EXPERIMENTAL STUDY ON EHD HEAT TRANSFER ENHANCEMENT OF
SEMI CIRCULAR RIBS INTO CHANNEL

A. Alami nia1, T. Kheiri2 and M.Jafari3

1Assistant Professor, Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz, 53751-71379, Iran
2Ms.c., Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz, 53751-71379, Iran
3Assistant Professor, Department of Mechanical Engineering, The University of Tabriz, Tabriz, Iran

In this study, the heat transfer enhancement on semi circular ribs established on the floor of rectangular duct is investigated. These ribs were used as heat sources and cooling of them has been achieved with EHD1 active method by experimental procedure. The flow was three dimensional, steady, viscous and incompressible with regimes of both laminar and turbulent \(500 \leq \text{Re}_{D_h} \leq 4500\). The hydrodynamics and heat transfer behavior of the air flow was studied by EHD active method with application of corona wind. The aim of this work is application of EHD active method for convective heat transfer enhancement. In this method, two arrangements of wire electrodes have been achieved. The results show that in same Reynolds numbers and voltages of wire electrodes, the heat transfer enhancement was increase in arrangement 1 than arrangement 2.

Key words: Convection, Enhancement, Ribs, EHD, Corona Wind

1. Introduction

Cooling of hot electronic board surfaces and other local heat sources with air flow is an essential part of the boards and heating systems. The main cooling systems for these equipments are flowing of air over them through channels, thus reducing heat generation through forced convection. Active methods are well known for their ability to work with external sources of energy. The active method with application of corona wind is well known owing to its ability to work with any external sources of energy. Corona is a visible luminous emission caused by the creation of photon and occurs in the vicinity of sharp edges where the intensity of the electric field is high. An important aspect of corona discharge is the generation of corona wind, which is a gas flow induced by corona discharge. This phenomenon is caused by the ionization of gas molecules and formation of electrons that accelerate in strong electric fields and collide with neutral molecules, resulting in more ionization. Because the ions are heavier than electrons; they accelerate and drag the neighboring gas molecules. This action generates a secondary flow, known as corona wind. The present work examines active methods of the

1 Electrohydrodynamics
cooling system. The active cooling system is a new cooling method, which has been developed in our lab with construction of apparatus.

The present work examines an active EHD method with application of positive corona wind for the cooling of heat generating semi circular ribs placed at the base of channel.

Alamgholilou (Alami nia) and Esmaeilzadeh [1], investigated experimental study on the heat transfer enhancement of rectangular ribs with constant heat flux located in the floor of a rectangular channel. In this study, the behavior of air flow was studied by passive, active and compound methods. The comparison of the results for various boundary conditions of problem was fairly agreement. Alamgholilou (Alami nia) and Esmaeilzadeh [2, 3], investigated numerical study on the heat transfer enhancement of rectangular ribs with constant heat flux located in the floor of a 3D duct flow has been achieved. In this study, the effects of the arranged holes between the rectangular ribs in channels have been reported.

Alami nia and Campo [4, 5], investigated 3D and 2D experimental study on the heat transfer enhancement of semi circular ribs with constant heat flux located in the floor of a rectangular channel has been achieved. In this study, the behavior of air flow was studied by active EHD method. The results show that in same Reynolds numbers and voltages of wires, the heat transfer enhancement was increased in best arrangement than other arrangements. Density of electric charge around of wire electrodes in best arrangement is higher than other arrangements.

Sultan [6] indicated an enhancement in heat transfer by inducing distributions in vortexes due to existence of holes behind the ribs with passive method of heat transfer enhancement in channel. But in analysis of fluid motion in wake region he considered the effect of density variation and buoyancy forces. According to the negligible Richardson number of flow, buoyancy forces contribute minor role in this phenomenon. In addition in definition of critical Reynolds a specified characteristic length was established which is not appropriate with geometry and physical model of this case. Appling repeated ribs and their distances from each other in channel or in external flow on plain surfaces can influence patterns of flow field.

Fujishima et al. [7] provided analyzed the flow interaction between the primary flow and the secondary flow in the wire-duct electrostatic precipitator. They extended to incorporate the alternately oriented point corona on the wire-plate type electrodes.

Ohadi et al. [8] used the wire-plate electrodes for forced convection enhancement in pipe flow. They showed that the two-wire electrode design provided a modest higher enhancement compared to the single wire electrode design. With two electrodes, they showed that for Reynolds numbers up to 10000, it is possible to use this technique for enhancement.

