HEAT AND MASS TRANSFER EFFECTS ON THE PERISTALTIC FLOW OF SISKO FLUID IN A CURVED CHANNEL

by

Raheel AHMED*, Nasir ALI and Khurram JAVID

Department of Mathematics & Statistics, IIU, Islamabad 44000, Pakistan.

Abstract: In the present study heat and mass transfer phenomena in flow of non-Newtonian Sisko fluid induced by peristaltic activity through a curved channel have been investigated numerically using an implicit finite difference scheme. The governing equations are formulated in terms of curvilinear coordinates with appropriate boundary conditions. Numerically solution is carried out under long wavelength and low Reynolds number assumptions. The velocity field, pressure rise per wavelength, stream function, temperature and concentration fields have been analyzed for the effects of curvature parameter, viscosity parameter and power law index. Additionally, the computation for heat transfer coefficient and Sherwood number carried out for selected thermo-physical parameters. The main results that are extracted out this study is that for strong shear-thinning bio-fluids (power-law rheological index, \(n < 1 \)) the flow exhibits the boundary layer character near the boundary walls. Both temperature and mass concentration are found to increase with increasing the generalized ratio of infinite shear rate viscosity to the consistency index. The amplitude of heat transfer coefficient and Sherwood number is also an increasing function of generalized ratio of infinite shear rate viscosity to the consistency index.

Keywords: Peristalsis, Heat Coefficient, Sherwood Number, Curved channel.

1. Introduction

Peristaltic pumping is a phenomena of fluid transport which is achieved through a progressive dynamic waves of contraction or expansion propagating along the walls of a distensible tube containing fluids. It is an inherent phenomena of numerous biological/physiological mechanism such as the male reproductive tract, the movement of chyme in the gastrointestinal tract and fluids from the mouth through the esophagus. Other industrial and physiological applications include roller and finger pumps, dialysis machines etc. Recently, electro osmosis-modulated peristaltic transport in micro fluids channel is proposed as a model for the design of lab-on-a-chip device [1, 2]. Due to wide range applications, mathematical modelling of peristaltic movement has received increasing interest among researchers. The fundamental work carried out by Latham and Shapiro et al. [3, 4] for tube and channel geometry theoretically evaluate the reflux and trapping phenomena associated with peristaltic mechanism under long wavelength and low Reynolds number assumptions. The flow was investigated in the wave frame. Fung and Yih [5] adopted an alternative approach based on perturbation technique to analyze the peristaltic flow in the fixed frame (without employing long wavelength and low Reynolds number approximations). The reflux phenomenon was discussed for several values of Reynolds number.

*Corresponding author: raheel_rwp@yahoo.com
Peristaltic flow in a circular tube under long wavelength approximation was proposed as a model of intestinal flow by Barton and Raynor [6]. Later developments in the realm of peristaltic flow was made by several researchers. A brief overview of these attempts is presented below.

Inertial and streamline curvature effects were integrated in the study of peristaltic transport by Jaffrin [7]. A comprehensive review of initial theoretical and experimental work on peristaltic transport was reviewed by Jaffrin and Shapiro [8]. Poiseuille flow with superimposed peristaltic flow was investigated by Mittra and Parsad [9] and Srivastava and Srivastava [10]. Numerical study of two-dimensional peristaltic flows was carried out by Brown and Hung [11], Takabatake and Ayukawa [12] and Takabatake et al. [13]. Non-Newtonian effect on peristaltic mechanism were described by Raju and Devanathan [14] using power law model. Later viscoelastic effects in peristaltic transport using a simple fluid with fading memory were introduced by Raju and Devanathan [15]. Peristaltic pumping of second order fluid in planar channel and tube was discussed by Siddiqui et al. [16] and Siddiqui and Schwarz [17]. Hayat et al. [18] extended the analysis of peristaltic flow for a third order fluid. Peristaltic flows of Johnson-Segalman and Oldroyd-B model were also investigated by Hayat et al [19, 20]. Srinivasacharya et al. [21] investigated the peristaltic transport of micropolar fluid. Mekheimer [22], Haroun [23], Vajravelu et al. [24], Tripathi et al. [25], Tripathi and Beg [26, 27], Nabil et al. [28], Tanveer et al. [29], also contributed to the literature on peristaltic transport in various scenarios. A variational method for optimizing peristaltic transport in a channel was presented by Walker and Shelley [30]. Ceniceros and Fisher [31] employed immersed boundary method to study peristaltic flow in a pump for all possible occlusion ratios and Weissenberg number in excess of 100. Böhme and Müller [32] performed an asymptotic analysis of axisymmetric two-dimensional peristaltic flow to investigate the influence of the aspect ratio, the Weissenberg number, the Deborah number and the wave shape on the pumping characteristics. Shit et al. [33] studied effects of applied electric field on hydro- magnetic peristaltic flow through a micro-channel. Abbas et al. [34] analyzed peristaltic flow of a hyperbolic tangent fluid in a non-uniform channel in the absence of inertial effects. The investigation of magnetohydrodynamics peristaltic blood flow of nanofluid in non-uniform channel is also carried out by Abbas et al. [35]. More recently, Abbas et al. [36] studied entropy generation in peristaltic flow of nanofluids in a non-uniform two-dimensional channel with compliant walls.

