Investigating the effect of Brownian motion models on heat transfer and entropy generation in nanofluid forced convection

H. Pourmohamadian¹, Gh. A. Sheikhzadeh², A. Aghaei³*, H. Ehteram², M. Adibi²

¹-Department of Engineering, Naragh Branch, Islamic Azad University, Naragh, Iran; hosseinpm@yahoo.com
²-Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
³-Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
*AlirezaAghaei21@gmail.com

Abstract:
In this study the influence of Brownian motion models on fluid flow, heat transfer and entropy generation in nanofluid forced convection with variable properties has been numerically inspected in a enclosure with central heat source. The governing equations were solved by finite volume method and SIMPLER algorithm. The numerical study was carried out for Reynolds numbers between 10 and 1000 and nanoparticles volume fraction between 0 and .04. The numerical results show that for all investigated models the average Nusselt number increases by nanoparticle volume fraction increment in all Reynolds number. The overall entropy generation behavior is similar to average Nusselt number variation for all inspected models. Among all analyzed models the estimation of Maxwell-Brinkman and Das-Vajhha [30] Models are mainly close to each other.

1- Introduction
Choi in 1995 was the first person who used “nanofluid” term for nanoparticles suspensions in liquid in Argon laboratory and claimed that these fluids are totally different with common suspensions of solid-liquid and macro fluids in the case of preparation and stability and transient properties [1]. Nanofluid can be used in wide range of applications like industry, installation and other different branches such as medicine. Forced convection has a lot of usages in electronic, food industry, nuclear reactors, industrial lubrication, solar pools, solar collectors, heat exchangers, metal foundries, glassblowing and other things. The entropy generation indicates the amount of irreversibility in a process and furthermore it can be a criterion for engineering system performance [2]. Minimizing the entropy generation or thermo dynamical optimization is not an old method and it is a part of exergy analysis [3]. Sunder and Sharma [4] in 2010, investigated numerically the water-Al₂O₃ nanofluid forced convection heat transfer in low volume fractions in a channel with heated walls. Based on their results the average Nusselt number increases according to nanoparticles volume fraction and it decreases by increasing the aspect ratio that is defined as ratio of width to height. Maruji et al [5],empirically analyzed the nanofluid forced convection heat transfer in a fully developed region of a pipe with constant heat flux. Depending on their results the convective heat transfer coefficient increases by increasing Reynolds number but this increased value is dependent on length to diameter ratio. Maruji et al [6], numerically inspected the nanofluid forced convective heat transfer with non-Newtonian behavior consideration. They presented their results in the case of a correlation for Nusselt number according to Reynolds number,prantdl, volume fraction, and viscosity. Recently very numerically study conducted for the effect of the viscosity and thermal conductivity on the heat ransfer of nanofluid [7-20]. Pakravan and Yaghubi [21], analyzed the dufour,thermophoresis and
Brownian effect in natural convection of water-SiO_2, water-CuO, and water-TiO_2 nanofluids. They found out that the combined effect of these three parameters on average Nusselt number is substantially dependent on the investigated geometry. They reported that the average Nusselt number decreases by increasing the nanoparticles volume fraction inside the square enclosure. Wang et al [22], inspected numerically the fluid flow and mixed heat transfer of water-CuO nanofluid inside the square enclosure. Depending on their results when the Brownian motion effect is considered, by considering the Brownian effect, increases 4 percent more than the case without considering the Brownian motion. Hadad et al [23], studied the thermophoresis effects and Brownian motion in natural convection numerically. Their results indicated that the heat transfer increases by considering the thermophoresis effect and Brownian motion for all volume fractions. Besides this increase is more substantial in low volume fractions. Seif and Nikaien [24] in 2012, investigated the forced convection of CuO, Al_2O_3, and ZnO with EG-water base fluid inside the heat sink micro channel numerically. They demonstrated that the Brownian motion effect is more for nanofluids with smaller nanoparticles. Bianco et al. [25, 26] investigated the production of nanoparticle entropy of aluminum-oxide in a tube. Based on their results, with increasing volume fraction of nanoparticles, the production entropy also increases. The investigations show that more investigations in this field are required. One of the reasons for the inconsistency of experimental results with numerical studies is not to consider some of the important effects, such as the browning of nanoparticles. In this study, we tried to obtain more accurate numerical results considering the effect of this motion. The investigations have been carried out so far, researchers have not studied the effect of Brownian's motion on forced convection. This geometry can be an example of CPU cooling of a powerful computer. These kinds of computers have the ability to process a lot of data at a low cost. For this reason CPU of computers generate a lot of heat. Using Nanofluids can be a suggestion for more efficient cooling of these systems. Another idea is the proposed geometry for the photovoltaic (PV) cooling system. In this study, the effect of Brownian motion with the help of three different models on the flow field, heat transfer, and production of entropy of copper-water-boron nanoparticles in compulsory convection is investigated. Study for volume fractions of 0 to 4 percent of nanoparticles and Reynolds numbers from 10 to 1000 is done.

