BOUNDARY-LAYER FLOW OF A Cu-WATER NANOFLUID OVER A PERMEABLE SHRINKING CYLINDER WITH HOMOGENOUS-HETEROGENOUS REACTIONS: Dual Solutions

by

Aurang ZAIB, Masood KHAN, and Sharidan SHAFIE

a Department of Mathematical Sciences, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
b Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
c Department of Mathematical Sciences, Faculty of Science, University of Technology Malaysia, Skudai, Johor, Malaysia

This research addresses the axi-symmetric flow of a Cu-water nanofluid past a porous shrinking cylinder in the presence of homogeneous-heterogeneous reactions. Using a similarity transformation, the basic PDE's are converted into ODE's. The transformed equations are solved using bvp4c numerically from MATLAB for several values of the physical parameters. The physical impact of governing parameters on the velocity profile, temperature profile, concentration profile as well as the skin friction coefficient, \(f'(0) \), and the heat transfer rate, \(-\theta'(0) \), are discussed carefully. The results indicate that the multiple solutions only exist when a certain value of suction is implemented through the permeable cylinder. Further, the curvature parameter, \(\gamma \), accelerates the boundary-layer separation.

Key words: dual solutions, nanofluid, homogenous-heterogenous reactions

Introduction

In recent times, the rapid growth of the human society significantly depends on the resources of energy. Thus several scientists and researchers are attempting to develop the new resources of energy in order to make use of solar energy which is suitable and easily available for various heating processes in industries. Choi [1] was first to use the nanoparticle to increase the thermal conductivity of fluids and storage of energy. Nanofluid is a fluid that containing the suspension of a nanometer sized particles of oxides, metals, nitrides, carbides, or nanotubes in regular base fluid such as engine oil, ethylene glycol, water, etc. Nanofluids have higher thermal conductivity than the base fluids. Makinde and Aziz [2] investigated the viscous flow and heat transfer filled with nanofluid over a heated stretching surface. Mustafa et al. [3] investigate the stagnation-point flow with heat transfer of a nanofluid over a stretching surface. Hady et al. [4] studied the effect of thermal radiation on the flow with heat transfer past a non-linear stretching sheet of a nanofluid with wall temperature. Hamad and Ferdows [5] obtained the similarity solutions of the flow with heat transfer past a non-linear stretching sheet filled with nanofluid. The mix convection flow of a nanofluid near a stagnation-point towards a shrinking surface was studied by Das [6]. Ibrahim et al. [7] analyzed the MHD flow near a stagnation-point of a nanofluid over a stretch-
ing surface. The MHD viscous flow near a stagnation-point of a nanofluid towards a stretching/shrinking cylinder was examined by Mansur et al. [8]. Hayat et al. [9] studied the stagnation point flow of carbon nanotubes over a stretching cylinder in the presence of slip effects. Recently, Dhanai et al. [10] obtained the dual solutions of the MHD viscous flow with heat transfer of a nanofluid towards a non-linear permeable stretching/shrinking surface with viscous dissipation. Very recently, Faiza [11] investigated the boundary-layer flow of a Cu-water based nanofluid and heat transfer over a moving wedge with radiation effect and obtained the dual solutions.

Nowadays, the study of viscous flow with heat and mass transfer past a stretching/shrinking cylinder has been given a lot of attention by researchers because of its vast applications in various industrial and engineering processes. Such as rubber sheets, annealing, glass fiber production, paper production and many more. Wang [12] investigated the steady viscous flow outer side of a stretching hollow cylinder at rest immersed in an ambient fluid. Ishak et al. [13] analyzed the viscous flow with heat transfer past a stretching cylinder with suction/blowing. Mukhopadhyay [14] examined the effect of slip on the flow past a stretching cylinder with chemically reactive solute. In other paper, Mukhopadhyay [15] investigated the MHD boundary-layer flow and heat transfer over a stretching cylinder with partial slip effect. The effect of mass suction on the flow and heat transfer towards a shrinking cylinder was studied by Bhattacharyya [16]. Najib et al. [17] investigated the effect of chemical reaction on the flow with mass transfer near a stagnation point over a stretching/shrinking cylinder with chemical reaction. Hayat et al. [18] analyzed the effect of viscous dissipation on the flow of a Casson fluid past an inclined stretching cylinder with thermal radiation. Recently, Omar et al. [19] obtained the similarity solution of viscous flow near a stagnation point of a nanofluid towards a shrinking cylinder.

