A MODIFICATION FRACTIONAL VARIATIONAL ITERATION METHOD FOR SOLVING NON-LINEAR GAS DYNAMIC AND COUPLED KdV EQUATIONS INVOLVING LOCAL FRACTIONAL OPERATORS

by

Dumitru BALEANUA⁺, Hassan Kamil JASSIMd, and Hasib KHANa,e⁺⁺

a College of Engineering Mechanics and Soft Materials, Hohai University, Jiangning, Nanjing, China
b Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara, Turkey
c Institute of Space Sciences, Magurele-Bucharest, Romania
d Department of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiriyah, Iraq
e Department of Mathematics, Shaheed BB University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan

Original scientific paper
https://doi.org/10.2298/TSCI170804283B

In this paper, we apply a new technique, namely local fractional variational iteration transform method on homogeneous/non-homogeneous non-linear gas dynamic and coupled KdV equations to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative and integral operators. This method is the combination of the local fractional Laplace transform and variational iteration method. The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.

Key words: coupled KdV equation, non-linear gas dynamic equation, local fractional variational iteration method, local fractional Laplace transform, local fractional operator

Introduction

The variational iteration method was first proposed by He [1, 2] and was applied to deal with Helmholtz equations in [3], Burger’s and coupled Burger’s equations in [4], Klein-Gordon equations in [5], in KdV in [6], the oscillation equations in [7], Schrodinger equation in [8], diffusion equation in [9], Bernoulli equation in [10], and others. The extended variational iteration method, called the fractional variational iteration method, was developed and applied to handle some fractional differential equations within the modified Riemann-Liouville derivative in [11-15]. More recently, the local fractional variational iteration method, initiated in [16], was used to find the non-differentiable solutions for the heat conduction equation, Poisson equation in [17], coupled KdV equation in [18], damped and dissipative wave equation in [19], Fokker-Planck equation in [20], and non-linear PDE in [21] with local fractional derivative operators.

* Corresponding author, e-mail: hasibkhan13@yahoo.com
In recent years, a many of approximate and analytical methods have been utilized to solve the PDE with local fractional derivative operators such as the local fractional decomposition method in [22, 23], local fractional differential transform method in [24-26], local fractional series expansion method in [27], local fractional Sumudu transform method in [28], local fractional Laplace transform method in [29], local fractional reduced differential transform method in [30, 32], local fractional Laplace variational iteration method in [31].

The standard form of non-linear gas dynamic equation involving local fractional derivative operators can be written:

\[
\frac{\partial^\alpha u(x,y)}{\partial x^\alpha} + \frac{1}{2} \frac{\partial^\alpha u^2(x,y)}{\partial y^\alpha} - u(x,y)\left[1-u(x,y)\right] = g(x,y), \quad 0 < \alpha \leq 1
\]

subject to the initial conditions

\[
u(0,y) = \phi(y)
\]

The KdV equation describes the theory of water waves in shallow channels. It is a non-linear equation which exhibits special solutions, known as Solutions, which are stable and do not disperse with time. The coupled KdV equations involving local fractional derivative operators can be written:

\[
\frac{\partial^\alpha v(x,y)}{\partial x^\alpha} + \frac{1}{2} \frac{\partial^\alpha v^2(x,y)}{\partial y^\alpha} + 2v(x,y)\frac{\partial^\alpha v(x,y)}{\partial y^\alpha} + 2u(x,y)\frac{\partial^\alpha v(x,y)}{\partial y^\alpha} = 0
\]

subject to the initial conditions

\[
\begin{align*}
u(0,y) &= \kappa_1(y) \\
u(0,y) &= \kappa_2(y)
\end{align*}
\]

In this paper, our aims are to present the coupling method of local fractional Laplace transform and variational iteration method, which is called as the local fractional variational iteration transform method, and to use it to solve the non-linear gas dynamic and coupled KdV equations with local fractional derivative.

Analysis of the method

We consider a general non-linear local PDE:

\[
L_\alpha u(x,y) + R_\alpha u(x,y) + N_\alpha u(x,y) = g(x,y), \quad 0 < \alpha \leq 1
\]

where \(L_\alpha = \frac{\partial^n}{\partial x^n}, \ n \in N \) is the linear LFDO, \(R_\alpha \) denotes a lower order LFDO, \(N_\alpha \) represented the general non-linear LFDO, and \(g(x,y) \) is the non-differentiable source term.