Kasayapanand and Kiatsiririot [9, 10] investigated the heat transfer enhancement with the EHD technique in laminar forced convection inside a wavy channel with different wire electrode arrangements. The electric field is generated by the wire electrodes charged with DC high voltage. The mathematical modeling includes the interactions among the electric, flow and temperature fields. The numerical simulation was firstly applied to the rectangular flat channel and later to wavy channel.

Kasayapanand et al. [11] investigated the effect of the electrode arrangements in a tube bank with regards to the characteristic of EHD heat transfer enhancement for low Reynolds numbers. The numerical modeling of the laminar forced convection includes the interactions among the electric field, the flow field, and the temperature field. From the numerical results, they showed that the heat
transfer was enhanced by the EHD at a low Reynolds number and the short distance between the wire electrodes and the tube surface.

Shooshtari et al. [12] investigated the electrohydrodynamic enhancement of heat transfer in air laminar channel flow. They showed that the heat transfer was enhanced by the EHD at a low Reynolds numbers.

Tada et al. [13] investigated the Heat transfer enhancement in a convective field by applying ionic wind. They showed that the heat transfer was enhanced by the effects of ionic wind with application of EHD.

Often times in thermal systems, invigorating the heat transfer rate cause deterioration in the momentum transfer. This phenomenon is called dissimilarity. At first by placing semi circular ribs in the floor channel, local pressure and momentum both drop. Therefore, for a specified inlet velocity situation, more pumping power is needed. On the other hand, due to the local effects such as disturbance and the extending of contact surface, the heat transfer increases. So it is necessary to articulate a convenient similarity between these two opposing phenomena. By using a suitable active method, secondary flow of corona wind creates in space between semi circular ribs and causes disturbances. In the present work, to avoid immoderate changes in the physical properties of fluid, the temperature differences between the fluid and semi circular ribs are constrained by applying a convenient heat flux on the semi circular ribs.

2. Experimental Investigation

In order to generate data of the air flow patterns around the semi circular ribs, a special apparatus was necessary. In designing the test section, the following conditions were taken into consideration:

A fully developed air flow should be supplied before the flow enters into the test section. With regards to the dimensions of the channel, the depth to height ratio is high. Because the depth effects have been ignored the channel is two dimensional. The apparatus is designed to flow with low and large values of Reynolds numbers under laminar and turbulent \((500 \leq \text{Re}_D \leq 4500)\) regimes. The flow is incompressible with very small Mach numbers, \(M \ll 0.3\). Thus any interaction effects of high voltage electric fields on the measurement of temperature are due to the eliminating side effects of applied high voltage. Therefore for increase on accuracy of thermocouples, a strength dielectric barrier discharge (DBD) was used.

Fig. 1 shows the schematic and the layout of the main experimental apparatus. By considering the aforementioned conditions for the main experimental section, a special experimental apparatus was designed for the investigation of heat transfer enhancements involving semi circular ribs to fluid. For this purpose, a broad rectangular channel was used. To measure the volume rate of air flow, the orifice meter was used. The ratio in diameter (orifice to pipe) was adjusted to be \(\beta = \frac{d}{D} = 0.25\). A special centrifugal fan was used to produce the air flow. To eliminate disturbances, the test section was located on the suction side of the fan. Fig. 2 shows the photograph of the main experimental apparatus.
The test section was designed to be a channel with 40cm length, $H=4$cm height, and $W=30$cm width as shown in Fig. 3. Before entering the test section flows from a rectangular channel with 2m length, the fluid proceeds with a rectangular flow-straightened screen with unit dimension of 8mm to 20mm. The velocity domain in the test section was $0.11 \leq u \leq 1 m/s$. The hydraulic diameter of the main channel (Especially the test section) was 7.06cm.
The fan was adjusted to operate with constant rotation. The flow rate was measured by the orifice meter under the France standard NF X 10-102 [14]. The pressure measurements should be determined with high accuracy in the two sides of the orifice. In the current study, a U-type manometer with Kerosene (S.G. = 0.865) was used (S.G. is specific gravity). In the test section, the ribs were electrically heated with constant heat flux. To isolate the part attached to the floor of the channel, a fire proof fiber was used. The fire proof fiber is an adequate insulator of heat and electricity. The semi circular ribs were produced using silicon iron foil. Three semi circular ribs were attached on the floor of the channel. The series were connected as resistance to provide a constant heat flux of $q^*_v = 4500W/m^2$ by means of a differential voltage transformer. The semi circular ribs had 3cm in width, 30cm in length and 3cm in axial spacing between them. 22 thermocouples were used for measuring the temperature of the bottom channel wall and the ribbons surface in central direction of flow. The type of thermocouples is T-type with Cu-Constantan (C/C_T). The geometric layout of thermocouples in the test section is shown in Fig. 4, where x denotes the stream wise direction from the position of the first thermocouple in the test section. The x location of the thermocouples is determined in the best location for measuring the temperature. The position of thermocouples (x location of thermocouples) is increased on surfaces of the ribs. This position starts from the first semi circular rib to thermocouple number 22. The thermocouple number 1 is used for measuring the ambient air temperature.

