AN ANALYTIC STUDY ON THE TWO-TEMPERATURE MODEL FOR ELECTRON-LATTICE THERMAL DYNAMIC PROCESS

by

Da-Quan XIAN* and Xiao-Hong LI

School of Science, Southwest University of Science and Technology, Mianyang, China

Original scientific paper
https://doi.org/10.2298/TSCI160818068X

In this paper, we study the TTM arising in electron-lattice thermal dynamic process by two methods. A new exact traveling solution and variable separation solutions are obtained. They can help us to understand morphological differences in femtosecond laser inducing periodic surface structures on noble metals. Our study examines the role of two competing ultrafast processes following femtosecond laser heating of metals thoroughly. The calculation results confirm the previous experimental work, which is the electron-phonon coupling strength plays a dominant role in the process.

Key words: TTM, noble metals, traveling wave solutions, variable separation solutions

Introduction

Ultrashort pulse laser has found increasing applications in broad fields including material processing, chemistry, biology, health, medicine, electronic, and information technology. The ultrashort pulse duration, usually in the order of femtoseconds to hundreds of femtoseconds, presents its unique properties such as very high peak power, very limited thermal effects, compared with long pulse laser. The interaction mechanism between ultrashort pulse laser and materials is of importance due to its more and more broad applications. In the theories describing material changes after ultrashort laser pulse radiation, the two-temperature model (TTM) [1] is well-known and widely used. In this model, the absorption is divided into two processes. When ultrashort laser pulses arrive at the surface of a metal, the free electrons in the metal first absorb the energy of the laser light, that is, photons. Then there are two paths for the energy absorbed by the electrons to rearrange the thermal diffusion of the hot electrons and the collisions between the electrons and phonons. The latter interaction makes the material temperature rise. Based on this consideration, Anisimov et al. [2] obtained the TTM. This electron-lattice thermal dynamic process described by the TTM is:

\[
\begin{align*}
 C_e \frac{\partial T_e}{\partial t} &= \nabla (K_e \nabla T_e) - g(T_e - T_l) + S(r, t) \\
 C_l \frac{\partial T_l}{\partial t} &= \nabla (K_l \nabla T_l) + g(T_e - T_l)
\end{align*}
\]

where \(T_e, T_l : R_e \times R_e \times R, C_e, \) and \(C_l\) are the electron and lattice heat capacity, \(K_e,\) and \(K_l\) – the electron and lattice thermal conductivity, \(g\) – the electron-phonon coupling coeffi-
cient, \(T_e \) and \(T_l \) – the electron and lattice temperatures, respectively, and \(S \) is the initial energy deposition function by the external source. The spatial and time evolution of electron and lattice temperature can then be obtained by solving the coupled differential equations in eq. (1). This equation set is usually solved by numerical methods.

In this paper, we use some appropriate methods [3-10] to study on the exact solutions of the TTM (1).

Traveling wave solutions of TTM as \(S(r, t) = 0 \)

In this section, we introduce independent variables at first:

\[
T_e(r, z, t) = u(\xi), \quad T_l(r, z, t) = v(\xi), \quad \xi = kr + lz + ct
\]

Equation (1) is carried to ordinary differential equations (ODE) of \(\xi \):

\[
\begin{align*}
C_e u'' - K_e u' + g(u - v) &= 0, \\
C_l v'' - K_l v' - g(u - v) &= 0
\end{align*}
\]

(3)

where \(u' = du(\xi)/d\xi, \quad v' = dv(\xi)/d\xi, \quad s = k^2 + l^2 + c^2 \neq 0 \), and \(k, l, c \) are non-zero real constants to be determined.

Theorem 1. If \(S(r, t) = 0 \) and \(\lambda_1, \lambda_2, \lambda_3 \) are roots of this algebraic equation:

\[
K_e K_l s^2 \lambda^3 - cs(C_e K_1 + C_l K_e)\lambda^2 + [C_e C_l e^2 - gs(K_e - K_l)]\lambda + gc(C_e + C_l) = 0
\]

(4)

then the general solution of eq. (1) is:

\[
\begin{align*}
T_e(r, z, t) &= c_0 + \mu_1 e^{\lambda_1 (k r + l z + ct)} + \mu_2 e^{\lambda_2 (k r + l z + ct)} + \mu_3 e^{\lambda_3 (k r + l z + ct)} \\
T_l(r, z, t) &= c_0 + c_1 e^{\lambda_1 (k r + l z + ct)} + c_2 e^{\lambda_2 (k r + l z + ct)} + c_3 e^{\lambda_3 (k r + l z + ct)}
\end{align*}
\]

(5)

where \(\mu_i = c_{i1} + c_{i2}\lambda_i + c_{i3}\lambda_i^2 + c_{i4}\lambda_i^3 \) and \(c_{il} (l = 1, 2, 3) \) are arbitrary real constants.