Applying the Yang-Laplace transform (denoted by \(\mathcal{L}_\alpha \)) on both sides of eq. (5), we get:

\[
\mathcal{L}_\alpha \left(L_\alpha u(x,y)\right) + \mathcal{L}_\alpha \left(R_\alpha u(x,y)\right) + \mathcal{L}_\alpha \left(N_\alpha u(x,y)\right) = \mathcal{L}_\alpha \left(g(x,y)\right)
\]
\[s^{\alpha} F_{\alpha} \left[u(x,y) \right] = s^{(n-1)\alpha} u(0,y) - s^{(n-2)\alpha} u^{(\alpha)}(0,y) - \cdots - u_{(n-1)\alpha}^{(\alpha)}(0,y) =
\]
\[= F_{\alpha} \left[g(x,y) - R_u(x,y) - N_u(x,y) \right] \]
(7)

or
\[F_{\alpha} \left[u(x,y) \right] = \frac{1}{s^{\alpha}} u(0,y) + \frac{1}{s^{2\alpha}} u^{(\alpha)}(0,y) + \cdots + \frac{1}{s^{n\alpha}} u_{(n-1)\alpha}^{(\alpha)}(0,y) + \]
\[+ \frac{1}{s^{n\alpha}} F_{\alpha} \left[g(x,y) - R_u(x,y) - N_u(x,y) \right] \]
(8)

Operating with the Yang-Laplace inverse on both sides of eq. (8) gives:
\[u(x,y) = u(0,y) + \frac{x^{\alpha}}{\Gamma(1+\alpha)} u^{(\alpha)}(0,y) + \cdots + \frac{x^{(n-1)\alpha}}{\Gamma(1+(n-1)\alpha)} u_{(n-1)\alpha}^{(\alpha)}(0,y) + \]
\[+ F_{\alpha}^{-1} \left[\frac{1}{s^{\alpha}} F_{\alpha} \left[g(x,y) - R_u(x,y) - N_u(x,y) \right] \right] \]
(9)

Deriving both side eq. (9) with respect to \(x \), we have:
\[\frac{\partial u(x,y)}{\partial x^\alpha} = \frac{\partial u^{(\alpha)}(0,y)}{\partial x^\alpha} + \cdots + \frac{\partial x^{(n-2)\alpha}}{\partial x^\alpha} \frac{u_{(n-1)\alpha}^{(\alpha)}(0,y)}{\Gamma(1+(n-2)\alpha)} + \]
\[- u_{(n-1)\alpha}^{(\alpha)}(0,y) \cdots - \frac{x^{(n-2)\alpha}}{\Gamma(1+(n-2)\alpha)} u_{(n-1)\alpha}^{(\alpha)}(0,y) = 0 \]
(10)

We now structure the correctional local fractional function in the form:
\[u_{\alpha+1} (x,y) = u_{\alpha} (x,y) + \frac{1}{\Gamma(1+\alpha)} \cdot \]
\[\int_0^x \left\{ \frac{\partial u_{\alpha} (\xi,y)}{\partial \xi^\alpha} - \frac{\partial u^{(\alpha)}(0,y)}{\partial \xi^\alpha} + \cdots + \frac{\partial x^{(n-2)\alpha}}{\partial \xi^\alpha} \frac{u_{(n-1)\alpha}^{(\alpha)}(0,y)}{\Gamma(1+(n-2)\alpha)} \right\} \left[g(\xi,y) - R_u(\xi,y) - N_u(\xi,y) \right] \left(d\xi \right)^\alpha \]
(11)

Making the local fractional variation, we get:
\[\frac{\partial u_{\alpha+1} (x,y)}{\partial x^\alpha} = \frac{\partial u_{\alpha} (x,y)}{\partial x^\alpha} + \frac{1}{\Gamma(1+\alpha)} \cdot \]
\[\int_0^x \left\{ \frac{\partial u_{\alpha} (\xi,y)}{\partial \xi^\alpha} - \frac{\partial u^{(\alpha)}(0,y)}{\partial \xi^\alpha} + \cdots + \frac{\partial x^{(n-2)\alpha}}{\partial \xi^\alpha} \frac{u_{(n-1)\alpha}^{(\alpha)}(0,y)}{\Gamma(1+(n-2)\alpha)} \right\} \left[g(\xi,y) - R_u(\xi,y) - N_u(\xi,y) \right] \left(d\xi \right)^\alpha \]
(12)

The extremum condition of \(u_{\alpha+1} (x,y) \) is given:
$$\delta^\alpha u_{m+1}(x,y) = 0 \quad (13)$$

