TRANSIENT CFD INVESTIGATIONS ON THERMAL PERFORMANCE OF SOLAR AIR HEATER WITH HOLLOW VERTICAL FINS

Jagadeesh DURAI SAMY 1, Venkatachalam RAMASAMY 2, Nallakumarasamy GURUSAMY 3

1 Department of Mechanical Engineering, Kongunadu College of Engineering and Technology, Tiruchirappalli, TN, India. *(jagadeesh.kncet@gmail.com)

2 Department of Mechanical Engineering, KSR College of Engineering, Namakkal., TN, India.

3 Department of Mechanical Engineering, Excel Engineering College, Namakkal., TN, India

ABSTRACT

Evaluation of experimental thermal performance of a single pass solar air dryer is compared with a transient computational fluid dynamics studies is performed. Vertical hollow plates are placed below the absorber plate and compared against the flat solar absorber plate for its performance improvement. Effect of mass flow rate, the outlet temperature of air is computationally analyzed in comparison with the experimental work, transient boundary conditions for CFD like ambient temperature, solar insolation are taken from the experimental work, and computational results are in good agreement of with experimental results with maximum error percentage of 10%. Thermal efficiency was increased with increase in mass flow area for without fin configuration, for a specific mass flow rate thermal efficiency had a good improvement with fin configuration than the without fin configuration.

Keywords: CFD, fins, solar air Heater, Flow simulation

1. INTRODUCTION

Solar air heaters are widely used in food industries to dry the agricultural products to make agricultural products a value addition, solar air dryer is used to harness solar insolation in which its performance can be enhanced by using fins below or above the absorber plates. In this paper, transient computational fluid dynamics is employed to study the performance of solar air heater with and without fin configuration, fins are made semi-cylindrical hollow shape and it is placed longitudinally below the absorber plates, solar air heater works as single pass system. Semi-cylindrical form is one of the novel approach for the fin design and this has been proposed to improve the thermal efficiency of the system. The evaluation of the results of experimental with CFD shows by enhancing the heat transfer area using fins will increase the rate of heat transfer of the fluid., but it is a tradeoff between pressure drop and enhanced heating surface area, by providing fins pressure drop increases with increased power to the blower[1, 2]. Many shapes and configurations of solar collector plates have been modelled to enhance the heat transfer coefficient. The various baffles and artificial hurdles were used to increase rate of heat transfer between absorber plate and working fluid which is air.[3]. Analytical and experimental analysis was performed in the cross-corrugated absorber plate for
different configurations, cross-corrugated plate on the top, bottom and in zigzag position, cross-corrugated absorber plate significantly improves the thermal performance of the solar air heater [4]. A new device is tested numerically and experimentally with fins and baffle arrangement with double pass over the tube plate, this fin and baffle arrangement substantially improves the heat transfer efficiency [5]. Thermal performance done for the 3 types of air heaters, with fins and without fins below the absorber plate, the efficiency of finned collector is higher than the without fin collector [6]. Thermal performance was done on solar air heater double and single and double pass arrangement for two flow rates using meshed wire as absorber plate, bed height also modified for two configurations, results reveals increasing efficiency by increasing the flow rate, also efficiency of double is more than of single pass configuration, wire-meshed arranged in layers proves a substantial improvement in thermal efficiency than the conventional flat solar absorber plate [7]. Double pass finned solar air heater is investigated experimentally and numerically, fins on the absorber plates are of rods and corrugated, corrugated absorber plate is more efficient than the rod type fins, thermal efficiency increases with increase in the mass flow rates [8]. Flow of fluid to be heated is improved when its send across bottom of the absorber plate, and it was less when its send across at the top of absorber plate, efficiency of all types of system tried goes up by increasing the mass flow rate, porous type absorber plate has better efficiencies in comparison with non-porous type absorber plates [9]. Aluminum can has been used for manufacturing the absorber plate, it improves the collector efficiency and also increases the rate of heat transfer between absorber plate and fluid. As it utilizes the aluminum cans cost of solar heater will be very less and it improves the sustainability [10]. CFD of solar air heater is performed as 2D simulations and they have utilized novel hyperbolic as geometry for the ribs, performance studies are compared with rectangular, triangular and semicircular ribs against the hyperbolic ribs, optimum performance is obtained for hyperbolic ribs [11]. CFD analysis is performed SAHs, having rib in the form of inverted L shape, rib generates creates the vortices which will aid the heat transfer rate between absorber and working fluid. Optimization is done to select the optimal size of L shape fin. [12]. A CFD study was done to measure the performance of non-uniform and uniform transverse ribs, they have employed k-epsilon equation as turbulence model Nusselt number is higher for non-uniform transverse ribs [13]. The performance and outlet temperature of grooved type solar air heater and flat plate solar air heater at different mass flow rates are studied and the analyzed result shows that the grooved heater is 14% more efficient than the flat type heaters at 35 deg atmospheric temperature and various mass flow rates. The difference in outlet temperature varies up to 3 deg Celsius between the grooved type and the flat type heaters [22].