Proof. First, we solve the second equation in eq. (3). We get:

\[
u = \frac{C_l v' - K_l v'}{g + v}
\]

(6)

Substituting eq. (6) into the first equation in eq. (3), we get a linear four order ordinary differential equation:

\[
K_e K_l s^2 v''' - cs(C_e K_1 + C_l K_e)v'' + [C_e C_l e^2 - gs(K_e - K_l)]v' + gc(C_e + C_l)v' = 0
\]

(7)

Assume that the characteristic roots are \(\lambda \), then the characteristic equation is:

\[
K_e K_l s^2 \lambda^4 - cs(C_e K_1 + C_l K_e)\lambda^3 + [C_e C_l e^2 - gs(K_e - K_l)]\lambda^2 + gc(C_e + C_l)\lambda = 0
\]

(8)

Obviously, \(\lambda = 0 \) is a root of eq. (7). If the non-zero roots are \(\lambda_1, \lambda_2, \lambda_3 \), one can get the solution of ODE (7):

\[
v(\xi) = c_0 + c_1 e^{\lambda_1 \xi} + c_2 e^{\lambda_2 \xi} + c_3 e^{\lambda_3 \xi}
\]

(9)

Substituting eq. (9) into eq. (2), we have:
$T_i(r, z, t) = c_0 + c_1 e^{\lambda_1 (kr + lz + ct)} + c_2 e^{\lambda_2 (kr + lz + ct)} + c_3 e^{\lambda_3 (kr + lz + ct)}$ \hspace{1cm} (10)

where $c_i (i = 1, 2, 3)$ are arbitrary real constants. Substituting eq. (10) into eq. (6) with eq. (2), yields:

$T_e(r, z, t) = c_0 + \mu e^{\lambda_1 (kr + lz + ct)} + \mu_2 e^{\lambda_2 (kr + lz + ct)} + \mu_3 e^{\lambda_3 (kr + lz + ct)}$ \hspace{1cm} (11)

where $\mu_i = c_i [1 + \lambda_i (C_i c - K_i s \lambda_i) / g] (i = 1, 2, 3)$, in this way we have completed the proof of Theorem 1.

Specially, let $c_3 = 0$ and $\lambda_3 = -\lambda_1$ in eq. (10), then:

Case 1. If $c_1 c_2 > 0$ and $\lambda_1 > 0$, we have:

$v(\xi) = c_0 + 2 \sqrt{c_1 c_2} \cosh \left(\lambda_1 \xi + \frac{1}{2} \ln \frac{c_2}{c_1} \right)$ \hspace{1cm} (12)

Similarly yields:

$T_i(r, z, t) = c_0 + 2 \sqrt{c_1 c_2} \cosh \left(\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \frac{c_2}{c_1} \right)$ \hspace{1cm} (13)

Substituting eq. (10) into eq. (6) with eq. (2), yields:

$T_e(r, z, t) = c_0 + \mu_1 \sinh \left[\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \frac{c_2}{c_1} \right] + \mu_2 \cosh \left[\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \frac{c_2}{c_1} \right]$ \hspace{1cm} (14)

where $\mu_1 = \frac{2 C_i c \lambda_1}{g} \sqrt{c_1 c_2}$ and $\mu_2 = 2 \left(1 - \frac{K_i s \lambda_1^2}{g} \right) \sqrt{c_1 c_2}$.