![Fig. 4: The thermocouples arrangement](image)

For temperature processing, the ADAM digital system was used. This system contains four boards for temperature measurement and a transformation board. Each measuring board receives the information of thermocouples and then transfers them to the PC for processing. High voltage is applied using a high voltage supplier for the EHD wire-plate active method. Various arrangements of wire and plates were made as ground electrodes were designed between the spacing of the semi circular ribs. The high voltage supplier generated voltages up to 40kV between the wire and ground electrodes. The corona phenomenon was generated between electrodes with very weak current intensity. The micro-ammeter is used for current intensity measurements with a domain of 0-500 μA and accuracy of 10 μA. In all experimental tests, the polarity of wire electrodes is positive. The diameter of wire electrodes is 0.6 mm. The wire and ground electrodes are made from copper and aluminum, respectively. The primary objective of the present work is the comparison of plain case 1 with EHD active heat transfer enhancement method. The geometry of the two cases is shown in Fig. 5 (a-b).
a) Plain: Case 1

b) Active (EHD): Case 2

Fig. 5: The geometry of 2 cases (a and b)

The arrangement of electrodes with their geometric coding values is illustrated in Fig. 6. The arrangements of electrodes for active method are displayed in the case 2. The wire and ground electrodes were inserted between semi circular ribs to enhancement of heat transfer by means of the secondary flow produced from corona wind of EHD wire-plate actuator.

Fig. 6: Arrangements of wire electrodes
In active method, the secondary flow of corona wind is from the cold main flow to the hot zone. In conclusion, two kinds of enhancement methods could be beneficial for enhancing of heat transfer from semi circular ribs. The aim of this study is to investigate the heat transfer enhancement of three-dimensional traverse semi circular ribs placed at the base of the channel. Three parameters characterize the laminar air flow with heat transfer:

1) Local and average Rate of heat transfer enhancement E_i

Local:
$$E_i = \frac{\dot{h}}{h_s} = \frac{(T_W - T_{ref})}{(T_W - T_{ref})}$$

with
$$h = \frac{q_{rib}}{T_W - T_{ref}}$$

Average:
$$\bar{E}_i = \frac{\bar{h}}{h_s} = \frac{(\bar{T}_W - T_{ref})}{(\bar{T}_W - T_{ref})}$$

with
$$\bar{h} = \frac{q_{rib}}{\bar{T}_W - T_{ref}}$$

2) consumed power ratio E_{lost},

$$E_{lost} = \frac{\Delta P}{\Delta P_s}$$

and

3) Local and average performance evaluation criteria (PEC) η_e,

Local:
$$\eta_e(PEC) = \frac{E_i}{E_{lost}}$$

Average:
$$\bar{\eta}_e(PEC) = \frac{\bar{E}_i}{\bar{E}_{lost}}$$

In the sequence of equations (1) to (5), q_{rib} is the constant heat flux from semi circular ribs to fluid flow, h is the local heat transfer coefficient, T_{ref} is the reference temperature (inlet temperature to the test section), T_W is the temperature of surface of semi circular ribs in floor of test section, including surface of semi circular ribs and spacing of them. ΔP is the pressure loss, and subscript s denotes the plain case without enhancement intervention. Re_{D_h} is Reynolds number based on the hydraulic diameter of the channel, N_{EHD} is EHD number. N_{EHD} is defined as:

$$N_{EHD} = \frac{\rho_e E_0^2 L^2}{\rho_f v_f^2} = \frac{bE_0L}{u_f L} = \frac{u_i L}{v_f}$$