2- Problem geometry
The schematic geometry of the problem has been shown in figure (1). The entrance and exit length region of the nanofluid is L/10 in the vertical walls. The thermal source is in constant temperature of T_s and the walls are insulated. The s distance that is calculated from the corner of the thermal source has been demonstrated in figure 1. The nanofluid flow is laminar, steady and incompressible. The study has been conducted for Reynolds numbers of 10, 50, 100, 500, and 1000 and nanoparticles volume fraction between 0 and 0.04 with three different models for viscosity and thermal conductivity (Maxwell-Brinkman [27,28], Das-Vajjha [30], and Koo [29]).
The thermo physical properties of water as a base fluid are presented in table 1[18].

Table (1): The base fluid thermo physical properties (T=300K) and nanoparticles[18]

<table>
<thead>
<tr>
<th>properties</th>
<th>CuO</th>
<th>water</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_p (J/kg.K)</td>
<td>535.6</td>
<td>4179</td>
</tr>
<tr>
<td>ρ (kg/m3)</td>
<td>6320</td>
<td>997.1</td>
</tr>
<tr>
<td>k (w/m.K)</td>
<td>76.5</td>
<td>0.613</td>
</tr>
<tr>
<td>β (K$^{-1}$)</td>
<td>1.8×10$^{-5}$</td>
<td>21×10$^{-5}$</td>
</tr>
<tr>
<td>μ (w/m.K)</td>
<td>-</td>
<td>0.001003</td>
</tr>
</tbody>
</table>

4- Governing equations

The governing equations including continuity, momentum and energy equations for Newtonian fluid, two-dimensional flow, laminar, steady are defined below.

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\] (1)

\[
u \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{1}{\rho_f} \frac{\partial p}{\partial x} + \frac{1}{\rho_f} \left[\frac{\partial}{\partial x} \left(\frac{\mu_f}{\rho_f} \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\mu_f}{\rho_f} \frac{\partial u}{\partial y} \right) \right]
\] (2)

\[
u \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{1}{\rho_f} \frac{\partial p}{\partial y} + \frac{1}{\rho_f} \left[\frac{\partial}{\partial x} \left(\frac{\mu_f}{\rho_f} \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\mu_f}{\rho_f} \frac{\partial v}{\partial y} \right) \right]
\] (3)

\[
u \frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} = -\frac{1}{\rho_c_f} \left[\frac{\partial}{\partial x} \left(\frac{k_f}{\rho_c_f} \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{k_f}{\rho_c_f} \frac{\partial T}{\partial y} \right) \right]
\] (4)

\[S_{gen} = \frac{k_f}{T_0^2} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] + \frac{\mu_f}{T_0} \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + 2 \left(\frac{\partial v}{\partial y} \right)^2 \right]
\] (5)

The non-dimensional parameters used in mixed convection are introduced in correlation (6).

