AN INTEGRAL TRANSFORM APPLIED TO SOLVE THE STEADY
HEAT TRANSFER PROBLEM IN THE HALF-PLANE

by

Tongqiang XIAa, Shengping YANb, Xin LIANGb,
Pengjun ZHANGa, and Chun LIUc*

a School of Electric and Power Engineering, China University of Mining and Technology,
Xuzhou, China
b School of Mechanics and Civil Engineering, China University of Mining and Technology,
Xuzhou, China
c IoT Perception Mine Research Center, China University of Mining and Technology,
Xuzhou, China

Original scientific paper
https://doi.org/10.2298/TSCI17S1105X

An integral transform operator

\[\mathcal{A} [\Pi(t)] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \Pi(t)e^{-i\lambda t} \, dt \]

is considered to solve the steady heat transfer problem in this paper. The analytic
technique is illustrated to be applicable in the solution of a 1-D Laplace equation
in the half-plane. The results are interesting as well as potentially useful in the
linear heat transfer problems.

Key words: heat transfer, Laplace equation, analytic solution, integral transform

Introduction

The PDE were used to describe the heat transfer problems, such as diffusion [1-4], and
Laplace equation [5-7]. The PDE in the steady heat transfer problems [5-9] are a second-order
PDE named after Pierre-Simon Laplace who first researched its properties. Its extended ver-
sions were discussed by different researcher in the sense of the fractional- and fractal-order
space operators. For example, the fractional Laplacian equations with the critical Sobolev ex-
ponent were considered in [10]. The weak and numerical solutions were reported in [11, 12].
The local fractional Laplace equation with local fractional derivative was reported in [13, 14].

The (linear) Laplace equations in the different conditions were solved by the integral
transforms [15]. A novel Fourier-like integral transform operator was proposed to find the exact
solutions for a steady heat transfer problem [16]. The Fourier-like integral transform technique
for the Laplace equation has not yet considered. The brief target of the manuscript is to consider
the proposed method for find the analytic solution for the Laplace equation.

A novel integral transform technique

In this paper, we present the properties of the novel integral transform operator which
was proposed in [16] and used in the paper.

* Corresponding author, e-mail: lccumt@163.com
The integral transform of the function $\Pi(t)$ is [16]:

$$\Pi(\lambda) = \mathfrak{A}[\Pi(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Pi(t) e^{-i\lambda t} \, dt$$ \hspace{1cm} (1)$$

where \mathfrak{A} is the Fourier-like integral transform operator.

The inverse Fourier-like integral transform operator is defined [16]:

$$\Pi(t) = \mathfrak{A}^{-1}[\Pi(\lambda)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Pi(\lambda) e^{i\lambda t} \, d\lambda$$ \hspace{1cm} (2)$$

provided the integral exists for some λ.

As a direct result of eqs. (21) and (22), an integral formula is presented [16]:

$$\Pi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \lambda \left[\frac{1}{\xi} \int_{-\infty}^{\infty} \Pi(t) e^{-i\xi t} \, dt \right] e^{i\lambda t} \, d\lambda$$ \hspace{1cm} (3)$$

The properties of the Fourier-like integral transform operator are [16].

(U1) Suppose that $\Pi(\omega) = F[\Pi(t)]$ and $\Pi(\kappa) = \mathfrak{A}[\Pi(t)]$. Then we have:

$$\Pi(\omega) = \lambda \Pi(\lambda) \quad \text{and} \quad \Pi(\lambda) = \frac{1}{\omega} \Pi(\omega)$$ \hspace{1cm} (4)$$

(U2) If $\Pi(t) = e^{-\omega t}$, then we have:

$$\Pi(\lambda) = \frac{1}{\lambda(a + i\lambda)}$$ \hspace{1cm} (5)$$

(U3) If $\Pi(t) = \delta(t)$, then we have:

$$\Pi(\omega) = \frac{1}{\omega}$$ \hspace{1cm} (6)$$

(U4) Let $\Pi(\lambda) = \mathfrak{A}[\Pi(t)]$. Then:

$$\mathfrak{A}[\Pi(t-a)] = e^{-ia\omega} \Pi(\kappa)$$ \hspace{1cm} (7)$$

(U5) Let $\Pi(\lambda) = \mathfrak{A}[\Pi(t)]$. Then:

$$\mathfrak{A} \left[\frac{d\Pi(t)}{dr} \right] = i\lambda \Pi(\lambda)$$ \hspace{1cm} (8)$$