This parameter is similar to the Re_{D_h} number based on velocity of electric ions u_i and with the assumption of similar density for ions and neutral fluid particles. In equation (6), ρ_e is density of electric charge, ρ_f is density of fluid, E_0 is electric field, b is mobility of ions, and v_f is the kinematics viscosity of fluid. u_i is defined as:

$$u_i = I_0 / q_{eo}$$

In this equation, I_0 is electric current of corona wind. q_{eo} is electric charge of one electron, which is 1.602×10^{-19} Coulomb. L is the characteristic length and defined as [15]:

$$L = D_h \times \alpha \times \frac{C}{H} \times \ln(r_{eff} / r)$$
where: α is the view angle between wire and ground electrodes ($\alpha = 1$ for the case of one wire electrode between two ground electrodes and $\alpha = 0.5$ for the case of one wire and one ground electrode). C/H is the ratio of space of wire and ground electrodes to channel height. r_{eff}/r is the ratio of effective radius of wire and ground electrodes to the radius of wire electrode and r_{eff} is defined as $r_{eff} = 4C/\pi$, where C is the distance between wire and ground electrodes.

3. Results and Discussion

The geometry of semi circular ribs arrangements as illustrated in Fig. 5 are: $L_1 = L_2 = 110mm; L = 30mm; S = 30mm; b = 20mm; H = 40mm$. As it is seen in Fig. 7, the distribution of wall temperature for the plain case (without EHD, $Re_{D_h} = 500 – 4500$) is shown.

![Fig. 7: Wall temperature distribution in direction of rib’s surface for forced convection $Re_{D_h} = 500 – 4500$](image)

In Fig. 8, the rate of heat transfer enhancement for forced convection ($Re_{D_h} = 500 – 4500$) is shown. The effect of forced convection on heat transfer enhancement depending on the Reynolds number was shown in the figures. In reference to this figure, the local and average heat transfer enhancement has been increased as a consequence of increments in Reynolds number. The impact of Reynolds number on the heat transfer enhancement was seen in the figure. Herein, the local and average heat transfer enhancement for $Re_{D_h} = 4500$ is higher than their counterparts for others.

![Fig. 8: Comparison of rate of heat transfer enhancement in direction of rib’s surface for forced convection ($Re_{D_h} = 500 – 4500$)](image)

In Figs. 9-10, the rate of heat transfer enhancement for $Re_{D_h} = 0$ (without fan) in arrangements 1 and 2 with voltages of 9, 12 and 15kV is shown. The effect of voltage on heat transfer enhancement depending on the wire arrangement was shown in the figures. In reference to these figures, the local
and average heat transfer enhancement has been increased as a consequence of increments in voltage. The density of electric charge around of wire electrode in arrangement 1 is higher than that in arrangement 2. Therefore, arrangement 1 is better than arrangement 2.

Fig. 9: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 1 (9, 12 and 15 kV; $\text{Re}_{D_h} = 0$)

As it is seen in Figs. 11-12, the rate of heat transfer enhancement for $\text{Re}_{D_h} = 500$ and active EHD case in arrangements 1 and 2 with voltages of 9, 12 and 15kV is shown. The effect of voltage on heat transfer enhancement depending on the wire arrangement was shown in the figures. In reference to these figures, the local and average heat transfer enhancement has been increased as a consequence of increments in voltage. The density of electric charge around of wire electrode in arrangement 1 is higher than that in arrangement 2. Therefore, arrangement 1 is better than arrangement 2.

Fig. 10: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 2 (9, 12 and 15 kV; $\text{Re}_{D_h} = 0$)

Fig. 11: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 1 (9, 12 and 15kV; $\text{Re}_{D_h} = 500$)
Fig. 12: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 2
(9, 12 and 15kV; \(\text{Re}_{D_h} = 500 \))

As it is seen in Figs. 13-14, the rate of heat transfer enhancement for \(\text{Re}_{D_h} = 4500 \) and active EHD case in arrangements 1 and 2 with voltages of 9, 12 and 15kV is shown. The effect of voltage on heat transfer enhancement depending on the wire arrangement was shown in the figures. In reference to these figures, the local and average heat transfer enhancement has been increased as a consequence of increments in voltage. The density of electric charge around of wire electrode in arrangement 1 is higher than that in arrangement 2. Therefore, arrangement 1 is better than arrangement 2.