In view of eq. (13), we have the following stationary conditions:

$$1 + \frac{\lambda(\xi)^\alpha}{\Gamma(1+\alpha)} \bigg|_{\xi=x} = 0, \quad \left[\frac{\lambda(\xi)^\alpha}{\Gamma(1+\alpha)} \right]_{\xi=x} = 0 \quad (14)$$

This is turn gives:

$$\frac{\lambda(\xi)^\alpha}{\Gamma(1+\alpha)} = -1 \quad (15)$$

Substituting eq. (15) into eq. (11), we obtained:

$$u_{m+1}(x,y) = u_m(x,y) - \frac{1}{\Gamma(1+\alpha)} \cdot \left[\frac{\partial^\alpha u_m(\xi,y)}{\partial \xi^\alpha} - \frac{\partial^\alpha u_m(\tau,x)}{\partial \tau^\alpha} \left[\frac{1}{\Gamma(1+\alpha)} \left[\frac{1}{\Gamma(1+n-1)} \right] \sum_{k=0}^{n} \frac{\partial^\alpha u_m(\tau,x)}{\partial \tau^\alpha} \right] \right]$$

$$- (u_m)^{(\alpha)}(0,y) - \cdots - \frac{\xi^{(n-2)\alpha}}{\Gamma(1+(n-2)\alpha)} (u_m)^{(n-1)\alpha}(0,y) \quad (16)$$

Finally, the solution $u(x,y)$ is given:

$$u(x,y) = \lim_{{m\to\infty}} u_m(x,y) \quad (17)$$

Applications

Example 1. Consider the following homogeneous non-linear gas dynamic equation involving local fractional derivative operator:

$$\frac{\partial^\alpha u(x,y)}{\partial x^\alpha} + \frac{1}{2} \frac{\partial^\alpha u^2(x,y)}{\partial y^\alpha} - u(x,y) \left[1 - u(x,y) \right] = 0 \quad (18)$$

and the initial condition

$$u(0,y) = E_\alpha \left(-y^\alpha \right) \quad (19)$$

In view of eqs. (16) and (18) the local fractional iteration algorithm can be written:

$$u_{m+1}(x,y) = u_m(x,y) - \frac{1}{\Gamma(1+\alpha)} \cdot \left[\frac{\partial^\alpha u_m(\tau,x)}{\partial \tau^\alpha} + \frac{\partial^\alpha u^2_m(\tau,x)}{\partial \tau^\alpha} \left[\frac{1}{\Gamma(1+\alpha)} \left[\frac{1}{\Gamma(1+n-1)} \right] \sum_{k=0}^{n} \frac{\partial^\alpha u_m(\tau,x)}{\partial \tau^\alpha} \right] \right]$$

$$- (u_m)^{(\alpha)}(0,y) - \cdots - \frac{\xi^{(n-2)\alpha}}{\Gamma(1+(n-2)\alpha)} (u_m)^{(n-1)\alpha}(0,y) \quad (20)$$

We can use the initial condition to select $u_0(x,y) = u(0,y) = E_\alpha \left(-y^\alpha \right)$. Using this selection into the correction functional (20) gives the following successive approximations:
\[u_0(x,y) = E_\alpha(-y^\alpha) \]
(21)

\[u_1(x,y) = u_0(x,y) - \frac{1}{\Gamma(1+\alpha)} \]

\[\int_0^\infty \left[\frac{\partial^\alpha u_0(\tau,y)}{\partial \tau^\alpha} + \frac{\partial^\alpha}{\partial \tau^\alpha} \left[\mathcal{E}_\alpha \left\{ \frac{1}{s^\alpha} \mathcal{E}_\alpha \left\{ \frac{1}{2} \frac{\partial^\alpha u_0(\tau,y)}{\partial y^\alpha} - u_0(\tau,y) \left[1 - u_0(\tau,y) \right] \right\} \right\} \right] \right] (d\tau)^\alpha = \]

\[= E_\alpha(-y^\alpha) \left[1 + \frac{x^\alpha}{\Gamma(1+\alpha)} \right] \]
(22)

\[u_2(x,y) = u_1(x,y) - \frac{1}{\Gamma(1+\alpha)}. \]