The analysis carried out in above mentioned studies do not take into account the curvature effect induced by the geometry of the channel/ tube. The first comprehensive attempt which includes curvature effects on peristaltic flow was made by Sato et al. [37]. The analysis of Sato et al. [37] was extended for a non-Newtonian third grade fluid by Ali et al. [38]. Later studies in this area were carried out by Hayat et al. [39], Ramanamurthy et al. [40] and Kalantari et al. [41].

When heat and mass transfer occur simultaneously in a moving fluid, then it affect many transport processes present in nature and also the applications relating to science and engineering. Mass transfer phenomenon is vital in the diffusion process such as the nutrients diffuse out from the blood to the contiguous tissues. Research on bioheat transfer discusses the heat and mass transfer in organisms. Studies pertaining to heat/mass transfer in peristaltic flows have also been carried out by various researchers. This is because of numerous applications of heat/mass transfer in industrial and physiological process like condensation, crystallization, evaporation, etc. The literature on peristaltic flows with
heat/mass transfer straighter geometries is extensive but very little is said about peristalsis in heated curved channel. Ali et al. [42] investigated peristaltic flow in a channel with heated wall for the first time. Later attempts in this direction were made by Hayat et al. [43], and Hina et al. [44]. However, thus far no attempt is available dealing with peristaltic flow with heat and mass transfer of Sisko fluid in a curved channel. Sisko fluid falls in the category of generalized Newtonian fluids capable of predicting shear-thinning, Newtonian and shear-thickening behaviors. The model is already used by several other researchers in peristaltic and boundary layer flows in straighter geometries [45].

The rest of this paper has been designed as follows: Section 2 presents the mathematical model of dimensionless set of governing equations subject to appropriate boundary conditions. Section 3 provides detail discussion about the methodology of finite difference scheme. Section 4 demonstrate the ample aspects of physical results through graphs. Section 5 concludes rheological results.

2. Mathematical formulation and rheological constitutive equations

Let the channel of width $2a$ is coiled in a circle of radius R with center O. An incompressible Sisko fluid is assumed inside the channel. Let the walls of the channel are performing peristaltic motion due to propagation of sinusoidal waves of speed c and amplitude b. It is further assumed that both the walls of channel are maintained at constant temperature. The mass concentration at the both walls is also assumed constant. The flow geometry is explained in Fig. 1. A curvilinear coordinates (R, X), (in which R is oriented along radial direction and X is along the flow direction,) is employed at the center O for development of flow analysis. The wall surfaces is described by the expressions,

$$H_1(X,t) = a + b \sin \left(\frac{2\pi \lambda^*}{\lambda^*} (X - ct) \right), \quad \text{Upper wall}$$

$$H_2(X,t) = -a - b \sin \left(\frac{2\pi \lambda^*}{\lambda^*} (X - ct) \right), \quad \text{Lower wall}$$

where λ^* is the wavelength, b is the amplitude and t is the time.

The fundamental equations which govern the flow are [28, 29]

$$\nabla \cdot \mathbf{U} = 0, \quad \text{(Continuity Equation)}$$

$$\rho \frac{d\mathbf{U}}{dt} = \nabla \tau, \quad \text{(Momentum Equation)}$$

$$\rho c_p \frac{dT}{dt} = k^* \nabla^2 T + \mu \Phi, \quad \text{(Energy Equation)}$$

$$\frac{dC}{dt} = D \nabla^2 C + \frac{DK_r}{T_m} \nabla^2 T, \quad \text{(Mass Concentration Equation)}$$
where \(\tau, T, C, c_p, k, D, K_T, T_m, \Phi \) and \(\rho \) are the Cauchy stress tensor, temperature, mass concentration, specific heat at constant pressure, thermal conductivity (assumed constant), coefficient of mass diffusivity, thermal diffusivity, mean temperature, dissipation function and the fluid density.

The Cauchy stress tensor \(\mathbf{\tau} \) is given by

\[
\mathbf{\tau} = -P\mathbf{I} + \mathbf{S},
\]

(7)

where \(P \) is the pressure, \(\mathbf{I} \) is the identity tensor and \(\mathbf{S} \) is the extra stress tensor which for \textit{Sisko fluid model} [45, 47] satisfies

\[
\mathbf{S} = \left[a_1 + b_1 (\Pi)^{n-1} \right] \mathbf{A}_1.
\]

(8)

In the above equation, \(a_1 \) is the infinite shear-rate viscosity, \(b_1 \) is the consistency, \(n \) is the power-law index and \(\Pi \) is defined as

\[
\Pi = \sqrt{\frac{1}{2} \text{trac} \left(\dot{\mathbf{\gamma}} \right)},
\]

(9)

where \(\dot{\mathbf{\gamma}} = \nabla \mathbf{U} + (\nabla \mathbf{U})^t \).