Case 2. If $c_1 c_2 < 0$ and $\lambda_1 > 0$, then we have:

$v(\xi) = c_0 - 2 \sqrt{-c_1 c_2} \sinh \left(\lambda_1 \xi + \frac{1}{2} \ln \left[\frac{c_2}{c_1} \right] \right)$ \hspace{1cm} (15)

Similarly we have:

$T_i(r, z, t) = c_0 - 2 \sqrt{-c_1 c_2} \sinh \left(\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \left[\frac{c_2}{c_1} \right] \right)$ \hspace{1cm} (16)

Substituting eq. (16) into eq. (6) with eq. (2), yields:

$T_e(r, z, t) = c_0 + \mu_1 \cosh \left[\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \left[\frac{c_2}{c_1} \right] \right] +$\hspace{1cm} (17)

$+ \mu_2 \sinh \left[\lambda_1 (kr + lz + ct) + \frac{1}{2} \ln \left[\frac{c_2}{c_1} \right] \right]$

where $\mu_1 = - \frac{2 C_i c \lambda_1}{g} \sqrt{-c_1 c_2}$ and $\mu_2 = 2 \left(\frac{K_i s \lambda_1^2}{g} - 1 \right) \sqrt{-c_1 c_2}$.

Variable separation solution of TTM as $S(r, t) \neq 0$

Theorem 2. If $C_e = \lambda K_e$, $C_i = \lambda K_i$, $K_e \neq K_i$ and:
\[S(r,t) = (c_1 e^{\alpha t} + c_2 e^{\beta t}) \left(c_3 \sin \sqrt{\frac{g}{K_e}}r + c_4 \cos \sqrt{\frac{g}{K_e}}r \right) \]

(18)

then the variable separation solution of eq. (1) is:

\[
\begin{align*}
T_e(r,z,t) &= \left[c_1 \sin \kappa z + c_2 \cos \kappa z - \frac{L_1}{2g(K_e - K_1)} \right] \left(c_3 e^{\alpha t} + c_4 e^{\beta t} \right) \left(c_5 \sin \sqrt{\frac{g}{K_e}}r + c_6 \cos \sqrt{\frac{g}{K_e}}r \right) \\
T_i(r,z,t) &= \left[c_1 \sin \kappa z + c_2 \cos \kappa z - \frac{L_e}{2g(K_e - K_1)} \right] \left(c_3 e^{\alpha t} + c_4 e^{\beta t} \right) \left(c_5 \sin \sqrt{\frac{g}{K_e}}r + c_6 \cos \sqrt{\frac{g}{K_e}}r \right)
\end{align*}
\]

(19)

where

\[
\kappa = \sqrt{\frac{g(K_e - K_1)}{K_e K_1}}, \quad \rho = \frac{K_0 \lambda + \sqrt{K_0^2 \lambda^2 + 4g K_1}}{2K_1}, \quad \tau = \frac{K_0 \lambda - \sqrt{K_0^2 \lambda^2 + 4g K_1}}{2K_1}, \quad c_i(i=1 \ldots 6)
\]

are arbitrary real constants and \((c_1^2 + c_2^2)(c_3^2 + c_4^2)(c_5^2 + c_6^2) \neq 0\).

Proof. Let \(f = f(z)\) and suppose:

\[
T_e(r,z,t) = \left(f + \frac{1}{2g}\right)S, \quad T_i(r,z,t) = f S
\]

(20)

Substituting eq. (20) into eq. (1), one can get:

\[
\begin{align*}
C_e \left(f + \frac{1}{2g}\right)S_r - K_e \left[\left(f + \frac{1}{2g}\right) (S_u + S_u) + S f_u \right] - \frac{1}{2}S &= 0 \\
C_e f S_r - K_i \left[f (S_u + S_u) + S f_u \right] - \frac{1}{2}S &= 0
\end{align*}
\]

(21)

Taking \(C_e = \lambda K_e, C_i = \lambda K_i\) in eq. (21), yields:

\[
\begin{align*}
K_e \left(f + \frac{1}{2g}\right) \left(\lambda S_r - S_u - S_u \right) &= \frac{1}{2} \lambda S + 1 \left(1 + 2K_e f_u \right) \\
K_e f \left(\lambda S_r - S_u - S_u \right) &= \frac{1}{2} \lambda S + 1 \left(1 + 2K_i f_u \right)
\end{align*}
\]

(22)

Namely

\[
\frac{\lambda S_r - S_u - S_u}{S} = \frac{g(1 + 2K_e f_u)}{K_e(2gf + 1)}, \quad \frac{\lambda S_r - S_u - S_u}{S} = \frac{1 + 2K_i f_u}{2K_i}
\]

(23)

Thus

\[
\frac{1 + 2K_e f_u}{K_e(2gf + 1)} = \frac{1 + 2K_i f_u}{2K_i},
\]

we have

\[
2K_eK_i f_u + 2g(K_e - K_i)f + K_e = 0
\]

(24)

Solving the ODE (24), we get:

\[
f(z) = c_1 \sin \kappa z + c_2 \cos \kappa z - \frac{K_e}{2g(K_e - K_i)}
\]

(25)
where $\kappa = g(K_e - K_i)/(K_e K_i)$.