\[\int_0^\infty \left[\frac{\partial^\alpha u_1(\tau,y)}{\partial \tau^\alpha} + \frac{\partial^\alpha}{\partial \tau^\alpha} \left[\mathcal{E}_\alpha \left\{ \frac{1}{s^\alpha} \mathcal{E}_\alpha \left\{ \frac{1}{2} \frac{\partial^\alpha u_1(\tau,y)}{\partial y^\alpha} - u_1(\tau,y) \left[1 - u_1(\tau,y) \right] \right\} \right\} \right] \right] (d\tau)^\alpha = \]

\[= E_\alpha(-y^\alpha) \left[1 + \frac{x^\alpha}{\Gamma(1+\alpha)} + \frac{x^{2\alpha}}{\Gamma(1+2\alpha)} \right] \]
(23)

\[u_n(x,y) = E_\alpha(-y^\alpha) \sum_{k=0}^{\infty} \frac{x^{k\alpha}}{\Gamma(1+k\alpha)} \]
(24)

Finally, the solution \(u(x,y) \) is given:

\[u(x,y) = \lim_{n \to \infty} u_n(x,y) = E_\alpha(-y^\alpha) \sum_{k=0}^{\infty} \frac{x^{k\alpha}}{\Gamma(1+k\alpha)} \]
(25)

and in closed form:

\[u(x,y) = E_\alpha(-y^\alpha) E_\alpha(x^\alpha) = E_\alpha(x^\alpha - y^\alpha) \]
(26)

Example 2. Consider the following non-homogeneous non-linear gas dynamic equation involving local fractional derivative operator:

\[\frac{\partial^\alpha u(x,y)}{\partial \alpha^\alpha} + \frac{1}{2} \frac{\partial^\alpha u^2(x,y)}{\partial y^\alpha} - u(x,y) \left[1 - u(x,y) \right] = -E_\alpha(x^\alpha - y^\alpha) \]
(27)

with the initial condition:

\[u(0,y) = 1 - E_\alpha(-y^\alpha) \]
(28)

Applying eqs. (16) and (21), we obtain the correction function:

\[u_{n,1}(x,y) = u_n(x,y) - \frac{1}{\Gamma(1+\alpha)}. \]

\[\int_0^\infty \left[\frac{\partial^\alpha u_n(\tau,y)}{\partial \tau^\alpha} + \frac{\partial^\alpha}{\partial \tau^\alpha} \left[\mathcal{E}_\alpha \left\{ \frac{1}{s^\alpha} \mathcal{E}_\alpha \left\{ \frac{1}{2} \frac{\partial^\alpha u_n(\tau,y)}{\partial y^\alpha} - u_n(\tau,y) \left[1 - u_n(\tau,y) \right] \right\} \right\} \right] \right] (d\tau)^\alpha = \]

\[\]
(29)
We can use the initial condition to select $u_0(x, y) = u(0, y) = 1 - E_a(-y^a)$ Using this selection into the correction functional (29) gives the following successive approximations:

\[u_0(x, y) = 1 - E_a(-y^a) \]
\[u_i(x, y) = u_0(x, y) - \frac{1}{\Gamma(1 + \alpha)} \]
\[\int_0^\tau \left[\frac{\partial^\alpha u_0(\tau, y) + \partial^\alpha}{\partial \tau^\alpha} \left(\mathcal{E}_a \left(\frac{1}{s^a} \mathcal{E}_a \left(\frac{1}{2} \frac{\partial^\alpha}{\partial \tau^\alpha} - u_0(\tau, y) \right) \right) \right] + (d \tau)^a = \nonumber \]
\[= 1 - E_a(-y^a) - \frac{1}{\Gamma(1 + \alpha)} \int_0^\tau \left[E_a(\tau^a - y^a) \right] (d \tau)^a =
\]
\[= 1 - E_a(-y^a) - E_a(x^a - y^a) + E_a(-y^a) =
\]
\[= 1 - E_a(x^a - y^a) \]
\[u_i(x, y) = u_i(x, y) - \frac{1}{\Gamma(1 + \alpha)} \]
\[\int_0^\tau \left[\frac{\partial^\alpha u_i(\tau, y) + \partial^\alpha}{\partial \tau^\alpha} \left(\mathcal{E}_a \left(\frac{1}{s^a} \mathcal{E}_a \left(\frac{1}{2} \frac{\partial^\alpha}{\partial \tau^\alpha} - u_i(\tau, y) \right) \right) \right] + (d \tau)^a = \nonumber \]
\[= 1 - E_a(x^a - y^a) \]
\[u_n(x, y) = 1 - E_a(x^a - y^a) \]
\[u(x, y) = \lim_{n \to \infty} u_n(x, y) = 1 - E_a(x^a - y^a) \]