In view of Eq. (7), we can write Eq. (4) as

\[
\rho \frac{d\mathbf{U}}{dt} = -\nabla P + \nabla \mathbf{S}.
\]

(10)

Assuming \(\mathbf{V} = \left[\mathbf{U}_1 (X, R, t), \mathbf{U}_2 (X, R, t), 0 \right], T = T(X, R, t), \mathbf{C} = \mathbf{C} (X, R, t) \), Eqs. (3)-(6) yield

\[
\frac{\partial}{\partial R} \left\{ (R + \tilde{R}) \mathbf{U}_1 \right\} + \tilde{R} \frac{\partial \mathbf{U}_2}{\partial X} = 0,
\]

(11)

\[
p \left[\frac{\partial \mathbf{U}_1}{\partial t} + V_i \frac{\partial \mathbf{U}_1}{\partial R} + \tilde{R} \frac{\partial \mathbf{U}_2}{\partial X} - \frac{U_2}{R + \tilde{R}} \right] = -\frac{\partial P}{\partial R} + \frac{1}{R + \tilde{R}} \frac{\partial}{\partial R} \left\{ (R + \tilde{R}) S_{RR} \right\}
\]

\[+ \frac{\tilde{R}}{R + \tilde{R}} \frac{\partial}{\partial X} S_{XX} - \frac{S_{XX}}{R + \tilde{R}},
\]

(12)

\[
p \left[\frac{\partial \mathbf{U}_2}{\partial t} + V_i \frac{\partial \mathbf{U}_2}{\partial R} + \tilde{R} \frac{\partial \mathbf{U}_1}{\partial X} - \frac{U_2}{R + \tilde{R}} \right] = -\left(\frac{\tilde{R}}{R + \tilde{R}} \right) \frac{\partial P}{\partial X} + \frac{1}{(R + \tilde{R})^2} \frac{\partial}{\partial R} \left\{ (R + \tilde{R})^2 S_{XX} \right\}
\]

\[+ \frac{\tilde{R}}{R + \tilde{R}} \frac{\partial}{\partial X} S_{XX},
\]

(13)

\[
\rho c_p \left[\frac{\partial T}{\partial t} + U_i \frac{\partial T}{\partial R} + \tilde{R} \frac{\partial U_2}{\partial X} \right] = k^* \left(\frac{1}{(R + \tilde{R})} \frac{\partial}{\partial R} \left\{ (R + \tilde{R}) \frac{\partial T}{\partial R} \right\} + \frac{(R + \tilde{R})^2}{\partial R} \frac{\partial^2 T}{\partial X^2} \right) +
\]

\[S_{RR} \frac{\partial U_1}{\partial R} + S_{XX} \left(\frac{\partial U_2}{\partial R} + \frac{\tilde{R}}{R + \tilde{R}} \frac{\partial U_1}{\partial X} + \frac{\tilde{R}}{R + \tilde{R}} \frac{\partial U_2}{\partial X} - \frac{U_2}{R + \tilde{R}} \right) + S_{XX} \left(\frac{U_1}{R + \tilde{R}} + \frac{\tilde{R}}{R + \tilde{R}} \frac{\partial U_2}{\partial X} \right),
\]

(14)
where S_{RR}, S_{RX} and S_{XX} are the components of extra stress. The boundary conditions associated with Eqs. (11)-(15) are

$$U_2 = 0, U_1 = \frac{\partial H_1}{\partial t}, T = T_0, C = C_0 \text{ at } \eta = h_1 = 1 + \lambda \sin x,$$

$$U_2 = 0, U_1 = \frac{\partial H_2}{\partial t}, T = T_1, C = C_1 \text{ at } \eta = h_2 = -1 - \lambda \sin x. \tag{16}$$

Transform our flow model from the fixed frame (R, X) to wave frame (r, x) by using transformation:

$$x = X - ct, r = R, p = P, u_1 = U_1, u_2 = U_2 - c, T = T. \tag{17}$$

After making use of above transformations, the governing equations in the wave frame become

$$\frac{\partial}{\partial r} \left((r + \tilde{R}) u_1 \right) + \tilde{R} \frac{\partial u_2}{\partial x} = 0, \tag{19}$$

$$\rho \left[-c \frac{\partial u_1}{\partial x} + u_1 \frac{\partial u_1}{\partial r} + \tilde{R} \frac{(u_2 + c)}{r + \tilde{R}} \frac{\partial u_1}{\partial x} - \frac{(u_2 + c) u_1}{r + \tilde{R}} \right] = - \frac{\partial p}{\partial r} + \frac{1}{r + \tilde{R}} \frac{\partial}{\partial r} \left((r + \tilde{R}) S_{rr} \right) \tag{20}$$

$$+ \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial}{\partial x} S_{rx} - \frac{S_{xx}}{r + \tilde{R}},$$