Homogeneous-heterogeneous reactions involve in various chemical reactive system such as biochemical, catalysis and combustion. The relation between both the reactions are very complex involving the production and consumption of reactant species at different rates within the fluid and on the catalyst surface such as reactions occurring in combustion, catalysis and biochemical systems [20]. Merkin [21] investigated the isothermal model of homogeneous-heterogeneous reactions in viscous flow past a flat plate. Kameswaran et al. [22] analyzed the viscous flow past a porous stretching surface filled with nanofluid in the presence of homogeneous-heterogeneous reactions. Nandkeolyar et al. [23] examined the combined effects of MHD and heat generation of a nanofluid past a stretching sheet with homogeneous-heterogeneous reactions and obtained the numerical solutions of two types of nanofluid including copper and gold nanoparticles. The mix convective flow near a stagnation-point of a nanofluid towards a stretching sheet in the presence of thermal radiation and homogeneous-heterogeneous reactions was investigated by Das et al. [24]. Recently, Hayat et al. [25] studied the boundary-layer flow of a carbon nanotubes near a stagnation point towards a porous stretching cylinder with homogeneous-heterogeneous reactions.

The aim of this study is to consider the combined effects of thermal radiation and homogeneous-heterogeneous reactions of a Cu-water nanofluid past a porous shrinking cylinder. The dual similar solutions of transformed non-linear equations are obtained using bvp4c. To the best of author’s knowledge, no one yet considered this kind of problem.

Mathematical formulation

Consider the axi-symmetric flow of a Cu-water nanofluid towards a porous shrinking cylinder with homogeneous-heterogeneous reactions. Here \(u_\theta(x) = cx/L \) is the variable shrink-
ing velocity, and \(L \) – the characteristics length. We considered a simple model of homogeneous-heterogeneous reactions as suggested by Chaudhary and Merkin [26]:

\[
A + 2B \rightarrow 3B, \quad \text{rate} = k_{ab}^2
\]

while for the catalyst surface, the first-order isothermal single reaction is described:

\[
A \rightarrow B, \quad \text{rate} = k_p a
\]

Here \(a \) and \(b \) are the chemical concentrations species \(A \) and \(B \), respectively, whilst \(k_e \) and \(k_p \) are constants. It is presumed that both the processes of reaction are isothermal. Under the previous assumptions and boundary-layer approximation, the basic equations of nanofluid are:

\[
u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial r} = \frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)
\]

\[
u \frac{\partial^2 T}{\partial x^2} + v \frac{\partial T}{\partial r} = \frac{k_{nf}}{(\rho c_p)_{nf}} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) - \frac{1}{r (\rho c_p)_{nf}} \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} (r q_r) \right)
\]

\[
u \frac{\partial a}{\partial x} + v \frac{\partial a}{\partial r} = D_a \left(\frac{\partial^2 a}{\partial r^2} + \frac{1}{r} \frac{\partial a}{\partial r} \right) - k_{ab}^2
\]

\[
u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial r} = D_b \left(\frac{\partial^2 b}{\partial r^2} + \frac{1}{r} \frac{\partial b}{\partial r} \right) + k_{ab}^2
\]

The suitable boundary conditions are:

\[
u = -u_n (x), \quad v = -V_n, \quad T = T_w, \quad D_a \frac{\partial a}{\partial r} = k_p a, \quad D_b \frac{\partial b}{\partial r} = -k_p a, \quad \text{at} \quad r = R
\]

\[
u \rightarrow 0, \quad T \rightarrow T_\infty, \quad a \rightarrow a_0, \quad b \rightarrow 0 \quad \text{as} \quad r \rightarrow \infty
\]

where \(r \) is the co-ordinate measured in the radial direction, \(u \) and \(v \) – are components of velocity in \(x \)- and \(r \)-direction, respectively, \(\mu_{nf} \) and \(\rho_{nf} \) – are the viscosity and density of the nanofluids, respectively, \(T \) is the temperature, \(T_\infty \) – the free stream temperature, \(D_a \) and \(D_b \) – are diffusion species coefficients of \(A \) and \(B \), respectively, \(a_0 \) is the positive constant, \(k_{nf} \) – the thermal conductivity of nanofluid, and \((\rho c_p)_{nf}\) – the specific heat capacitance of nanofluid, which are defined:

\[
\rho_{nf} = (1 - \phi) \rho_t + \phi \rho_s, \quad k_{nf} = \frac{(k_s + 2k_t) - 2\phi(k_t - k_s)}{(k_s + 2k_t) + \phi(k_t - k_s)}
\]

\[
\mu_{nf} = \frac{\mu_t}{(1 - \phi)^{2.5}}, \quad (\rho c_p)_{nf} = (1 - \phi)(\rho c_p)_t + \phi(\rho c_p)_s
\]

