U\) and \(U_{m}\) are the overall heat and mass transfer coefficients between the air and salt solution, respectively. They are obtained from eq. (10) and (11) [32]:

\[
U = \left( \frac{1}{h_{\text{sol}}} + \frac{\delta}{h_{\text{air}}} \right)^{-1}
\]  \quad (10)

\[
U_{m} = \left( \frac{1}{h_{m,\text{air}}} + \frac{\delta}{k_{m}} \right)^{-1}
\]  \quad (11)

where \(h_{\text{sol}}\) and \(h_{\text{air}}\) are the convective heat transfer coefficients of the desiccant solution flow and the air flow, respectively, \(k\) is the thermal conductivity of the membrane separating the two fluid streams, \(h_{m,\text{air}}\) is the convective mass transfer coefficient of the air stream, \(k_{m}\) is the permeability of the membrane and \(\delta\) is the thickness of the membrane. Hemingson [24] has shown that \(h_{m,\text{sol}} >> h_{m,\text{air}}\) so the resistance to moisture transfer in the solution channel can be neglected in eq. (11).

Furthermore, the analytical latent effectiveness of the small-scale LAMEE is calculated based on a heat and mass transfer analogy from this analytical model [33]. The heat and mass transfer analogy is given by the following correlation [33]:

\[
Sh = NuLe^{-\frac{1}{3}}
\]  \quad (12)

where \(Sh\), \(Nu\) and \(Le\) are the Sherwood, Nusselt and Lewis dimensionless groups. The convective heat and mass transfer coefficients are found from the Nusselt and Sherwood number definitions [34]:

\[
Nu = \frac{hD_{h}}{k_{f}}
\]  \quad (13)

\[
Sh = \frac{h_{m}D_{h}}{D_{v-a}}
\]  \quad (14)

where \(k_{f}\) is the thermal conductivity of the fluid [Wm\(^{-1}\)K\(^{-1}\)], \(h_{m}\) is the convective mass transfer coefficient, \(D_{h}\) and \(D_{v-a}\) are the hydraulic diameter and diffusivity coefficient of vapor into air. By substituting the eq. for Sherwood and Nusselt numbers into eq. (12), the convective mass transfer coefficient for air and solution is found as follows:
\[ h_m = \frac{h}{c_p} Le^{-\frac{2}{3}} \]  

(15)

where \( c_p \) is the specific heat capacity [J/kg·K], \( Le \) is Lewis number which is defined as the ratio between the thermal to mass diffusivities [35].

It should be mentioned that the values of \( Nu \) and \( Sh \) are important in the special membrane-based liquid-to-air energy exchanges, which are used to calculate the convective heat and mass transfer coefficients (i.e. \( h_c \) and \( h_m \)) in the exchangers. In this study, we assume the heat flux through the membrane is constant in the counter-cross-flow LAMEEs. Actually, this assumption agrees well with what Zhang et al. [36] found for the counter-flow hollow fiber liquid desiccant dehumidifier, where the \( Nu_{C,a} \) was very close to \( Nu_{H} \). Under this assumption (i.e. constant heat flux), the actual Nusselt number for the air side of the LAMEE was experimentally measured in the wind tunnel energy exchanger insert test (WEIT) facility, as shown in our previous paper [15]. For the solution side, due to the \( Re_{sol} \) is very low (around 20) and \( L/\delta=825 \) where \( L \) is the length and \( \delta \) is the solution gap thickness. Consequently, the Nusselt number \( (Nu_{sol}=5.39) \) for laminar flow between two infinite parallel plates with constant heat flux on both wall is used for the solution flow. The \( Nu \) value is then used to calculate the convective heat transfer coefficient using the eq. (13).

The LAMEE latent effectiveness values for counter, cross and counter-cross flow exchangers are calculated by eq. (16-18) [37]:

\[ \varepsilon_{Latent, Cross} = 1 - \exp \left( \frac{NTU_m}{m}^{0.22} \left[ \exp(-m^* NTU_m^{0.78}) - 1 \right] \right) \]  

(16)

\[ \varepsilon_{Latent, Counter} = 1 - \frac{\exp[-NTU_m(1-m^*)]}{1-m^* \exp[-NTU_m(1-m^*)]} \]  

(17)

\[ \varepsilon_{Latent} = \left( \frac{A_{Cross}}{A} \right) \varepsilon_{Latent, Cross} + \left( \frac{A_{Counter}}{A} \right) \varepsilon_{Latent, Counter} \]  

(18)

where the dimensionless groups \( NTU_m \) and \( m^* \) are the number of mass transfer units and mass flow rate ratio, respectively. The heat and mass transfer problems are uncoupled in this analytical model using the heat and mass transfer analogy where the latent effectiveness is found based on sensible effectiveness correlation and substituting the NTU and \( Cr^* \) with \( NTU_m \) and \( m^* \) are calculated as follows for the LAMEE system:

\[ NTU_m = \frac{U_m A}{m_{min} \dot{m}_{air}} = \frac{U_m A}{\dot{m}_{air}} \]  

(19)

\[ m^* = \frac{\dot{m}_{min}}{\dot{m}_{max}} = \frac{\dot{m}_{air}}{\dot{m}_{sol}} \]  

(20)

\[ U_m = \left( \frac{1}{h_{m,air}} + \frac{1}{R_{mem}} + \frac{1}{h_{m,sol}} \right)^{-1} \]  

(21)

In eq. (21), \( U_m \) is the overall convective mass transfer coefficient and \( R_{mem} \) is the membrane moisture transfer resistance.