$$\rho \left[-c \frac{\partial u_2}{\partial x} + u_1 \frac{\partial u_2}{\partial r} + \frac{\tilde{R} (u_2 + c)}{r + \tilde{R}} \frac{\partial u_2}{\partial x} - \frac{(u_2 + c) u_1}{r + \tilde{R}} \right] = \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial}{\partial x} \left((r + \tilde{R}) S_{tx} \right) \tag{21}$$

$$+ \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial}{\partial x} S_{xx},$$

$$\rho c_p \left[-c \frac{\partial T}{\partial x} + u_1 \frac{\partial T}{\partial r} + \frac{\tilde{R} (u_2 + c)}{r + \tilde{R}} \frac{\partial T}{\partial x} \right] = k^* \left(\frac{1}{r + \tilde{R}} \frac{\partial}{\partial r} \left((r + \tilde{R}) \frac{\partial T}{\partial r} \right) + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial^2 T}{\partial x^2} \right) + S_{rr} \frac{\partial u_1}{\partial r} + S_{rx} \left(\frac{\partial u_2}{\partial r} + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial u_1}{\partial x} + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial u_2}{\partial x} - \frac{(u_2 + c)}{r + \tilde{R}} \right) + S_{xx} \left(\frac{u_1}{r + \tilde{R}} + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial u_2}{\partial x} \right), \tag{22}$$

$$\left[-c \frac{\partial}{\partial x} + u_1 \frac{\partial}{\partial r} + \frac{\tilde{R} (u_2 + c)}{r + \tilde{R}} \frac{\partial}{\partial x} \right] C = D \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r + \tilde{R}} \frac{\partial}{\partial r} + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial^2}{\partial x^2} \right) \tag{23}$$

$$+ \frac{D K_T}{T_m} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r + \tilde{R}} \frac{\partial T}{\partial r} + \frac{\tilde{R}}{r + \tilde{R}} \frac{\partial^2 T}{\partial x^2} \right).$$

The following dimensionless variables are defined to render the above equations in normalized form:
\[\bar{x} = \frac{2\pi}{\lambda} x, \eta = \frac{r}{a_1}, \bar{u}_1 = \frac{u_1}{c}, \bar{u}_2 = \frac{u_2}{c}, \text{Re} = \frac{\rho c a_1}{\mu}, \bar{\rho} = \frac{2\pi a_1^2}{\lambda' \mu c}, \bar{\rho}, \delta = \frac{2\pi a_1}{\lambda' \mu c}, \bar{S} = \frac{a_1}{\mu c} S, \]

\[k = \frac{\bar{R}}{a_1}, \theta = \frac{T - T_1}{T_0 - T_1}, Br = \frac{\mu c^2}{k^2 (T_0 - T_1)}, \phi = \frac{C - C_1}{C_0 - C_1}, a^* = \frac{a_1}{\mu}, \mu = \frac{b_1}{(\frac{a_1}{c})^{n-1}}. \]

After using these dimensionless variables apply the long wavelength and low Reynolds approximations then above equations in terms of stream function define by

\[u_1 = \frac{k \partial \psi}{\eta + k \frac{\partial \psi}{\partial \eta}}, \quad u_2 = -\frac{\partial \psi}{\partial \eta}, \]

will contract to

\[\frac{\partial p}{\partial \eta} = 0, \quad (35) \]

\[-\frac{\partial p}{\partial x} + \frac{1}{k(k + \eta)} \frac{\partial}{\partial \eta} \left((k + \eta)^2 S_{xx} \right) = 0, \quad (36) \]

\[\frac{1}{(k + \eta)} \frac{\partial}{\partial \eta} \left((k + \eta) \frac{\partial \theta}{\partial \eta} \right) + Br S_{\eta x} \left(-\frac{1}{k + \eta} \left(1 - \frac{\partial \psi}{\partial \eta} \right) - \frac{\partial^2 \psi}{\partial \eta^2} \right) = 0, \quad (37) \]

\[\left(\frac{\partial^2 \phi}{\partial \eta^2} + \frac{1}{(k + \eta)} \frac{\partial \phi}{\partial \eta} \right) = -Sr Sc \left(\frac{\partial^2 \theta}{\partial \eta^2} + \frac{1}{(k + \eta)} \frac{\partial \theta}{\partial \eta} \right), \quad (38) \]

\[S_{xx} = 0, \quad (39) \]

\[S_{\eta x} = \left(a^* + (\Pi)^{n-1} \right) \left(-\frac{\partial^2 \psi}{\partial \eta^2} - \frac{1}{\eta + k} \left(1 - \frac{\partial \psi}{\partial \eta} \right) \right), \quad (40) \]

\[S_{\eta \eta} = 0, \quad (41) \]

\[\Pi = -\frac{\partial^2 \psi}{\partial \eta^2} - \frac{1}{\eta + k} \left(1 - \frac{\partial \psi}{\partial \eta} \right). \quad (42) \]