\[X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad V = \frac{v}{U_0}, \quad U = \frac{u}{U_0}, \quad \theta = \frac{T-T_s}{\Delta T}, \quad \rho = \frac{\rho}{\rho_0}, \quad \theta = \frac{T-T_s}{\Delta T}, \quad T_0 = \frac{T_a+T_s}{2}, \quad \Delta T = T_a-T_s, \quad Re = \frac{U_0 L}{\nu_f}, \quad Pr = \frac{\nu_f}{\alpha_f}
\] (6)

By using the non-dimensional parameters the non-dimensional equations of continuity, momentum and energy are obtained.

\[
\frac{\partial U}{\partial X} + \frac{\partial U}{\partial Y} = 0
\] (7)

\[
U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{1}{\rho_f \nu_f \text{Re}} \left[\frac{\partial}{\partial X} \left(\frac{\mu_f}{\rho_f} \frac{\partial U}{\partial X} \right) + \frac{\partial}{\partial Y} \left(\frac{\mu_f}{\rho_f} \frac{\partial U}{\partial Y} \right) \right]
\] (8)
According to the geometry, the boundary conditions are as follow:

\[U = V = 0, \theta = 0 \quad \text{On heat source} \quad U = V = 0, \theta = 1 \quad \text{On all the outer walls} \tag{12} \]

The nanofluid properties including density, specific heat, thermal expansion, and diffusivity are obtained from (13) to (16).

\[\rho_{nf} = (1 - \varphi) \rho_f + \varphi \rho_s \tag{13} \]

\[(\rho c_p)_{nf} = (1 - \varphi)(\rho c_p)_f + \varphi(\rho c_p)_s \tag{14} \]

\[(\rho \beta)_{nf} = (1 - \varphi)(\rho \beta)_f + \varphi(\rho \beta)_s \tag{15} \]

\[\alpha_{nf} = \left(\frac{k_{nf}}{(\rho c_p)_{nf}} \right) \tag{16} \]

5- Viscosity and thermal conductivity calculation

In this section the viscosity and thermal conductivity correlations in different models are presented. In Maxwell-Brinkman model the viscosity [27] and thermal conductivity [28] that are only functions of nanoparticles volume fractions are obtained from equations (17) and (18).

\[\mu_{nf} = \mu_f (1 - \varphi)^{-2.5} \tag{17} \]

\[k_{nf} = k_f \left[\frac{(k_f + 2k_r) - 2\varphi(k_f - k_r)}{(k_f + 2k_r) + \varphi(k_f - k_r)} \right] \tag{18} \]

In Koo [29] and Das-Vajjha [30] viscosity and thermal conductivity are functions of nanoparticles volume fraction and temperature also the Brownian motion effect is considered for them. In these models viscosity and thermal conductivity are attained from correlations (17) and (18) and the Brownian part of thermal conductivity and viscosity are obtained from correlations (21) to (25) based on their models.

\[\mu_{nf} = \mu_{static} + \mu_{Brownian} \tag{19} \]

\[k_{nf} = k_{static} + k_{Brownian} \tag{20} \]

\[k_{Brownian} = 5 \times 10^4 \lambda \varphi \rho_f \overline{c_p} \sqrt{\frac{k T}{\rho_s d_p}} \xi(T, \varphi) \tag{21} \]

\[\rho_s \quad \text{and} \quad d_p \quad (d_p = 29 \times 10^{-9}) \quad \text{are nanoparticles density and radius respectively. For water-CuO nanofluid the} \lambda \text{and} \xi \text{functions that are estimated empirically are as follow for the range of} \quad 300 < T(K) < 325, \quad [29]. \]

\[\lambda = 0.0137(100\rho_p)^{-0.8250} \quad \text{for} \quad \varphi \leq 1\% \quad \lambda = 0.0011(100\rho_p)^{-0.7277} \quad \text{for} \quad \varphi > 1\% \]

\[\xi(T, \varphi) = (-6.04\varphi + 0.4705)T + (1722.3\varphi - 134.63) \quad \text{for} \quad 1\% \leq \varphi \leq 4\% \tag{22} \]

\[k_{Brownian} \text{ in Das-Vajjha [30] is defined [30]:} \]

\[k_{Brownian} = 5 \times 10^4 \beta \varphi \rho_f \overline{c_p} \sqrt{\frac{k T}{2\rho_s R_s}} f(T, \varphi, etc) \tag{23} \]
\[f(T, \varphi) = (2.8217 \times 10^{-2} \varphi + 3.917 \times 10^{-1}) \frac{T}{T_0} + (-3.0669 \times 10^{-2} \varphi - 3.91123 \times 10^{-3}) \]