In the numerical simulations, the AHRI summer condition (tab. 2) is adopted as the basic test condition for the run-around membrane energy exchanger system. The exhaust air temperature
(T_{\text{air, in, exh}}) is increased from 24°C to 48°C with an interval of 6°C. It should be mentioned that crystallization of desiccant solution may occur in the run-around membrane energy exchanger system when the T_{\text{air, in, exh}} is higher than 51°C, since the relative humidity (RH) of exhaust air is lower than 11% in the conditions. The supply air outlet humidity ratios are evaluated under different operating conditions with different Cr* values (Cr*=0.5-1.0) and a constant NTU value (NTU=10) in the run-around membrane energy exchanger system. During our research Lithium chloride salt solution was used. The solution inlet temperature was 22.8°C and concentration of it was 35%. Based on previous research results with RAMEE, NTU=10 showed an optimal value taking into account value of the effectiveness [19]. The steady-state simulation results are presented in the following section.

Table 2. AHRI inlet air conditions for run-around membrane energy exchanger performance tests in summer [38]

<table>
<thead>
<tr>
<th>Summer</th>
<th>T_{\text{air, in, sup}}</th>
<th>W_{\text{air, in, sup}}</th>
<th>T_{\text{air, in, exh}}</th>
<th>W_{\text{air, in, exh}}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>308.15 K (35°C)</td>
<td>17.5 g/kg (50% RH)</td>
<td>297.15 K (24°C)</td>
<td>9.3 g/kg (50% RH)</td>
</tr>
</tbody>
</table>

Dehumidification performance of the run-around membrane energy exchanger

The supply air outlet humidity ratios (W_{\text{air, out, sup}}) under different operating conditions under steady-state simulations are show in fig. 3(a) when Cr* ≤ 1. It can be found that the supply air outlet humidity ratio decreases as the Cr* increases at different exhausted air temperatures, except T_{\text{air, in, exh}} = 48°C, where the W_{\text{air, out, sup}} is almost constant. It means that the air dehumidification capacity increases when the solution flow rate increases. Correspondingly, the latent effectiveness of the run-around membrane energy exchanger system increases with the Cr* at lower values, as shown in fig. 3(b). These results are consistent to our previous findings, where the latent effectiveness increases with Cr* at lower Cr* values until it reaches the peak value [19].

Additionally, as the exhaust air temperature increases, the supply air outlet humidity ratio decreases. The reason is that the solution regeneration process in the exhaust liquid-to-air membrane energy exchanger (or regenerator) is enhanced when the exhaust air temperature increases, consequently the solution concentration increases. It would improve the air dehumidification capacity of the supply liquid-to-air membrane energy exchanger (or dehumidifier).
Figure 3. (a) The supply air outlet humidity ratio and (b) latent effectiveness of the run-around membrane energy exchanger at different low Cr* conditions (NTU=10, 0.5≤Cr*≤1)

The supply air outlet humidity ratio and latent effectiveness of the run-around membrane energy exchanger system at different Cr* conditions, including both Cr*≤1 and Cr*>1 conditions, are presented in fig. 4. It can be seen that the supply air outlet humidity ratio decreases firstly and then increases a little bit as the Cr* changes in the range of 0.5 to 5. Correspondingly, the latent effectiveness of the run-around membrane energy exchanger system increases with Cr* at lower Cr* values until it reaches the peak value, after which the effectiveness decreases as the Cr* increases. The optimal Cr* value is around 3.2 for the tested run-around membrane energy exchanger system during the simulated conditions.
Figure 4. (a) The supply air outlet humidity ratio and (b) latent effectiveness of the run-around membrane energy exchanger at different Cr* conditions (NTU=10, 0.5≤Cr*≤5)

Moreover, fig. 4(a) shows that the supply air outlet humidity ratio decreases as the exhaust air temperature increases in the range of Cr*≤1, which is opposite to that of Cr*>1. When Cr*>1, the higher the exhaust air temperature, the higher the supply air outlet humidity ratio; while Cr*≤1, the higher the exhaust air temperature, the lower the supply air outlet humidity ratio. The reason is that the temperature of desiccant solution entering the supply liquid-to-air membrane energy exchanger is higher in the run-around membrane energy exchanger system as the exhaust air temperature increases. In the range of Cr*>1, although the solution concentration also increases a little with the increasing solution temperature, the overall dehumidification capacity of the supply liquid-to-air membrane energy exchanger decreases consequently.