Inserting Eq. (40) into Eqs. (36) and (37), we get

\[-\frac{\partial p}{\partial x} + \frac{1}{k(k + \eta)} \frac{\partial}{\partial \eta} \left((k + \eta)^2 \left(a^* + (\Pi)^{n-1} \right) \left(-\frac{\partial^2 \psi}{\partial \eta^2} - \frac{1}{\eta + k} \left(1 - \frac{\partial \psi}{\partial \eta} \right) \right) \right) = 0, \quad (43) \]

\[\frac{1}{(k + \eta)} \frac{\partial}{\partial \eta} \left((k + \eta) \frac{\partial \theta}{\partial \eta} \right) + Br \left(a^* + (\Pi)^{n-1} \right) \left(-\frac{1}{k + \eta} \left(1 - \frac{\partial \psi}{\partial \eta} \right) - \frac{\partial^2 \psi}{\partial \eta^2} \right)^2 = 0. \quad (44) \]

Elimination of pressure between Eqs. (35) and (43) yield
\[
\frac{\partial}{\partial \eta} \left(\frac{1}{(k + \eta)} \frac{\partial}{\partial \eta} \left((k + \eta)^2 \left(a^* + (\Pi)^{n-1} \right) \right) \right) \left(\frac{1}{k + \eta} \left(1 - \frac{\partial \psi}{\partial \eta} \right) + \frac{\partial^2 \psi}{\partial \eta^2} \right) = 0.
\]
(45)

The boundary conditions (16) and (17) transform to

\[
\psi = -\frac{q}{2}, \quad \frac{\partial \psi}{\partial \eta} = 1, \quad \theta = 0, \quad \phi = 0, \quad \text{at} \quad \eta = h_1 = 1 + \lambda \sin x,
\]

\[
\psi = \frac{q}{2}, \quad \frac{\partial \psi}{\partial \eta} = 1, \quad \theta = 1, \quad \phi = 1, \quad \text{at} \quad \eta = h_2 = 1 - \lambda \sin x,
\]

where \(\lambda = b_1/a_1 \) is the amplitude ratio.

The physical quantities of interest such as pressure rise per wavelength \(\Delta p \), heat transfer coefficients at both the wall \(z_i(i = 1, 2) \) and Sherwood number at both the wall \(Sh_i(i = 1, 2) \) are defined as [38] and [40]

\[
\Delta p = \int_0^{2\pi} dp \int dx.
\]

\[
z_i = \frac{\partial h_i}{\partial x} \frac{\partial \theta}{\partial \eta} \bigg|_{\eta = h_i}, \quad i = 1, 2.
\]

\[
Sh_i = \frac{\partial h_i}{\partial x} \frac{\partial \phi}{\partial \eta} \bigg|_{\eta = h_i}, \quad i = 1, 2.
\]

Now, in order to solve Eqs. (38), (44) and (45) one has to rely on suitable numerical method. This is because of strong non-linearity manifested by these equations. An implicit finite difference technique is employed for the solution.

3. Numerical solution of boundary value problem

In this section, we describe the finite difference method (FDM) used for the solution of Eqs. (38), (44) and (45) subject to boundary conditions given in Eqs. (46) and (47)). This procedure is based on following steps:

(I) The first step is to construct an iterative procedure in such a way that the original nonlinear boundary value problem (BVP) is converted into a linear one at the \((m + 1)\)th iterative step. For this particular problem, the following iterative procedure is proposed:

\[
f(\eta + k) \frac{\partial^4 \psi^{(m+1)}}{\partial \eta^4} + \left\{ 2 \left(f + (\eta + k) \frac{\partial f}{\partial \eta} \right) \right\} \frac{\partial^3 \psi^{(m+1)}}{\partial \eta^3} + \left\{ \frac{\partial f}{\partial \eta} + (\eta + k) \frac{\partial^2 f}{\partial \eta^2} - \frac{f}{\eta + k} \right\} \frac{\partial^2 \psi^{(m+1)}}{\partial \eta^2} + \frac{f}{(\eta + k)^2} - \frac{\partial f}{\partial \eta} + \frac{\partial^2 f}{\partial \eta^2} = 0.
\]

\[
\frac{\partial^2 \psi^{(m+1)}}{\partial \eta^2} + \frac{1}{\eta + k} \frac{\partial \psi^{(m+1)}}{\partial \eta} = -Brf \left(\frac{1}{k + \eta} \left(1 - \frac{\partial \psi^{(m)}}{\partial \eta} \right) - \frac{\partial^2 \psi^{(m)}}{\partial \eta^2} \right)^2
\]