In a study [23], the numerical models of flat plate and v- corrugated plate solar heaters are developed. For these solar heaters experimental and theoretical analysis was done. The theoretical assumptions were matched with experimental data. The parameters which are taken for the comparison is outlet temperatures of air flow, output power and overall heat losses of the two heaters. The consequences of pressure drop in air, efficiencies for these two heaters are also analyzed. The highest value of thermohydraulic efficiency was attained at the mass flow rate of 0.02 kg/s. The use of corrugated type absorber plate is as good as flat plate absorber plate in the solar air heater.

The objective of this paper is to evaluate the experimental thermal performance of a single pass solar air dryer take from the literature [14] and it is compared with a transient computational fluid dynamics studies using solid works flow simulation. Novelty of the work is to relate to solar air heater
using fins and evaluating the same using CFD using conjugate heat transfer with transient boundary conditions

2. COMPUTATIONAL METHODS

Software used in this study is called Solid Works Flow Simulation, it has advantage of the conventional CFD software, which allows the conjugate heat transfer without any complex methods for meshing and preparing shadows and interfaces for the fluid domain

2.1. Governing Equations - General

The conservation laws for mass, angular momentum and energy in the Cartesian coordinate system rotating with angular velocity Ω about an axis passing through the coordinate system's origin can be written in the conservation form as follows:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0
\]

\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i u_j + \rho g_i) = \frac{\partial}{\partial x_j} (\tau_{ij} + \tau_{ij}^R) + S_i, \quad i = 1, 2, 3
\]

\[
\frac{\partial \rho H}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i u_j + q_i) + \frac{\partial p}{\partial t} - \tau_{ij} \frac{\partial u_i}{\partial x_j} + \rho e + S_i u_i + Q_H,
\]

\[
H = h + \frac{u^2}{2},
\]

where \(u \) is the fluid velocity, \(\rho \) is the fluid density, \(\rho g \) is a mass-distributed external force per unit mass due to a porous media resistance \(S_i \) (porous), a buoyancy \(S_i^{\text{gravity}} = -\rho g_i \), where \(g_i \) is the gravitational acceleration component along the i-th coordinate direction, and the coordinate system’s rotation \(S_i \) (rotation), i.e., \(S_i = S_i^{\text{porous}} + S_i^{\text{gravity}} + S_i^{\text{rotation}} \), \(h \) is the thermal enthalpy, \(Q_H \) is a heat source or sink per unit volume, \(\tau_{ik} \) is the viscous shear stress tensor, \(q_i \) is the diffusive heat flux. The subscripts are used to denote summation over the three coordinate directions.

2.2. Governing Equations – Conjugate

Flow Simulation allows predicting simultaneous heat transfer in solid and fluid media with energy exchange between them. Heat transfer in fluids is described by the energy conservation equation where the heat flux is defined by the conservation equation. The phenomenon of anisotropic heat conductivity in solid media is described by the following equation:

\[
\frac{\partial e}{\partial t} = \frac{\partial}{\partial x_i} (\lambda_i \frac{\partial T}{\partial x_i}) + Q_H
\]

where \(e \) is the specific internal energy, \(e = c \cdot T \), \(c \) is specific heat, \(Q_H \) is specific heat release (or absorption) per unit volume, and \(\lambda_i \) are the eigenvalues of the thermal conductivity tensor. It is supposed that the heat conductivity tensor is diagonal in the considered coordinate system. For isotropic medium \(\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 \)

2.3. Environment and Solar Radiation models

Environmental and solar radiation can be applied to the internal problems. In fact, the environment radiation is the non-directional energy flux generated by the walls of an imaginary huge "room" that surrounds the body. This flux has predefined radiation parameters. In contrast to the
environment radiation, the solar radiation is modeled by the directional energy flux. Therefore, the solar radiation is defined via its power flow (intensity) and its directional vector. In addition to the solar radiation from the computational domain boundaries, a solar radiation source emitting directional radiation can be specified.

The Sun directional vector can be calculated using the following formula:

\[
\vec{S} = [\vec{E} \cdot \sin \varphi_s + \vec{N} \cdot \cos \varphi_s \cdot \cos \theta_s + \vec{Z} \cdot \sin \theta_s]
\] (6)

Where
\(\vec{Z}\) is the zenith direction, \(\vec{N}\) is the north direction, \(\vec{E} = \vec{N} \times \vec{Z}\) is the east direction;
\(\theta_s\) is the solar elevation angle. That is, the angle between the direction of the geometric center of the sun’s apparent disk and the (idealized) horizon;
\(\varphi_s\) is the solar azimuth angle. That is, the angle from due north in a clockwise direction.