According to the simulation results, it is found that the maximum dehumidification capacity of the run-around membrane energy exchanger system is achieved at Cr*=3.2 when the exhaust air temperature is 24°C. When Cr*>1, the latent effectiveness and air dehumidification capacity of run-around membrane energy exchanger decrease substantially as the exhaust air temperature increases; When Cr*≤1, increasing the exhaust air temperature can enhance the air dehumidification capacity. However, this enhancement is quite limited. Obviously, it is not a good method to improve the supply air dehumidification capacity of a run-around membrane energy exchanger system by heating the exhaust air flow. In fact, the run-around membrane energy exchanger systems can achieve good dehumidification capacities under proper operating condition (i.e. the optimal Cr* condition) by passive energy (both heat and moisture) recovery in the air-conditioning systems. Comparing the results with a previous research with RAMEE by Mahmud [39], higher latent effectiveness can be achieved using LiCl than with MgCl2 desiccant solution. The result showed that the difference can be 30% higher with LiCl operation in the case of AHRI summer test conditions. In addition, cooling the desiccant solution which enters the supply liquid-to-air membrane energy exchanger is a cost-efficient method to improve the system dehumidification capacity in active liquid desiccant air-conditioning systems, which has been verified in our previous study [18].

Conclusions

The impacts of exhaust air temperatures and Cr* values on the supply air outlet humidity ratio in a run-around membrane energy exchanger system are numerically investigated in this research. When Cr*≤1, increasing the solution flow rate (i.e. Cr* value) or the exhaust air temperature would enhance the dehumidification capacity of the run-around membrane energy exchanger system, but the improvement is limited; while Cr*>1, increasing the exhaust air temperature would substantially reduce the dehumidification capacity of the run-around membrane energy exchanger. Heating the exhaust air flow is not recommended to enhance the supply air dehumidification capacity of run-
around membrane energy exchanger systems. Proper operation of run-around membrane energy exchanger systems (i.e. under the optimal Cr* condition) during passive energy recovery or actively cooling the desiccant solution entering the supply liquid-to-air membrane energy exchanger can achieve good dehumidification capacity in the liquid desiccant air-conditioning systems.

Acknowledgements

This research was financially supported by the Natural Science and Engineering Research Council of Canada (NSERC) and Venmar CES, Inc., Saskatoon, SK, Canada and Hungarian Eotvos Scholarship, Balassi Institute - Hungarian Scholarship Board Office, Budapest, Hungary.

Nomenclature

\[ A \quad \text{– surface area of membrane [m}^2\text{]} \]
\[ C \quad \text{– heat capacity rate [kW}^\text{K}^{-1}\text{]} \]
\[ c_p \quad \text{– specific heat capacity [Jkg}^{-1}\text{K}^{-1}\text{]} \]
\[ Cr^* \quad \text{– ratio of heat capacity rates (solution/air)} \]
\[ D_h \quad \text{– hydraulic diameter based on channel thickness (mm)} \]
\[ D_{v,a} \quad \text{– diffusivity coefficient of vapor into air [m}^2\text{s}^{-1}\text{]} \]
\[ h \quad \text{– convective heat transfer coefficient [W}^\text{m}^2\text{s}^{-1}\text{]} \]
\[ h_{fc} \quad \text{– net heat of phase change [Jkg}^{-1}\text{]} \]
\[ h_m \quad \text{– convective mass transfer coefficient [kgm}^2\text{s}^{-1}\text{]} \]
\[ H \quad \text{– height of energy exchanger [m] or enthalpy [Jkg}^{-1}\text{]} \]
\[ k_f \quad \text{– thermal conductivity of the fluid [W}^\text{m}^1\text{K}^{-1}\text{]} \]
\[ k_m \quad \text{– is the permeability of the membrane [kgms}^{-1}\text{]} \]
\[ Le \quad \text{– Lewis number [-]} \]
\[ \dot{m} \quad \text{– mass flow rate [kg}^\text{s}^{-1}\text{]} \]
\[ \dot{m}^* \quad \text{– mass flow rate ratio [-]} \]
\[ NTU \quad \text{– number of heat transfer units [-]} \]
\[ NTU_m \quad \text{– number of mass transfer units [-]} \]
\[ Nu \quad \text{– Nusselt number [-]} \]
\[ Re \quad \text{– Reynolds number [-]} \]
\[ Sh \quad \text{– Sherwood number [-]} \]
\[ T \quad \text{– temperature [K]} \]
\[ U \quad \text{– overall heat transfer coefficient [W}^\text{m}^2\text{K}^{-1}\text{]} \]
\[ U_m \quad \text{– overall mass transfer coefficient [kgm}^2\text{s}^{-1}\text{]} \]
\[ W \quad \text{– humidity ratio [kgkg}^{-1}\text{]} \]
\[ X \quad \text{– ratio of water mass to mass of pure salt [kgkg}^{-1}\text{]} \]

Greek letters

\[ \varepsilon \quad \text{– effectiveness [-]} \]
\[ \delta \quad \text{– thickness of the membrane [mm]} \]

Subscripts

air \quad \text{– air side}

exh \quad \text{– exhaust air}
Heat and moisture transfer in application scale parallel–con­tr­acting types and ventilation principles in double skin facades on delivered heating and　cooling energy during heating season in an office building, Thermal Science, 16 (2012), 2, pp. 461–469 DOI: 10.2298/TSCI20127183I


