EFFECT OF DIRECTION OF BLOWING AIR ON MORPHOLOGY OF NANOFIBERS BY BUBBFL SPINNING

by

Shengzhong ZHANG a,b, Lei ZHAO a,b,c*, Chun-Hui HE c, Hong-Yan LIU d, and Qi-Long SUN e

a College of Textile and Costume, Yancheng Institute of Industry Technology, Yancheng, China
b Jiangsu R & D Center of the Ecological Textile Engineering & Technology, Yancheng Institute of Industry Technology, Yancheng, China
c Nantong Bubbfil Nanotechnology Company Limited, Nantong, China
d School of Fashion Technology, Zhongyuan University of Technology, Zhengzhou, China
e School of Textile and Clothing, Nantong University, Nantong, China

Short paper
DOI: 10.2298/TSCI1603016Z

Blowing air in bubbfil spinning process can be used to not only overcome the surface tension of polymer bubbles, but also pull the debris to form either nanofibers or yarns. This paper studies experimentally the direction of blowing air on the morphology of obtained nanofibers.

Key words: air injection, bubble electrospinning, surface morphology, nanofiber

Introduction

Acetate fiber as a white solid, which has flexible and transparent property, has many advantages in textile engineering, such as surface gloss, easy molding and thermoplastic processing. Bubbfil spinning is a simple and effective method to produce nanofibers using polymer solution or melt [1-6], cellulose acetate is used to replace the natural cellulose in the field of electrospinning, since it is easy to dissolve in organic solvents. In this research, hot air blowing device was installed near the receptor of bubbfil electrospinning to study effect of blowing direction on the spinning process.

Experiment

The volatile liquid dichloromethane and acetone was mixed into solvent with the volume ratio of 3:1, which dissolve the discarded acetate fiber into acetate cellulose solution with the concentration of 7.5%. Figure 1 is the experimental set-up showing the blowing direction.

Discussion and conclusion

It can be seen from fig. 2 and tab. 1 that the horizontal direction of blowing air can be used to fabricate parallel nanofibers, and the entry angle of blowing air can adjust effectively orientation of obtained nanofibers. A suitable choice of the entry angle can produce yarns consisted of multiple nanofibers.

* Corresponding author; e-mail: zhaolei7365@163.com
Acknowledgment

The work is supported by Key College Program of Yancheng Institute of Industry Technology under Grant No. ygy1402, Program for Industry University Research of Jiangsu Province under Grant No. SBY2013058, Visiting Senior Engineer Program of Higher Vocational Colleges in Jiangsu Province under Grant No. 2014FG107, Introduction College Program of Yancheng Institute of Industry Technology under Grant No. 2013-3800015, and Production and Research Prospective Joint Research Project of Jiangsu Province under Grant No. BY2015047-09, Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions under Grant No. PPZ2015C254, and China Postdoctoral Science Foundation under Grant No. 2016T90495.

References

[1] Li, Y., et al., Copper/PA66 Nanofibers by Bubbfil-Spinning, Thermal Science, 19 (2015), 4, pp. 1463-1465

Paper submitted: December 22, 2015
Paper revised: January 10, 2016
Paper accepted: January 10, 2016