The solar elevation angle \(\theta_s\) can be calculated, to a good approximation, using the following formula:

\[
\sin \theta_s = \cos h \cos \delta \cos \varphi + \sin \delta \sin \varphi
\] (7)[23]

Where \(\varphi\) is the local latitude, \(\delta\) is the current Sun declination,

\(h = t / 86400 \times (2\pi - \pi)\) is the hour angle of the present time \(t\) (for example, at solar noon 12.00AM, \(t = 43200\) s and \(h = 0\)).

2.4. Mesh Details

Fig 1 shows the mesh details of the computational domain with and without fins and table 1 provides the data about the no of fluid, solid and total cells for with and without fin computational domain

![Fig 1: Mesh solid and fluid domain for with and without fins](image)

<table>
<thead>
<tr>
<th></th>
<th>Without Fin</th>
<th>Without Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cell count</td>
<td>243948</td>
<td>262406</td>
</tr>
<tr>
<td>Fluid Cells</td>
<td>107536</td>
<td>109102</td>
</tr>
<tr>
<td>Solid Cells</td>
<td>136412</td>
<td>153304</td>
</tr>
<tr>
<td>Partial Cells</td>
<td>63128</td>
<td>75668</td>
</tr>
</tbody>
</table>

Table 1: Mesh details for with and without fins
2.5. Boundary Conditions

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>Outlet</td>
<td>Environment</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
</tr>
<tr>
<td>Solar radiation</td>
<td>Transient for 7 hours</td>
</tr>
<tr>
<td></td>
<td>Refer Fig 1</td>
</tr>
<tr>
<td>Time Step</td>
<td>0.0166 seconds</td>
</tr>
<tr>
<td>Iterations per time step</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Boundary Conditions

Boundary conditions were taken as mass flow rate for the inlet and pressure outlet for the outlet of solar air heater, transient solar radiation, and ambient temperature were given as input as shown in the Fig. 1a. It’s a transient analysis done for 7 hours with results time step of every 15 minutes, time step for analysis is 0.01666 seconds, and 20 iterations are given for solving one-time step, a high-end computational with 128 GB ram and xenon processor is employed for the analysis of this domain. Turbulence model used for this analysis is k-epsilon. Solid works flow simulations software is used for transient analysis.

![Graph](image-url)

Fig. 1a: Solar Radiation vs Ambient Temperature boundary condition

2.6. Experimental setup of solar air heater [14]

A pictorial view of solar air heater is shown in Fig. 2, it’s a single pass solar air heater in which air flows between the solar absorber plate and bottom plate, one experiment is made without fins and another with a hollow vertical plate at the bottom of absorber plate as shown in Fig. 3. The material for fins and absorber plate are galvanized iron with black chrome coating. The plate thickness of absorber plate is 0.5 mm, glass thickness is 5 mm. thermal insulation (EPS) is given at the surroundings of the heater for 40 mm thickness, solar absorber area is 2 x 1 meter.
3. RESULTS AND DISCUSSIONS

From Fig. 4 it is evident that plate temperature decreases by increasing the flow rate, also plate temperature raises by 20% by proving the fins hollow vertical fins at the absorber plates, and temperature rise of 10% increase is seen by varying the flow rate. Fig. 5 shows the comparison of experimental versus CFD result for plate temperature, are in good agreement with a maximum error percentage of 11.13%.

Fig. 2. Schematic layout of solar air heater

Fig. 3: Geometry of Solar air Heater with and without fins

Fig. 4: CFD plate temperatures for 0.012 and 0.016 kg/s with and without fins
Fig. 5 Comparison of experimental versus CFD result for plate temperature

Fig. 6 to 9 provides results of inlet temperature and outlet temperature from solar air heater with ambient temperature for 4 variations which is 0.012 kg/s, 0.016 kg/s with fins and without fins, and its also compared the experimental outlet temperature vs CFD outlet temperature for all the 4 cases average error percentage between experimental and CFD is 1.7%.

The following observations are made by comparison of the outlet temperature of the air, 25% of improvement in outlet temperature was observed between without fin and with fin configurations, and about 10% of improvement is seen by altering the flow rate from 0.012 to 0.016 kg/s.

Fig. 6: Experimental and CFD outlet temperature with inlet and ambient temperature for without fins at mass flow rate 0.012 kg/s

Fig. 7: Experimental and CFD outlet temperature with inlet and ambient temperature for without fins at mass flow rate 0.016 kg/s
Fig. 8: Experimental and CFD temperature outlet with inlet and ambient temperature for with fins at mass flow rate 0.012 kg/s

Fig. 9: Experimental and CFD outlet temperature with inlet and ambient temperature for with fins at mass flow rate 0.016 kg/s

Fig. 10 shows the CFD outlet temperature comparative chart for 4 configurations of for two flow rates and with and without fins, in which maximum outlet temperature is achieved by finned configuration of mass flow rate 0.016 kg/s followed by with fin of 0.012 kg/s, outlet temperature for without fin configuration well below the finned configuration.