As the direct results, we have:

$$\mathfrak{A} \left[\frac{d^2\Pi(t)}{dr^2} \right] = -\lambda^2 \Pi(\lambda)$$ \hspace{1cm} (9)$$

$$\mathfrak{A} \left[\frac{d^3\Pi(t)}{dr^3} \right] = -i\lambda^3 \Pi(\lambda)$$ \hspace{1cm} (10)$$

$$\mathfrak{A} \left[\frac{d^4\Pi(t)}{dr^4} \right] = \lambda^4 \Pi(\lambda)$$ \hspace{1cm} (11)$$
(U6) Let $\Pi(\lambda) = \mathfrak{A}[\Pi(t)]$ and $\Theta(\lambda) = \mathfrak{A}[\Theta(t)]$. Then:
$$\mathfrak{A}[\Pi(t) + \Theta(t)] = \Pi(\lambda) + \Theta(\lambda)$$
(U7) Let $\Pi(\lambda) = \mathfrak{A}[\Pi(t)]$ and $\Theta(\lambda) = \mathfrak{A}[\Theta(t)]$. Then:
$$\mathfrak{A} \left[\int_{-\infty}^{\infty} \Pi(t-\tau) \Theta(\tau) d\tau \right] = \lambda \Pi(\lambda) \Theta(\lambda)$$
(U7) Let $\Pi(\lambda) = \mathfrak{A}[\Pi(t)]$. Then:
$$\mathfrak{A} \left[\int_{-\infty}^{\infty} \Pi(t-\nu) \Theta(\nu) d\nu \right] = \lambda \Pi(\lambda) \Theta(\lambda)$$

The properties of the Fourier-like integral transform operator are presented.

(S1) If $\Pi(t) = t^a e^{iat}$, then we have:
$$\Pi(\lambda) = \frac{2\pi^n}{\lambda} \delta^{(a)}(\lambda - a)$$
where $\delta(\lambda)$ is the Dirac function [15].

Proof. According to the definition of the Fourier-like integral transform operator, we have:
$$\Pi(\lambda) = \mathfrak{A}[\Pi(t)] = \frac{1}{\lambda} \int_{-\infty}^{\infty} t^a e^{-iat} e^{iat} dt = \frac{2\pi^n}{\lambda} \delta^{(a)}(\lambda - a)$$
where the formula [15]:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^a e^{-iat} e^{-iat} dt = \sqrt{2\pi^n} \delta^{(a)}(\lambda - a)$$
is valid.

(S2) If $\Pi(t) = \text{sgn}(t)$, where $\text{sgn}(t)$ is the sign function [15], then we have:
$$\Pi(\lambda) = \frac{2}{i\lambda^2}$$

Proof. Using the definition of the Fourier-like integral transform operator, we obtain:
$$\Pi(\lambda) = \mathfrak{A}[\Pi(t)] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \text{sgn}(t) e^{-iat} dt = \frac{2}{i\lambda^2}$$
where there is [15]:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \text{sgn}(t) e^{-iat} dt = \sqrt{\frac{2}{\pi}} \frac{1}{i\lambda}$$
(S3) If $\Pi(t) = 1/(t^2 + a^2)$, where $a > 0$, then we have:

$$\Pi(\lambda) = \frac{\pi e^{-|\lambda|}}{a\lambda}$$

(18)

Proof. Considering the following relationship [15]:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{t^2 + a^2} e^{-it\lambda} dt = \sqrt{\frac{\pi}{2}} \frac{e^{-|\lambda|}}{a\lambda}$$

we have:

$$\Pi(\lambda) = \mathfrak{A}\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \frac{1}{t^2 + a^2} e^{-it\lambda} dt = \frac{\pi e^{-|\lambda|}}{a\lambda}$$

(S4) If $\Pi(t) = e^{-at}$, where $a > 0$, then we have:

$$\Pi(\lambda) = \frac{1}{\lambda} e^{-\frac{\lambda^2}{4a}}$$

(19)

Proof. Using the following relationship [15]:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-at^2} e^{-it\lambda} dt = \frac{1}{\sqrt{2\pi}} e^{-\frac{\lambda^2}{4a}}$$

we get:

$$\Pi(\lambda) = \mathfrak{A}\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} e^{-at^2} e^{-it\lambda} dt = \frac{1}{\lambda} e^{-\frac{\lambda^2}{4a}}$$

(S5) If $\Pi(t) = e^{-|t|}$, where $a > 0$, then we have:

$$\Pi(\lambda) = \frac{\pi a}{\lambda (a^2 + \lambda^2)}$$

(20)

Proof. With use of the relationship [15]:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-|t|} e^{-it\lambda} dt = \sqrt{\frac{\pi}{2}} \frac{a}{a^2 + \lambda^2}$$

we have:

$$\Pi(\lambda) = \mathfrak{A}\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} e^{-|t|} e^{-it\lambda} dt = \frac{\pi a}{\lambda (a^2 + \lambda^2)}$$

(S6) If $\Pi(t) = e^{at}$, where $a > 0$, then we have:

$$\Pi(\lambda) = \frac{2\pi \delta(\lambda - a)}{\lambda}$$

(21)