(51)
\[
\frac{\partial^2 \phi^{(m+1)}}{\partial \eta^2} + \frac{1}{\eta + k} \frac{\partial \phi^{(m+1)}}{\partial \eta} = -\text{SrSc} \left(\frac{\partial^2 \theta^{(m)}}{\partial \eta^2} + \frac{1}{(k + \eta)} \frac{\partial \theta^{(m)}}{\partial \eta} \right),
\]
(53)

\[
\psi^{m+1} = \frac{q}{2}, \frac{\partial \psi^{m+1}}{\partial \eta} = 1, \theta^{(m+1)} = 0, \phi^{(m+1)} = 0, \text{at } \eta = h_1,
\]
(54)

\[
\psi^{(m+1)} = \frac{q}{2}, \frac{\partial \psi^{(m+1)}}{\partial \eta} = 1, \theta^{(m+1)} = 1, \phi^{(m+1)} = 1, \text{at } \eta = h_2,
\]
(55)

where \(f = a^* + \left(\frac{\partial^2 \psi^{(m)}}{\partial \eta^2} - \frac{1}{\eta + k} \left(1 - \frac{\partial \psi^{(m)}}{\partial \eta} \right) \right)^{n-1} \).

Here the index \((m)\) shows the iterative step. It is now clear that above BVP is linear in \(\psi^{(m+1)} \).

(II) At second step, we insert finite difference approximations of \(\psi^{(m+1)} \), \(\theta^{(m+1)} \), \(\phi^{(m+1)} \) and their derivatives into Eqs. 51-53. In this way, we get a system of linear algebraic equations at each iterative step.

(III) In third step, the system of algebraic equations obtained in previous step are solved at each cross-section to get numerical results of \(\psi^{(m+1)} \), \(\theta^{(m+1)} \) and \(\phi^{(m+1)} \). Obviously, suitable initial guesses are required for \(\psi^{(m)} \), \(\theta^{(m)} \) and \(\phi^{(m)} \) at each cross-section to start the iterative procedure. The iterative procedure at cross-section is carried out until a convergent solution is reached. To achieve convergent solution rapidly the method of successive under-relaxation is employed. In this method, the initial values of \(\psi^{(m+1)} \), \(\theta^{(m+1)} \) and \(\phi^{(m+1)} \) at \((m+1)\)th iterative step are refined as

\[
\psi^{(m+1)} = \psi^{(m)} + \tau(\psi^{(m+1)} -
\theta^{(m+1)} = \theta^{(m)} + \tau(\theta^{(m+1)} -
\phi^{(m+1)} = \phi^{(m)} + \tau(\phi^{(m+1)} -
where \(\tau \) is under relaxation parameter. Usually \(\tau \) is chosen small for rapid convergence. In present computation the iterative procedure is terminated after achieving the values of \(\psi \), \(\theta \) and \(\phi \) convergent to \(10^{-8} \). The method described above is already used in the studies carried out by Wang et al. [45] and Ali et al. [46].

4. COMPUTATIONAL RESULTS AND INTERPRETATION

In this section, we interpret the computational results provided in Figs. 2-21 to analyze some significant features of the peristaltic motion such as flow characteristics, pumping characteristics, temperature distribution, mass concentration, and trapping phenomenon for various values of the parameters \(k \), \(n \), \(Br \), \(Sr \), \(Sc \), and \(a^* \).

Figs. 2 and 3 present the radial distribution of the transverse velocity \(u_2 \) for different values of \(a^* \) and \(n \). Fig. 2 shows for shear-thinning bio-fluids \((n < 1)\) an increase in \(a^* \) accelerate the flow. The structure of axial velocity is also substantially affected with the increase in \(a^* \). For smaller values of \(a^* \) the flow velocity is asymmetric with maximum in it appearing above \(\eta = 0 \). With increasing \(a^* \) to 1.5 the velocity approximately regained its symmetry. Larger values of \(a^* \) represent the case when viscous effects are stronger than the power-law effects. In such situation, the effects of curvature on axial velocity are not significant. However, as \(a^* \) decrease in value, the effects of curvature become dominant. Fig. 3 illustrates the axial velocity profile for three different values of power-law index \((n)\). It is observed that axial
velocity increases with increasing \(n \). For \(n<1 \) (pseudoplastic/shear-thinning bio-fluids), the axial velocity exhibits a boundary layer type character. However, such characteristic of axial velocity vanishes for Newtonian (\(n = 0 \)) and shear-thinning/dilatant fluids. For such fluids, non-vanishing gradients in axial velocity occur in the whole flow span \([0, h]\).

The pressure rise per wavelength against flow rate is plotted in Figs. 4-6 for different values of \(\alpha^* \), \(n \) and \(k \). Three distinct cases can be identified from these plots; peristaltic pumping case (\(\theta > 0, \Delta p > 0 \)), free pumping case (\(\theta > 0, \Delta p = 0 \)) and augmented pumping case (\(\theta > 0, \Delta p < 0 \)). It is observed that for peristaltic pumping case, the pressure rise per wavelength increases by increasing \(\alpha^* \), \(n \) and \(k \) for a fixed value of \(\theta \). This is consistent with observations already made for the axial velocity in Figs. 2 and 3. For the case when \(\Delta p = 0 \) an increase in \(\alpha^* \) does not significantly affect the magnitude of the flow rate \(\theta \). However, the magnitude of \(\theta \) corresponding to \(\Delta p = 0 \) increases with increasing power-law index and channel curvature. In augmented pumping case, the flow due to peristalsis is assisted by the pressure gradient and the magnitude of assistance increase with increasing \(\alpha^* \) and \(n \). In contrast, the assistance provided by pressure gradient decreases with increasing \(k \).