Fig. 11 shows the velocity plot of without fin configuration for 0.012 and 0.016 kg/s flow rates, velocities per cross section doesn’t vary much for two flow rates but for single velocity say 0.35m/s lower flow rate has less coverage in comparison with higher flow rate.

Fig.12 shows the velocity plot of with fin configuration for 0.012 and 0.016 kg/s flow rates, where a higher velocity of 0.53 is seen on the inlet, being area is reduced by fins it's velocity increases which also augment the higher heat transfer rate.

Fig. 10: Comparison of outlet temperatures for two flow rate and with and without fin

Fig.11: velocity comparison contour plot for without fin configuration for 0.012(top) and 0.016(bottom) kg/s
Fig. 12: velocity comparison contour plot for with fin configuration for 0.012 (top) and 0.016 (bottom) kg/s

Fig. 13 shows the transient temperature contour plot for 7 hours without fins, in which max temperature of 55°C occurs at 13:00 hours and it sustains for 1 hour, temperature rises to 45°C by 12:00 and it maintains at 53 °C till 16:00 hours, hence generations a hot air around 45°C for 4 hours is possible using a solar air dryer without fins with flow rate of 0.016 kg/s.

Fig. 14 shows the transient temperature contour plot for 7 hours with fins, in which max temperature of 85°C occurs at 14:00 hours and it sustains for 1 hour, temperature rises to 75°C by 12:00 and it maintains at 80 °C till 16:00 hours, hence generation of hot air around 75°C for 4 hours is possible using a solar air dryer of hollow verticals fins with flow rate of 0.016 kg/s. by the above results, it’s possible to raise the 30°C of temperature difference by using the hollow vertical fin configuration.

From Fig. 15 to 18 in which thermal efficiency increases as mass flow rate increases, thermal efficiency increased from 40% to 51% for mass flow rates of 0.012 and 0.016 kg/s respectively, and thermal efficiency increases from 35% to 44% in case of without and with fin configurations.

Fig. 13: transient temperature contour plot for 7 hours without fins, 0.016 kg/s

Fig. 14: transient temperature contour plot for 7 hours with fins, 0.016 kg/s
3.1. Detailed Analysis of Results

- Initially, absorber plate temperature decreases by increasing the flow rate, by providing the fins plate temperature increases, experimental plate temperature are in good agreement with CFD plate temperature with an error percentage of 11.13%
- The outlet temperature of air improves by 25% when observed between without fin and with fin configurations, and about 10% of improvement is seen by altering the flow rate from 0.012 to 0.016 kg/s.
- A hot air around 45°C for 4 hours is possible using a solar air dryer of without fins with flow rate of 0.016 kg/s whereas a 75°C of hot air for 4 hours is possible using a solar air dryer of hollow verticals fins
- Thermal efficiency increases as mass flow rate increases, thermal efficiency increased from 40% to 51% for mass flow rates of 0.012 and 0.016 kg/s respectively, and thermal efficiency increases from 35% to 44% in case of without and with fin configurations

4. CONCLUSION

Evaluation of experimental thermal performance of a single pass solar air dryer is compared with a transient computational fluid dynamics studies were performed and the following conclusions are drawn

- Plate temperature decreases by increasing the flow rate, also plate temperature raises by 20% by proving the fins, and temperature rise of 10% increase is seen by varying the flow rate
- Experimental versus CFD result for plate temperature is in good agreement with a maximum error percentage of 11.13%.
- Outlet temperature for 4 cases two flow rates, with fin and without fin are in good agreement with experimental results with maximum error percentage 12%
- 25% of improvement in outlet temperature was observed between without fin and with fin configurations, and about 10% of improvement is seen by altering the flow rate from 0.012 to 0.016 kg/s.
- Hot air generation of around 75°C for 4 hours is possible using a solar air dryer of hollow verticals fins with a flow rate of 0.016 kg/s.
- It is possible to raise 30°C of temperature difference by using the hollow vertical fin configuration
- Thermal efficiency is increased from 40% to 51% for mass flow rates of 0.012 and 0.016 kg/s respectively, and thermal efficiency increases from 35% to 44% in case of without and with fin configurations.
- To conclude in a general point of view, solar air heater with fins will be beneficial in improving thermal efficiency, generate of hot air for 4 hours at 75°C

References

[14.] Foued Chabanea,b., et al., Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater, *Journal of advanced research*, 2013; 1-10

[23.] Solid works flow simulations software manual