Fig. 13: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 1
(9, 12 and 15kV; \(\text{Re}_{D_h} = 4500 \))

Fig. 14: Comparison of rate of heat transfer enhancement in direction of rib’s surface for arrangement 2
(9, 12 and 15kV; \(\text{Re}_{D_h} = 4500 \))

The semi circular ribs are heated with constant heat flux and therefore for comparison of EHD active method, the plain case (without EHD, \(\text{Re}_{D_h} = 4500 \)) is base. In Figs. 11-14, the effects of EHD active method on heat transfer enhancement and the temperature reduction are shown in test section. In the space between the semi circular ribs, the insulator (incombustible fiber) has been applied and adiabatic boundary condition brings a temperature reduction. The effect of voltage on heat transfer enhancement depends on the wire arrangement as shown in these figures. It is clear from the figures, that the local and average heat transfer enhancement was increased with increments in voltage. Therefore the arrangement 1 is better than arrangement 2. The impact of Reynolds number on the heat transfer enhancement was seen in these figures. Herein, the local and average heat transfer enhancement for \(\text{Re}_{D_h} = 500 \) is higher than their counterparts for other Reynolds numbers. For high
Reynolds numbers, the power of the main flow is higher than the power of corona wind (secondary flow) in the main flow eliminating the effects of corona wind.

The power of corona wind in the case of low Reynolds numbers is higher than in the case of high Reynolds numbers. Consequently, the corona wind in low Reynolds numbers affects the main flow better than in situations of high Reynolds numbers. Inspection of the figure reveals that the average heat transfer enhancement has been increased with elevations in voltage. At high voltages, the density of electric charge and the electric field around of wire electrodes is high. This is interpreted in terms of the corona wind, which at high voltages has a direct influence on the main flow better than those situations of low voltages.

As it is seen in Fig. 15, Comparison of the average rate of heat transfer enhancement in various Reynolds numbers with arrangements 1, 2 for 12kV is shown. It is clear from this figure, that the average heat transfer enhancement was decreased with increments in Reynolds numbers. With attention to Fig. 14, attests that the density of electric charge around of wire electrode in arrangement 1 is higher than that in arrangement 2. As a consequence, arrangement 1 is better than arrangement 2.

In Fig. 16, the variations of $\bar{\eta}_e$ with Reynolds number for active method of heat transfer enhancement in $Re_{Dh} = 500, 1100, 2000, 3000$ and 4500 are presented. As seen in figure, the effect of Reynolds number on heat transfer enhancement for active method demonstrates the opposite behavior for both low and high values. For the active method, the secondary flow can move further to the spacing between ribs. With attention to Fig. 15, attests that the pressure loss around of wire electrode in arrangement 1 is higher than that in arrangement 2. As a consequence, arrangement 2 is better than arrangement 1. Also in $Re_{Dh} = 4500$, it is detected that for positive interaction of the average heat transfer enhancement and consumed power ratio (ratio of pressure loss) seems to be better than others Reynolds numbers.

Fig. 15: Comparison of the average rate of heat transfer enhancement in various Reynolds numbers with arrangements 1, 2 for 12kV

Fig. 16: The average performance evaluation criteria in various Reynolds numbers with arrangements 1, 2 for 12kV
The uncertainty analysis for \(E_t, \eta_e, \bar{E}_t \) and \(\bar{\eta}_e \) has been carried out too. The uncertainty for local quantities of \(E_t \) and \(\eta_e \) is smaller than 8.5% and for average quantities of \(\bar{E}_t \) and \(\bar{\eta}_e \) is 3.8-5% [16]. In Fig. 17 the uncertainty analysis for various temperature points obtained from one sample of iterative tests is presented. In Fig. 18 the uncertainty analysis for various \(E_t \) points obtained from one sample of iterative tests is presented. The values of uncertainty analysis with error calculation have been achieved in table 1. This table show that the parameters pressure, velocity, temperature, \(\bar{E}_t \) and \(\bar{\eta}_e \).