Substituting eq. (25) into eq. (23) yields linear partial differential equation:

$$K_e K_i (\lambda S_r - S_r' - S_w') + g(K_e - K_i) S = 0$$

(26)

We assume that:

$$S(r, t) = m(t) h(r)$$

(27)

where $m(t)$ is a function of t, and $h(r)$ is a function of r that have to be determined.

Substituting eq. (27) into eq. (26), we have:

$$K_e h(gm + \lambda K_e m' - K_i m'^2) - K_i m(gh + K_e h'') = 0$$

(28)

Letting $gm + \lambda K_e m' - K_i m' = 0$ and $gh + K_e h'' = 0$ in eq. (28), we obtain:

$$m(t) = c_5 e^{\rho t} + c_4 e^t, \quad h(r) = c_5 \sin \left(\frac{g}{K_e} r + c_6 \cos \frac{g}{K_e} r\right)$$

(29)

Then

$$S(r, t) = (c_5 e^{\rho t} + c_4 e^t)$$

(30)

where $\rho = \frac{K_i \lambda + \sqrt{K_i^2 \lambda^2 + 4gK_i}}{2k_i}$, $\tau = \frac{K_e K_i}{2k_i}$.

Substituting eqs. (30) and (25) into eq. (20), we obtain eq. (19). In this way we have completed the proof of Theorem 2.

If for $g(K_e - K_i)K_e K_i < 0$, we set:

$$\kappa = \sqrt{\frac{g(K_e - K_i)}{K_e K_i}} = i\kappa_0, \quad c_1 = -ic_1, \quad (c_{10}, \kappa_0 \in \{0\}, \quad i^2 = -1)$$

then the solutions (19) can be converted in the following form:

$$T_e(r, z, t) = \left(c_{10} \sinh \kappa_0 z + c_2 \cosh \kappa_0 z - \frac{L_i}{2g(K_e - K_i)} \right) (c_3 e^{\rho t} + c_4 e^t) \left(c_5 \sin \left(\frac{g}{K_e} r + c_6 \cos \frac{g}{K_e} r\right) \right)$$

$$T_i(r, z, t) = \left(c_{10} \sinh \kappa_0 z + c_2 \cosh \kappa_0 z - \frac{L_i}{2g(K_e - K_i)} \right) (c_3 e^{\rho t} + c_4 e^t) \left(c_5 \sin \left(\frac{g}{K_e} r + c_6 \cos \frac{g}{K_e} r\right) \right)$$

(31)

Also, if for $gK_e < 0$, we set $\sqrt{\frac{g}{K_e}} = i\theta$, $c_5 = -ic_5$, $(c_{50}, \quad \theta \in \{0\}, \quad i^2 = -1)$ solutions (19) can be converted in the following form:

$$T_e(r, z, t) = \left(c_1 \sin \kappa z + c_2 \cos \kappa z - \frac{L_i}{2g(K_e - K_i)} \right) (c_3 e^{\rho t} + c_4 e^t) (c_{50} \sin \theta r + c_6 \cosh \theta r)$$

$$T_i(r, z, t) = \left(c_1 \sin \kappa z + c_2 \cos \kappa z - \frac{L_i}{2g(K_e - K_i)} \right) (c_3 e^{\rho t} + c_4 e^t) (c_{50} \sin \theta r + c_6 \cosh \theta r)$$

(32)

From eq. (31) and eq. (32), one can get:
The solutions obtained in this paper are new.

Conclusion

In this paper, we used two methods to study the TTM, and obtained a new exact traveling solution and variable separation solutions for this system. Results of eqs. (4) and (11) include the abundant solution structures and physical properties of model (1). Our study thoroughly examined the role of two competing ultrafast processes following femtosecond laser heating of metals. The calculation results confirmed our previous experimental work on femtosecond laser inducing periodic surface structures on noble metals, where the electron-phonon coupling strength was believed to play the dominant role. The profound calorifics significance of some parameters in results of eqs. (4) and (11) needs further study.

Acknowledgment

This work was supported by National Natural Science Foundation of China under Grants No. 11204250, No. 11202175, and No. 11361048.

References