(24)

\(\kappa \) is the Boltzmann constant (\(\kappa = 1.3807 \times 10^{-23} \)). \(\mu_{\text{Brownian}} \) in all models is defined

\[\mu_{\text{Brownian}} = k_{\text{Brownian}} \times \frac{\mu_f}{P_r} \]

(25)

The Nusselt number on the hot wall is:

\[\text{Nu}_{\text{avg}} = \frac{1}{4l} \int_{\text{on heat source walls}} \text{Nu} \, dS \]

(30)

6- Numerical solution:

The governing differential equations are solved by an appropriate numerical procedure. Hence the grid of nodes will be matched on the solution field and then by discretizing the equations on this grid these equations will be converted to algebraic equations in each point of this grid. In order to convert the differential equations to system of algebraic equation the finite volume method presented by Patankar is used [31]. The governing equations were solved by finite volume method and SIMPLER algorithm. Diffusion terms were solved by second order central difference and convective terms were discretized by Hybrid method. Subsequently the system of equations was solved by iterative method.

6-1 The optimum grid

In order to find the appropriate grid that leads to result independence from grid, the average Nusselt number was calculated for water-CuO nanofluid for grids with different nodes, \(61 \times 61, 71 \times 71, 81 \times 81, 91 \times 91, \) and \(101 \times 101 \) for Brinkman model, with Reynolds number of 100 and volume fraction of 0.02. the results were compared in table 3. It is obvious that the grid with \(91 \times 91 \) is appropriate based on average Nusselt number values.

Table (3): average Nusselt number for Maxwell-Brinkman [27,28] model, \(\varphi = 0.02 \) and \(\text{Re} = 100 \) for different nodes.

<table>
<thead>
<tr>
<th>Node numbers</th>
<th>Nu(_{\text{avg}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>61x61</td>
<td>5.36</td>
</tr>
<tr>
<td>71x71</td>
<td>5.53</td>
</tr>
<tr>
<td>81x81</td>
<td>5.67</td>
</tr>
<tr>
<td>91x91</td>
<td>5.72</td>
</tr>
<tr>
<td>101x101</td>
<td>5.74</td>
</tr>
</tbody>
</table>

The convergence criterion for pressure, velocity, and temperature is obtained from (31), that M and N are node numbers of the grid in x and y direction and \(\zeta \) is the parameter that is solved. K is the number of iterations and maximum error value is \(10^{-6} \).

\[\text{error} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} \left| \frac{\dot{\eta}_{k+1}}{\dot{\eta}_{ij}} - \frac{\dot{\eta}_{k}}{\dot{\eta}_{ij}} \right|}{\sum_{i=1}^{M} \sum_{j=1}^{N} \left| \frac{\dot{\eta}_{k+1}}{\dot{\eta}_{ij}} \right|} \leq 10^{-6} \]

(31)

6-2 numerical program validation:

In order to validate the results of provided computer program the numerical simulation was carried out and the obtained results were compared with the [32]. The Numerical results with the present program and
the attained results were compared with the results in table 2. relative difference between average Nusselt number values is insignificant as a consequence the validation of modeling results is proved.

| Table (2): Comparison of average Nusselt number in mixed convection |
|----------------|----------------|----------------|----------------|
| Ri | φ | Present work | [32] | Difference percentage |
| 0.01 | 0.02 | 33.14 | 32.80 | 1.04 |
| 0.1 | 0.02 | 36.40 | 36.90 | 1.36 |
| 10 | 0.02 | 1.68 | 1.72 | 2.32 |
| 10 | 0.1 | 1.93 | 2.01 | 3.98 |

9- Result and discussion:

9-1 Vertical velocity component changes

The vertical velocity component change in the middle height based on X, in ϕ = 0.02 has been shown in figure 2. This quantity can be a criterion for convection and nanofluid movement. In all three investigated models for Reynolds numbers of 10, 50, 100 the flow enters from left side of enclosure and moves toward the exit that is in the right side of the enclosure from top and bottom of heat source. It is evident from figure 2 that the vertical component of velocity in 2 sides of heat source (where the velocity is zero) is positive and there is no difference in value between them. In Reynolds numbers of 500 and 1000 the velocity is negative in the left side of heat source and it is positive in the right side. The velocity value in the right side of heat source is much more than the velocity in the left side. Actually in Reynolds numbers of 500 and 1000 that the great part of flow has moved from bottom of the heat source and in the top part of the heat source that the vortexes move ccw, is formed. There is no considerable difference among investigated models in the case of vertical velocity component change and its value.

9-2 Temperature variations:

The temperature variations have been shown in figure 3 in the middle height based on X and, ϕ = 0.02. By increasing the Reynolds numbers the temperature in the entrance side and close to the heat source is less than the temperature in lower Reynolds numbers. On the other hand by Reynolds number increment the temperature gradient intensifies near the heat source. Among all investigated models except Reynolds number of 10 the temperature variations are extremely intense in the right side of heat source and the temperature drops only after a short length and it reaches to nanofluid fluid temperature in the exit. For Reynolds numbers of 500 and 1000 the temperature variations in both sides of heat source is symmetric. For temperature variations there is no significant difference among various models like vertical velocity component change. In Reynolds of 100, close to left side of heat source the temperature variations are similar to Reynolds number of 10 and 50 and afterwards the temperature gradient intensifies substantially so that the temperature gradient gets even higher than the Reynolds numbers of 500 and 1000.
The average Nusselt number variations according to nanoparticles volume fractions have been demonstrated in figure 5 for different models and Reynolds numbers.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Re=100</td>
<td>ψ</td>
<td>θ</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re=500</td>
<td>ψ</td>
<td>θ</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re=1000</td>
<td>ψ</td>
<td>θ</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig (4): Stream lines, isothermal lines and constant entropy lines in $\varphi=0.02$ for different models and Reynolds numbers
Among all investigated Reynolds numbers the average Nusselt number increases by nanoparticles volume fraction increase. In fact, by increasing nanoparticles volume fraction the nanofluid thermal conductivity increases hence the heat transfer increases. For all investigated models in a constant volume fraction the average Nusselt number increases by Reynolds number increment. In all analyzed Reynolds numbers the estimated average Nusselt numbers by Das-Vajjha [30] model is close to predicted values by Maxwell-Brinkman [27,28] model. These predictions for Nusselt number get closed to each other especially in volume fractions of 0.03 and 0.04. The maximum and minimum increase in average Nusselt number for Das-Vajjha [30] model comparing to Maxwell-Brinkman [27,28] constant property model is 9.56% and 0.01% and they occur in Reynolds numbers of 500 and 50, with volume fractions of 0.01 and 0.04 respectively. In Koo [29] model the maximum and minimum increase in average Nusselt number comparing to Maxwell-Brinkman [27,28] model is 8.82% and 3% and they occur in Reynolds numbers of 100 and 10, with volume fractions of 0.01 and 0.04 respectively.

9-5 The overall entropy generation variations according to Reynolds number:
The overall entropy generation variations according to nanoparticles volume fraction are exhibited in figure 6. The major part of entropy generation is due to heat for all investigated models. Consequently, the entropy generation curves behavior is similar to average Nusselt number variations. The overall entropy generation increases by nanoparticles volume fraction increase. Nanoparticles volume fraction increase leads to more heat transfer, hence the entropy generation due to heat transfer increases. A great part of this entropy increase is due to enhancing heat transfer by Reynolds number increase and other part of that is increasing frictional loss by Reynolds number increment that results in frictional entropy increase. For Vajjha-Das model the max and min increase in overall entropy generation is 0.7% and 0.11% comparing to Maxwell-Brinkman [27,28] constant property model and they occur in Reynolds numbers of 100 and 10, with volume fractions of 0.01 and 0.04 respectively. For Koo model the maximum and minimum increment in overall entropy generation is 10.11 and 1.07 comparing to Maxwell-Brinkman [27,28] model and they occur in Reynolds numbers of 500 and 10, with volume fractions of 0.01 and 0.04 respectively.