The effects of viscosity parameter (\(\alpha^* \)), and Brinkman number (\(Br \)) on the temperature distribution inside the channel are graphically displayed in Figs. 7 and 8 for shear thinning bio-fluid (\(n<1 \)). An enhancement in the temperature inside the channel is observed with increase in \(\alpha^* \) and \(Br \).

Figs 9 and 10 depict the effects of \(\alpha^* \), and \(Br \) on the heat transfer coefficient (\(z \)) at the upper wall. It is observed through both figures that the heat transfer coefficient varies periodically along the channel. This is in fact a direct consequence of the periodic nature of the peristaltic wall. Moreover, the amplitude of heat transfer coefficient enhances via increasing \(\alpha^* \), and \(Br \). Figs 11–14 depict the behavior of the mass concentration (\(\phi \)) for different values of \(\alpha^* \), \(Br \), \(Sr \) and \(Sc \), respectively. These figures show that the concentration distribution is an increasing function of \(\alpha^* \), \(Br \), \(Sr \) and \(Sc \).

The impact of several parameters such as \(\alpha^* \), \(Br \), \(Sr \), and \(Sc \) on the Sherwood number (\(Sh \)) at the upper wall is shown through Figs. 15–18. Similar to the heat transfer coefficient, Sherwood number also oscillates periodically. Further, the amplitude of oscillations in Sherwood number (\(Sh \)) enhance via increasing \(\alpha^* \), \(Br \), \(Sr \) and \(Sc \).

An interesting feature of the peristaltic motion is known as trapping. Trapping is a phenomenon in which closed circulating streamlines exist at very high flow rates or for large occlusions ratios. The particular pattern of streamlines for three values of viscosity parameter (\(\alpha^* \)) for shear-thinning fluid are shown in Fig. 19. It is noticed that a circulating bolus of fluid concentrated in the upper half of the channel exists for \(\alpha^* = 0.1 \). No significant change is observed by increasing \(\alpha^* \) from 0.1 to 2, except the appearance of small eddies near the lower wall of the channel. The effects of power-law index (\(n \)) on streamlines pattern are shown in Fig. 20 for \(\alpha^* = 0.1 \). Fig. 20 shows a circulating bolus of fluid concentrated in the lower part of the channel for shear-thinning fluid (\(n \geq 0.9 \)). A small circulating eddy near the upper wall is also identified. The bolus shift towards the upper wall of the channel via increasing \(n \) from 0.98 to 1 i.e., changing the behavior of the bio-fluid from shear-thinning to Newtonian fluids. A further rise in the value of (power-law index) \(n \) does not effect on the circulating phenomena in the upper part of the channel. However, a slight decrease in the size of eddy near the low wall is noted. The influence of channel
curvature on trapping phenomena is illustrated through Fig. 21. A circulating bolus of fluid concentrated in the upper part of the channel exists for $k = 2$. The bolus regain its symmetric shape as $k \to \infty$.

From the above discussion it is concluded that the role of k is to affect the bolus symmetry while the effect of n is to shift the center of circulation from lower part of channel to the upper one.

5. CONCLUDING REMARKS
A two-dimensional laminar incompressible flow of a Sisko fluid induced by peristalsis through a curved channel is investigated. The heat and mass transfer characteristics are also analyzed employing energy and concentration equations. Particular focus is given to effects of geometrical and rheological parameters of the model on flow and heat/mass characteristics. The dimensionless governing equations are solved with the well-tested, robust, highly efficient, implicit finite difference numerical method. Extensive computations and flow visualization are presented through graphs.

It is observed that the rheological and geometrical parameters significantly affect the peristaltic and heat/mass transfer phenomena. For strong shear-thinning bio-fluids a thin boundary layer develops near the channel walls. Trapping phenomena is also largely altered by rheological parameters. Though viscosity parameter does not affect the circulating bolus in the upper wall of the channel but it creates two tiny eddies near the lower wall for strong shear-thinning bio-fluid. The circulating bolus shift from the upper half to lower half of the channel with a change in behavior of the fluid from shear-thinning to shear thickening. Both temperature and mass concentration profiles are strongly influenced by the involved parameters. Each of this physical quantity is found to increase with increasing α^* and Br. The heat transfer coefficient and Sherwood number oscillates periodically and their amplitudes are greatly enhanced with enhancing the numerical values of and α^* and Br.

Fig. 1: Physical problem of peristaltic flow regime.
Fig. 2: Variation of $u_2(\eta)$ for different values of a with $k = 3$, $n = 0.7$, $\lambda = 0.4$, and $\Theta = 1.5$.