Proof. We have [15]:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{at} e^{-it\lambda} dt = \sqrt{2\pi} \delta(\lambda - a)$$
such that:

$$
\Pi(\lambda) = A\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} e^{i\lambda t} \, dt = \frac{2\pi \delta(\lambda - a)}{\lambda}
$$

(S7) If $\Pi(t) = \sin t$, then we have:

$$
\Pi(\lambda) = \frac{\pi \left[\delta(\lambda - 1) - \delta(\lambda + 1)\right]}{\lambda i}
$$

Proof. We have:

$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin e^{-i\lambda t} \, dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{it} - e^{-it}}{2} e^{-i\lambda t} \, dt = \frac{1}{2i} \left[\sqrt{2\pi} \delta(\lambda - 1) - \sqrt{2\pi} \delta(\lambda + 1)\right]
$$

such that:

$$
\Pi(\lambda) = A\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \sin e^{-i\lambda t} \, dt = \frac{\pi \left[\delta(\lambda - 1) - \delta(\lambda + 1)\right]}{\lambda i}
$$

(S8) If $\Pi(t) = \cos t$, then we have:

$$
\Pi(\lambda) = \frac{\pi \left[\delta(\lambda - 1) + \delta(\lambda + 1)\right]}{\lambda}
$$

Proof. We have:

$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos e^{-i\lambda t} \, dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{it} + e^{-it}}{2} e^{-i\lambda t} \, dt = \frac{1}{2} \left[\sqrt{2\pi} \delta(\lambda - 1) + \sqrt{2\pi} \delta(\lambda + 1)\right]
$$

such that:

$$
\Pi(\lambda) = A\left[\Pi(t)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \cos e^{-i\lambda t} \, dt = \frac{\pi \left[\delta(\lambda - 1) + \delta(\lambda + 1)\right]}{\lambda}
$$

Solving the 1-D Laplace equation

In this section, we handle a Dirichlet's problem for a 1-D Laplace equation in the half-plane.

Let us consider a 1-D Laplace equation in the half-plane [15]:

$$
\frac{\partial^2 \Theta(x,y)}{\partial x^2} + \frac{\partial^2 \Theta(x,y)}{\partial y^2} = 0, \quad -\infty < x < \infty, \quad y \geq 0
$$

(24)

with the boundary conditions:

$$
\Theta(x,0) = g(x), \quad -\infty < x < \infty
$$

(25)

$$
\Theta(x,y) \to 0 \quad \text{as} \quad |x| \to \infty, \quad y \to \infty
$$

(26)

Introducing the Fourier-like integral transform operator with respect to x, we have:

$$
\Theta(\lambda,y) = A\left[\Theta(x,y)\right] = \frac{1}{\lambda} \int_{-\infty}^{\infty} \Theta(x,y) e^{-i\lambda x} \, dx
$$

(27)
which leads to:

\[
\frac{\partial^2 \Theta(\lambda, y)}{\partial y^2} - \lambda^2 \Theta(\lambda, y) = 0
\]

(28)

where

\[
\Theta(\lambda, 0) = g(\lambda)
\]

(29)

and

\[
\Theta(\lambda, y) \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty
\]

(30)

Thus, finding the solution of eq. (27), we obtain from eqs. (28) and (29) that:

\[
\Theta(\lambda, y) = g(\lambda)e^{\lambda y}
\]

(31)

Thus, we have:

\[
\mathfrak{A} \left[\frac{2}{\sqrt{\pi}} \frac{y}{x^2 + y^2} \right] = \frac{1}{\lambda} e^{\lambda y}
\]

(32)

such that:

\[
\Theta(\lambda, y) = \lambda g(\lambda) \left(\frac{1}{\lambda} e^{\lambda y} \right)
\]

(33)

Thus, we have from eq. (33):

\[
\Theta(x, y) = \frac{g(y)}{\pi} \int_{-\infty}^{\infty} \frac{e^{-\nu} d\nu}{(x - \nu)^2 + y^2}, \quad y \geq 0
\]

(34)

which is in agreement with the result from Fourier transform [15].

Conclusion

In the present work, a novel Fourier-like integral transform technique was used to solve the PDE in heat transfer. The analytical solution of the Laplace equation was obtained. Comparing with the result from Fourier transform, the presented method is efficient, accurate and alternative for finding the linear PDE from the problems in science and engineering.

Acknowledgment

This work is supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT17R103), the creative research groups of China (51421003), the National Natural Science Funds of China (51604269 and 51504252) and the Fundamental Research Funds for the Central Universities (2014XT02). This work was also a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Nomenclature

\[t \quad \text{– temperature, [K]} \]

\[x, y \quad \text{– space co-ordinates, [m]} \]

References