Here \(k_t \) and \(k_s \) are the thermal conductivities of the fluid and of the solid fractions, respectively, \(\phi \) is the solid volume fraction of nanoparticles, \(\rho_t \) and \(\rho_s \) – are the densities of the fluid and of the solid fractions, respectively. Following Hayat \emph{et al.} [18], the radiative heat flux \(q_r \) is expressed:
Now, we introduce the similarity transformation:
\[
\eta = \frac{r^2 - R^2}{2R} \sqrt{\frac{c}{L \nu}}, \quad \psi = \frac{c \nu}{L} x R f(\eta), \quad \theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}
\]
\[g(\eta) = \frac{a}{a_0}, \quad h(\eta) = \frac{b}{a_0}\]
where \(\eta\) is the similarity variable, \(\nu\) – the kinematic viscosity of the base fluid, and \(\psi\) – the stream function defined:
\[u = \frac{1}{r} \frac{\partial \psi}{\partial \eta}, \quad v = -\frac{1}{r} \frac{\partial \psi}{\partial x}\]
which identically satisfied the equation of continuity (3). In view of relation (11), eqs. (4)-(10) are transformed into the following ODE:
\[
\frac{1}{(1-\phi)^{2.5}} \left[(1+2\gamma \eta) f'' + 2\gamma f' \right] + \frac{ff''}{\rho \nu} - f'^2 = 0
\]
\[k_{nf} k_{f} \left[(1+2\gamma \eta) \theta'' + 2\gamma \theta' \right] + Pr \left(\frac{3N}{3N+4} \right) \left[1 - \phi + \phi \left(\frac{\rho c_p}{\rho c_p} \right) \right] f \theta' = 0
\]
\[\frac{1}{Sc} \left[(1+2\gamma \eta) g'' + 2\gamma g' \right] + fg' - K gh^2 = 0
\]
\[\frac{\delta}{Sc} \left[(1+2\gamma \eta) h'' + 2\gamma h' \right] + fh' + K gh^2 = 0
\]
The transformed boundary conditions are:
\[f(0) = S, \quad f'(0) = -1, \quad \theta(0) = 1, \quad g'(0) = K_p g(0), \quad \delta h'(0) = -K_p g(0)
\]
\[f'(\infty) \to 0, \quad \theta(\infty) \to 0, \quad g(\infty) \to 1, \quad h(\infty) \to 0
\]
where prime denote differentiation with respect to \(r\), \(\gamma = (Lv_f/cR^2)^{1/2}\) – the curvature parameter, \(Pr = \nu_f/\alpha_f\) – the Prandtl number, \(K = k_m a_0^2 L/c\) – the strength of homogeneous reaction parameter, \(K_p = \left(k_r (Lv_f/c)^{1/2} \right) / D_a\) – the strength of heterogeneous reaction parameter, \(\delta = D_B / D_B\) – the ratio of mass diffusion coefficients, \(Sc = c \nu_f / D_A\) – the Schmidt number, and \(S = V_m (L/cV_f)^{1/2} > 0\) – the suction parameter.

Further, it is presumed that the diffusion coefficients of concentrations species \(A\) and \(B\) are of a similar size. This leads to additional supposition that the diffusion coefficients \(D_A\) and \(D_B\) are identical i. e. \(\delta = 1\) [22] and thus:
\[g(\eta) + h(\eta) = 1\]
Previous assumption leads to reduce the eqs. (14) and (15) to:
subject to the boundary condition:
\[g'(0) = K p g(0), \quad g(\infty) \to 1 \]

The quantities of physical interest are the skin friction coefficient \(f^*(0) \) and the local Nusselt number \(-\theta'(0) \).

Stability analysis

As suggested by Merkin [27] and Weidman et al. [28], we test the stability analysis by taking the unsteady form of eqs. (4)-(7), see Khan et al. [29]:

\[
\frac{\partial (ru)}{\partial x} + \frac{\partial (rv)}{\partial r} = 0
\]

(20)

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial r} = \frac{\mu_f}{\rho_f} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)
\]

(21)

\[
\frac{\partial T}{\partial t} + \frac{T}{\partial x} + \frac{\partial T}{\partial r} = \frac{\kappa_f}{\left(\rho c_p \right)_f} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) - \frac{1}{r \left(\rho c_p \right)_f} \frac{\partial}{\partial r} (r q_r)
\]

(22)

\[
\frac{\partial a}{\partial t} + \frac{a}{\partial x} + \frac{\partial a}{\partial r} = D_A \left(\frac{\partial^2 a}{\partial r^2} + \frac{1}{r} \frac{\partial a}{\partial r} \right) - k_c a b^2
\]