![Uncertainty analysis in various temperature points obtained from one sample of iterative tests](image1)

![Uncertainty analysis in various \(E_t \) points obtained from one sample of iterative tests](image2)

Table 1: Average uncertainty analysis of all measured parameters

<table>
<thead>
<tr>
<th></th>
<th>(P) (Pressure)</th>
<th>(V) (Velocity)</th>
<th>(T) (Temperature)</th>
<th>(\bar{E}_t)</th>
<th>(\bar{\eta}_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Error</td>
<td>3.5</td>
<td>3</td>
<td>1.54</td>
<td>3.8</td>
<td>5</td>
</tr>
</tbody>
</table>

4. Conclusions

This study has been achieved the enhancement of heat transfer from semi circular ribs in a channel flow using an active method. The new parameter \(\eta_e \) has been introduced. The parameter of \(\eta_e \) deals with the simultaneous effects of heat transfer enhancement and consumed power ratio (the pressure loss ratio) on the cooling performance. The following conclusions from the experimental study are listed:

- The power of corona wind (secondary flow) in low \(\text{Re} \) flows is higher than in high \(\text{Re} \) flows, signifying that the corona wind in low Reynolds numbers is better than in high Reynolds numbers.
- The active method for low Reynolds numbers with laminar flows is advantageous. The average and local heat transfer enhancement climbs up to 143.9% and 360%, respectively.
For the same Reynolds numbers and wire arrangements, the heat transfer enhancement was increased with increments in voltage of the wire electrodes. At high voltages, the density of electric charge and the electric field around of wire electrodes is high; therefore the corona wind in high voltages has been affect on main flow better than low voltages.

In same Reynolds numbers and voltages of wires, the heat transfer enhancement was increase in arrangement 1 than arrangement 2. Density of electric charge around of wire electrodes in arrangement 1 is higher than arrangement 2. Therefore, the arrangement 1 is better than arrangement 2.

Active method for low Reynolds numbers has higher average performance evaluation criteria equal to 0.548. The power of corona wind in low Re is higher than high Re. With decrements in the laminar Reynolds number, the interaction strength of EHD secondary flow was increased. In turbulent Reynolds numbers, the interaction strength of EHD flow was decreased. Therefore, the corona wind in low Reynolds numbers has been affect on main flow better than high Reynolds numbers.

Nomenclature

b- Mobility of ions \([m^2 \cdot V^{-1} \cdot s^{-1}]\)

C- Distance between wire and ground electrodes \([m]\)

D- Diameter of pipe \([m]\)

\(D_h\) - Hydraulic diameter \(= \frac{2WH}{W + H}\) \([m]\)

\(E_t\) - Heat transfer enhancement ratio \(= \frac{h}{h_t} = \frac{(T_w - T_{ref})_t}{(T_w - T_{ref})_s}\)

\(E_{lost}\) - Consumed power ratio \(= \frac{\Delta P}{\Delta P_s}\)

\(E_0\) - Electric field \([V \cdot m^{-1}]\)

H- Channel height \([m]\)

h- Heat transfer coefficient \([W \cdot m^{-2} \cdot K^{-1}]\)

\(h_t\) - Heat transfer coefficient for plain case \([W \cdot m^{-2} \cdot K^{-1}]\)

\(I_0\) - Electric current of corona wind \([A]\)

L- Width of semi circular rib \([m]\), characteristic length \([m]\)

\(L_1\) - Length of upstream region \([m]\)

\(L_2\) - Length of downstream region \([m]\)

\(N_{EHD}\) - EHD number \(= \frac{uL}{v_f}\)

P- Pressure \([Pa]\)

\(q_{rib}'\) - Constant heat flux from semi circular rib \([W \cdot m^{-2}]\)

\(q_{e0}\) - Electric charge of one electron \([Coulomb]\)

Re- Reynolds number \(= \frac{VDv}{\nu}\)

\(Re_{hD}\) - Reynolds number based on hydraulic diameter \(= \frac{VD_h}{\nu}\)

r- Radius of wire electrode \([m]\)

\(r_{eff}\) - Effective radius of wire to ground electrode \([m]\)

S- Separation between semi circular ribs \([m]\)
T-Temperature \([K, C]\)

\(u_i\) - Velocity of electric ions \([m/s]\)

v-Velocity \([m/s]\)

W-Width of channel \([m]\)

x,y,z-Cartesian coordinates

Greek symbols

\(\alpha\) - View angle between wire and ground electrodes

\(\eta\) - Performance evaluation criteria (PEC) \(= \frac{E}{E_{lost}}\)

\(\nu\) - Kinematics viscosity \([m^2/s]\)

\(\rho_f\) - Density of fluid \([kg/m^3]\)

\(\rho_e\) - Density of electric charge \([kg/m^3]\)

\(\Delta\) - Difference

Subscripts

e-Electron

f-Fluid

i-Ions

ref.-Reference condition

s-plain case

w-semi circular rib wall

Superscripts

*-Flux

- - Average

References