Fig. 3: Variation of $u_2(\eta)$ for different values of n with $k = 2.5$, $a^* = 0.1$, $\lambda = 0.4$, and $\Theta = 1.5$.

Fig. 4: Variation of Δp for different values of a^* with $n = 0.7$, $\lambda = 0.4$, and $k = 2$.

Fig. 5: Variation of Δp for different values of n with $a^* = 0.1$, $\lambda = 0.4$, and $k = 2$.

Fig. 6: Variation of Δp for different values of k with $n = 0.99$, $a^* = 0.1$, and $\lambda = 0.4$.

Fig. 7: Profile of temperature $\theta(\eta)$ for different values of a^* with $n = 0.95$, $Br = 0.5$, $\lambda = 0.4$, and $k = 2$.

Fig. 8: Profile of temperature $\theta(\eta)$ for different values of Br with $n = 0.95$, $a^* = 0.1$, $\lambda = 0.4$, and $k = 2$.
Fig. 9: Variation of Heat transfer coefficient z at upper wall for different values of a^* with $n = 0.98, Br = 0.5, \lambda = 0.4$ and $k = 2$.

Fig. 10: Variation of Heat transfer coefficient z at upper wall for different values of Br with $a^* = 0.1, n = 0.98, \lambda = 0.4$, and $k = 2$.

Fig. 11: Variation of Mass concentration ϕ for different values of a^* with $n = 0.9, Br = 2, Sr = 1, Sc = 1, \lambda = 0.4$, and $k = 2$.

Fig. 12: Variation of Mass concentration ϕ for different values of Br with $n = 0.9, a^* = 0.1, Sr = 1, Sc = 1, \lambda = 0.4$, and $k = 2$.

Fig. 13: Variation of Mass concentration ϕ for different values of Sr with $n = 0.9, a^* = 0.1, Br = 2, Sc = 1, \lambda = 0.4$, and $k = 2$.

Fig. 14: Variation of Mass concentration ϕ for different values of Sc with $n = 0.9, a^* = 0.1, Sr = 1, Br = 2, \lambda = 0.4$, and $k = 2$.
Fig. 15: Variation of Sherwood Number Sh at upper wall for different values of α^* with $n = 0.9$, $Br = 2$, $Sr = 1$, $Sc = 1$, $\lambda = 0.4$, and $k = 2$.

Fig. 16: Variation of Sherwood Number Sh at upper wall for different values of Br with $n = 0.98$, $\alpha^* = 0.1$, $Sr = 1$, $Sc = 1$, $\lambda = 0.4$, and $k = 2$.

Fig. 17: Variation of Sherwood Number Sh at upper wall for different values of Sr with $n = 0.98$, $\alpha^* = 0.1$, $Br = 2$, $Sc = 1$, $\lambda = 0.4$, and $k = 2$.

Fig. 18: Variation of Sherwood Number Sh at upper wall for different values of Sc with $n = 0.98$, $\alpha^* = 0.1$, $Br = 2$, $Sr = 1$, $\lambda = 0.4$, and $k = 2$.

Fig. 19: Streamlines in wave frame for (a) $\alpha^* = 0.1$, (b) $\alpha^* = 0.98$, and (c) $\alpha^* = 2$, for $n = 0.98$. The other parameters chosen are $k = 2$, and $\lambda = 0.4$.
Fig. 20: Streamlines in wave frame for (a) $n = 0.9$, (b) $n = 1$, and (c) $n = 1.05$, for $k = 2.5$. The other parameters chosen are $\alpha^* = 0.1$, and $\lambda = 0.4$.

Fig. 21: Streamlines in wave frame for (a) $k = 2$, and (b) $k \to \infty$, for $n = 0.98$. The other parameters chosen are $\alpha^* = 0.1$, and $\lambda = 0.4$.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1, u_2</td>
<td>velocity component</td>
<td>m/s</td>
</tr>
<tr>
<td>b</td>
<td>amplitude of wave</td>
<td>m</td>
</tr>
<tr>
<td>λ^*</td>
<td>wavelength</td>
<td>m</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
<td>kg/m3</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>K</td>
</tr>
<tr>
<td>T_m</td>
<td>mean fluid temperature</td>
<td>K</td>
</tr>
<tr>
<td>C</td>
<td>mass concentration</td>
<td>kg</td>
</tr>
<tr>
<td>K_t</td>
<td>thermal diffusivity</td>
<td>m2/s</td>
</tr>
<tr>
<td>c, c_p</td>
<td>viscosity parameter</td>
<td>kgm$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>a^*</td>
<td>infinite shear-rate viscosity</td>
<td>kgm$^{-1}$s$^{-2}$</td>
</tr>
<tr>
<td>D, Φ</td>
<td>coefficient of mass diffusivity, dissipation function</td>
<td>m2/s</td>
</tr>
<tr>
<td>α, a</td>
<td>consistency index</td>
<td>kgm$^{-1}$s$^{-2}$</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ, λ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Paper revised: 07.04.2017

Paper accepted: 11.04.2017