(23)

\[
\frac{\partial b}{\partial t} + \frac{b}{\partial x} + \frac{\partial b}{\partial r} = D_B \left(\frac{\partial^2 b}{\partial r^2} + \frac{1}{r} \frac{\partial b}{\partial r} \right) + k_c a b^2
\]

(24)

where \(t \) represents the time. This introduce a new variable in similarity transformation:

\[
\eta = \frac{r^2 - R^2}{2 R} \sqrt{\frac{c}{L v_f}}, \quad \psi = \sqrt{\frac{c v_f}{L}} x R f(\eta, \tau), \quad \theta(\eta, \tau) = \frac{T - T_w}{T_w - T_o}
\]

(25)

Employing eq. (25) in eqs. (21)-(24), we get:

\[
\frac{1}{(1 - \phi)^2} \left[(1 + 2 \gamma \eta) \frac{\partial^2 f}{\partial \eta^2} + 2 \gamma \frac{\partial^2 f}{\partial \eta^2} \right] + f' \frac{\partial^2 f}{\partial \eta^2} - \left(f' \right)^2 \frac{\partial^2 f}{\partial \phi \partial \eta} = 0
\]

(26)

\[
\frac{k_f}{k_f} \left[(1 + 2 \gamma \eta) \frac{\partial^2 \theta}{\partial \eta^2} + 2 \gamma \frac{\partial \theta}{\partial \eta} \right] + \Pr \left[\frac{3 N}{3 N + 4} \left[1 - \phi + \frac{(\rho c_p)_h}{(\rho c_p)_{f}} \right] \right] \frac{\partial \theta}{\partial \tau} = 0
\]

(27)
\[
\frac{1}{Sc} \left[(1 + 2\gamma\eta) \frac{\partial^2 g}{\partial \eta^2} + 2\gamma \frac{\partial g}{\partial \eta} \right] + f \frac{\partial g}{\partial \eta} - Kg\eta^2 - \frac{\partial g}{\partial \tau} = 0
\]
(28)

\[
\frac{\delta}{Sc} \left[(1 + 2\gamma\eta) \frac{\partial^2 h}{\partial \eta^2} + 2\gamma \frac{\partial h}{\partial \eta} \right] + f \frac{\partial h}{\partial \eta} + Kg\eta^2 - \frac{\partial h}{\partial \tau} = 0
\]
(29)

with the boundary conditions:

\[f(0, \tau) = S, \quad \frac{\partial f}{\partial \eta}(0, \tau) = -1, \quad \theta(0, \tau) = 1, \quad \frac{\partial g}{\partial \eta}(0, \tau) = K_p g(0, \tau) \]
(30)

\[\delta \frac{\partial h}{\partial \eta}(0, \tau) = -K_p g(0, \tau), \quad \frac{\delta f}{\partial \eta}(\infty, \tau) \to 0, \quad \theta(\infty, \tau) \to 0, \quad g(\infty, \tau) \to 1, \quad h(\infty, \tau) \to 0 \]

Further, using eq. (17) with \(\delta = 1 \), eqs. (28) and (29) can be written:

\[
\frac{1}{Sc} \left[(1 + 2\gamma\eta) \frac{\partial^2 g}{\partial \eta^2} + 2\gamma \frac{\partial g}{\partial \eta} \right] + f \frac{\partial g}{\partial \eta} - Kg(1 - g)^2 - \frac{\partial g}{\partial \tau} = 0
\]
(31)

along with the condition:

\[\frac{\partial g}{\partial \eta}(0, \tau) = K_p g(0, \tau), \quad g(\infty, \tau) \to 1 \]
(32)

According to Merkin [27] and Weidman et al. [28], stability of multiple solutions of the steady flow solution \(f(\eta) = f_0(\eta), \theta(\eta) = \theta_0(\eta), \) and \(g(\eta) = g_0(\eta) \) satisfying the boundary value problems (12), (13), (16), (18), and (19), we write:

\[
f(\eta, \tau) = f_0(\eta) + e^{-\alpha \tau} F(\eta, \tau)
\]

\[
\theta(\eta, \tau) = \theta_0(\eta) + e^{-\alpha \tau} \Theta(\eta, \tau)
\]

\[
g(\eta, \tau) = g_0(\eta) + e^{-\alpha \tau} G(\eta, \tau)
\]