Example 3. Consider the system of local fractional coupled KdV equations with local fractional derivative:

\[\frac{\partial^\alpha u(x, y)}{\partial x^\alpha} + \frac{\partial^\alpha u(x, y)}{\partial y^\alpha} + 2u(x, y) \frac{\partial^\alpha u(x, y)}{\partial y^\alpha} + 2v(x, y) \frac{\partial^\alpha v(x, y)}{\partial y^\alpha} = 0 \]
\[\frac{\partial^\alpha v(x, y)}{\partial x^\alpha} + \frac{\partial^\alpha v(x, y)}{\partial y^\alpha} + 2v(x, y) \frac{\partial^\alpha v(x, y)}{\partial y^\alpha} + 2u(x, y) \frac{\partial^\alpha u(x, y)}{\partial y^\alpha} = 0 \]

subject to the initial conditions:

\[u(0, y) = E_a(-y^a) \]
\[v(0, y) = E_a(-y^a) \]
Applying local fractional Laplace transform on eq. (35) and using the initial conditions (36), we have:
\[
\mathcal{L}_a \{u(x,y)\} = \frac{1}{s^\alpha} E_a \left(-y^\alpha \right) - \frac{1}{s^\alpha} \mathcal{L}_a \left\{ \frac{\partial^\beta u(x,y)}{\partial y_1^\beta} + 2u(x,y) \frac{\partial^\beta u(x,y)}{\partial y_2^\beta} + 2v(x,y) \frac{\partial^\beta u(x,y)}{\partial y_3^\beta} \right\}
\]
\[
\mathcal{L}_a \{v(x,y)\} = \frac{1}{s^\alpha} E_a \left(-y^\alpha \right) - \frac{1}{s^\alpha} \mathcal{L}_a \left\{ \frac{\partial^\beta v(x,y)}{\partial y_1^\beta} + 2v(x,y) \frac{\partial^\beta v(x,y)}{\partial y_2^\beta} + 2u(x,y) \frac{\partial^\beta v(x,y)}{\partial y_3^\beta} \right\} \tag{37}
\]

Operating with the local fractional Laplace transform inverse on both sides of eq. (37) we obtain:
\[
u(x,y) = E_a \left(-y^\alpha \right) - \frac{1}{s^\alpha} \mathcal{L}_a^{-1} \left\{ \frac{\partial^\beta v(x,y)}{\partial y_1^\beta} + 2v(x,y) \frac{\partial^\beta v(x,y)}{\partial y_2^\beta} + 2u(x,y) \frac{\partial^\beta v(x,y)}{\partial y_3^\beta} \right\} \tag{38}
\]
\[
u(x,y) = E_a \left(-y^\alpha \right) - \frac{1}{s^\alpha} \mathcal{L}_a^{-1} \left\{ \frac{\partial^\beta v(x,y)}{\partial y_1^\beta} + 2v(x,y) \frac{\partial^\beta v(x,y)}{\partial y_2^\beta} + 2u(x,y) \frac{\partial^\beta v(x,y)}{\partial y_3^\beta} \right\} \tag{39}
\]

Making the correction function is given:
\[
u_{m+1}(x,y) = \nu_m(x,y) - \frac{1}{\Gamma(1+\alpha)} \int_0^x \left[\frac{\partial^\alpha \nu_m(x,y)}{\partial \tau^\alpha} + \frac{\partial^\alpha}{\partial \tau^\alpha} \left\{ E_a \left(\frac{1}{s^\alpha} \mathcal{L}_a \left\{ \frac{\partial^\beta u_m(x,y)}{\partial y_1^\beta} + 2u_m(x,y) \frac{\partial^\beta u_m(x,y)}{\partial y_2^\beta} + 2v_m(x,y) \frac{\partial^\beta u_m(x,y)}{\partial y_3^\beta} \right\} \right\} \right] \left(d\tau \right)^\alpha \tag{40}
\]