9-6 Frictional entropy generation variations according to Reynolds number
The frictional entropy generation variations based on nanoparticles volume fractions have been depicted in figure 7 for different Reynolds numbers and models. The generated entropy due to friction is insignificant and it is not more than 0.0001% for all investigated cases and models. By increasing the nanoparticles volume fraction the frictional entropy generation increases. The nanoparticles volume fraction increase leads to nanofluid viscosity increment and finally it enhances the frictional effects. In a constant volume
fraction for all models the frictional entropy generation increases by Reynolds number. This is due to frictional effects increase caused by Reynolds number increase. The estimated values of frictional entropy by vajjha–Das are really closed to the predicted values by Maxwell-Brinkman [27,28] model.

![Graph showing overall entropy generation change according to nanoparticles volume fraction](image)

Fig (6): the overall entropy generation change according to nanoparticles volume fraction

![Graph showing variation of frictional entropy generation versus volume fraction for different models](image)

Fig (7): The variation of frictional entropy generation versus volume fraction for different models

This is due to closed estimation of nanofluid viscosity by these two models. For Das-Vajjha [30] model the maximum and minimum increase in frictional entropy generation is almost zero percent in comparison with Maxwell-Brinkman [27,28] constant property model. For Koo [29] model the maximum and minimum increase in frictional entropy generation is 1.82% and 0.67 % in comparison with Maxwell-Brinkman [27,28] model. Values occur in Reynolds numbers of 10 and 500, with volume fractions of 0.02 and 0.04 respectively. Given that the k-value predicted by the Vajjha-Das model is greater than the other models. The average nusselt number predicted by this model is also larger and different than the other two models. There is also an argument for productive entropy.

10- Conclusion

In this study the numerical investigation of fluid flow, heat transfer and entropy generation of water-CuO nanofluid forced convection with variable properties have been implemented. The study was carried out for three models of Maxwell-Brinkman, Das-Vajjha [30], and Koo [29]. In this section the obtained results are briefly presented.

1- By using the temperature dependent models to estimate the viscosity and thermal conductivity, the average Nusselt numbers and overall entropy generation are higher than the case with prediction of constant property model.

2- For Das-Vajjha [30] model the maximum and minimum increase in average Nusselt number were 9.56 and 0.01 in comparison with Maxwell-Brinkman [27,28] constant property model. These values occur in Reynolds numbers of 500 and 50, with volume fractions of 0.01 and 0.04 respectively.
3- For Koo [29] model the maximum and minimum increase in average Nusselt number were 8.82 and 3 percent in comparison with Maxwell-Brinkman [27,28] model, in Reynolds numbers of 100 and 10 with volume fractions of 0.01 and 0.04 respectively.

4- For Das-Vajjha [30] model the maximum and minimum increase in overall entropy generation were 0.7 and 0.11 in comparison with Maxwell-Brinkman [27,28] model. These values occur in Reynolds numbers of 100 and 10 with volume fractions of 0.01 and 0.04 respectively.

5- For Koo [29] model the maximum and minimum increase in overall entropy generation are 10.11 and 1.07 in comparison with Maxwell-Brinkman [27,28] model. These values occur in Reynolds numbers of 50 and 10, with volume fractions of 0.01 and 0.04 respectively.

6- The maximum and minimum increase in frictional entropy generation in Das-Vajjha [30] model was almost zero percent in comparison with Maxwell-Brinkman [27,28] model.

7- In Koo [29] model the maximum and minimum increase in frictional entropy generation were 1.82 and 0.67 in comparison with Maxwell-Brinkman [27,28] model. These values occur in Reynolds numbers of 10 and 500, with volume fractions of 0.02 and 0.04.

11- References