We can use the initial conditions to select \(u_0(x,y) = -E_a \left(-y^\alpha \right), \nu_0(x,y) = -E_a \left(-y^\alpha \right) \). Using this selection into the correction functional (40) gives the following successive approximations:
\begin{align*}
u_0(x, y) &= -E_a(-y^\alpha) \\
u_1(x, y) &= -E_a(-y^\alpha) \\
u_1(x, y) &= u_0(x, y) - \frac{1}{\Gamma(1 + \alpha)}.
\end{align*}

\[\int_0^1 \left(\frac{\partial^\alpha u_0(t, y)}{\partial t^\alpha} + \frac{\partial^\alpha v_0(t, y)}{\partial t^\alpha} \right) \left(E_a^{-1} \left(\frac{1}{s^\alpha} E_a \left[\frac{\partial^\alpha u_0(t, y)}{\partial y^\alpha} + 2u_0(t, y) \frac{\partial^\alpha u_0(t, y)}{\partial y^\alpha} \right] \right) \right) (dr)^\alpha =
\]

\[\int_0^1 \left(\frac{\partial^\alpha v_0(t, y)}{\partial t^\alpha} + \frac{\partial^\alpha v_0(t, y)}{\partial t^\alpha} \right) \left(E_a^{-1} \left(\frac{1}{s^\alpha} E_a \left[\frac{\partial^\alpha v_0(t, y)}{\partial y^\alpha} + 2v_0(t, y) \frac{\partial^\alpha v_0(t, y)}{\partial y^\alpha} \right] \right) \right) (dr)^\alpha =
\]

\[= E_a(-y^\alpha) - \frac{1}{\Gamma(1 + \alpha)} \int_0^1 0 + \frac{\partial^\alpha}{\partial t^\alpha} \left(E_a^{-1} \left(\frac{1}{s^\alpha} E_a \left[-E_a(-y^\alpha) - 2E_a(-2y^\alpha) + \right] \right) \right) (dr)^\alpha =
\]

\[= -E_a(-y^\alpha) - \frac{1}{\Gamma(1 + \alpha)} \int_0^1 0 + \frac{\partial^\alpha}{\partial t^\alpha} \left(E_a^{-1} \left(\frac{1}{s^\alpha} E_a \left[E_a(-y^\alpha) - 2E_a(-2y^\alpha) + \right] \right) \right) (dr)^\alpha =
\]

\[= E_a(-y^\alpha) + \frac{1}{\Gamma(1 + \alpha)} \int_0^1 E_a(-y^\alpha) (dr)^\alpha =
\]

\[= -E_a(-y^\alpha) - \frac{1}{\Gamma(1 + \alpha)} \int_0^1 E_a(-y^\alpha) (dr)^\alpha =
\]

\[= E_a(-y^\alpha) \left[1 + \frac{x^\alpha}{\Gamma(1 + \alpha)} \right] =
\]

\[= E_a(-y^\alpha) \left[1 + \frac{x^\alpha}{\Gamma(1 + \alpha)} \right]
\]

\[u_2(x, y) = u_1(x, y) - \frac{1}{\Gamma(1 + \alpha)} \cdot \int_0^1 \left[\delta^\alpha u_1(r, y) + \delta^\alpha v_1(r, y) \right] \left(\frac{\partial^2 u_1(r, y)}{\partial y^2} + 2u_1(r, y) \frac{\partial^2 u_1(r, y)}{\partial y^2} \right) (dr)^\alpha \]

\[v_2(x, y) = v_1(x, y) - \frac{1}{\Gamma(1 + \alpha)} \cdot \int_0^1 \left[\delta^\alpha v_1(r, y) + \delta^\alpha u_1(r, y) \right] \left(\frac{\partial^2 v_1(r, y)}{\partial y^2} + 2u_1(r, y) \frac{\partial^2 v_1(r, y)}{\partial y^2} \right) (dr)^\alpha \]

\[u_m(x, y) = \sum_{k=0}^{m} \frac{x^k}{\Gamma(1 + k\alpha)} \]

\[v_m(x, y) = -\sum_{k=0}^{m} \frac{x^k}{\Gamma(1 + k\alpha)} \]
Therefore, the series solutions can be written in the form:

\[
\begin{align*}
 u(x, y) &= \lim_{m \to \infty} u_m(x, y) = E^\alpha (x^\alpha - y^\alpha) \\
 v(x, y) &= \lim_{m \to \infty} v_m(x, y) = -E^\alpha (x^\alpha - y^\alpha)
\end{align*}
\]

(41)

Conclusions

In this work, local fractional variational iteration transform method has been successfully applied to finding the non-differentiable solution of non-linear gas dynamic and coupled KdV equations involving local fractional operator. The method is very powerful and efficient in finding analytical as well as numerical solutions for wide classes of linear and non-linear local fractional PDE.

Acknowledgment

This work was supported by the China Government Young Talent Program.

References