where \(\alpha \) is an unknown eigenvalue (growth and decay distribution). Here \(F(\eta, \tau), \Theta(\eta, \tau), \) and \(G(\eta, \tau) \), are small relative to \(f_0(\eta), \theta_0(\eta), \) and \(g_0(\eta) \). Substituting eqs. (33) into eqs. (26), (27), and (31), we get the following linearized system:

\[
\frac{1}{(1 - \phi)^{2.5}} \left[1 - \phi + \phi \frac{D_p}{\rho c_p} \right] \left[(1 + 2\gamma\eta) \frac{\partial^3 F}{\partial \eta^3} + 2\gamma \frac{\partial^2 F}{\partial \eta^2} \right] - 2f_0 \frac{\partial F}{\partial \eta} + F^{(\nu)} +
\]

\[+ f_0 \frac{\partial^2 F}{\partial \eta^2} - \frac{\partial^2 F}{\partial \eta \partial \theta} + \alpha \frac{\partial F}{\partial \eta} = 0
\]
(34)

\[
\frac{k_a}{k_f} \left[(1 + 2\gamma\eta) \frac{\partial^2 \Theta}{\partial \eta^2} + 2\gamma \frac{\partial \Theta}{\partial \eta} \right] + Pr \left(\frac{3N}{3N + 4} \right) \left[1 - \phi + \phi \frac{(\rho c_p)}{(\rho c_p) h} \right] \left[\frac{\partial \Theta}{\partial \eta} + F^{(\nu)} + \alpha \Theta - \frac{\partial \Theta}{\partial \tau} \right] = 0
\]
(35)
with the boundary conditions:

\[
F(0, \tau) = 0, \quad \frac{\partial F}{\partial \eta}(0, \tau) = 0, \quad \Theta(0, \tau) = 0, \quad \frac{\partial G}{\partial \eta}(0, \tau) = K_p G(0, \tau)
\]

\[
\frac{\partial F}{\partial \eta}(\infty, \tau) \rightarrow 0, \quad \Theta(\infty, \tau) \rightarrow 0, \quad G(\infty, \tau) \rightarrow 0
\]

To determine the initial growth or decay of steady flow (33), we take \(\tau = 0 \) and hence \(F = F_0(\eta), \Theta = \Theta_0(\eta), \) and \(G = G_0(\eta) \) identify the initial growth or decay. Therefore, we have to solve the following eigen value problem to test our numerical procedure:

\[
\frac{1}{(1-\phi)2.5} \left[(1+2\gamma \eta)F_0'' + 2\gamma F_0' \right] - 2\phi F_0' + \phi f_0 f_0' G_0'' + f_0 F_0' + \alpha F_0' = 0
\]

\[
\frac{k_{nf}}{k_i} \left[(1+2\gamma \eta)\Theta_0'' + 2\gamma \Theta_0' \right] + Pr \left[\frac{3N}{3N+4} \right] \left[1-\phi \left(\frac{\rho c_p}{\rho c_p} \right) \right] \left(f_0 \Theta_0' + F_0 \Theta_0' + \alpha \Theta_0 \right) = 0
\]

\[
\frac{1}{\text{Sc}} \left[(1+2\gamma \eta)G_0'' + 2\gamma G_0' \right] + f_0 G_0' + F_0 G_0' + 4K_p G_0 - 3K_p G_0 - K_G + \alpha G_0 = 0
\]

along with the following boundary conditions:

\[
F_0(0) = 0, \quad F_0'(0) = 0, \quad \Theta_0(0) = 0, \quad G_0'(0) = K_p G_0(0),
\]

\[
F_0'(\infty) \rightarrow 0, \quad \Theta_0'(\infty) \rightarrow 0, \quad G_0(\infty) \rightarrow 0
\]

For the fixed values of the physical parameters, the stability is determined by the smallest eigen value of the corresponding steady flow solution \(F_0(\eta), \Theta_0(\eta), \) and \(G_0(\eta) \). As it has been suggested by Harris et al. [30], the possible range of eigen values can be obtained by relaxing the boundary condition on \(F_0(\eta), \Theta_0(\eta) \) or \(G_0(\eta) \). For the current problem, we relax the condition that \(F_0'(\eta) \rightarrow 0 as \eta \rightarrow 0 \). Therefore, for a fixed value of \(\alpha \) we solve the system of eqs. (38)-(40) along with the new boundary condition \(F_0'(0) = 1 \), which give an infinite set of eigen values \(\alpha_1 < \alpha_2 < \alpha_3 < \ldots \), if the smallest eigen value \(\alpha_i \) is positive (\(\alpha_i \geq 0 \)) then there is an initial decay of disturbances and the flow is stable, and if \(\alpha_i \) is negative (\(\alpha_i < 0 \)) then there is an initial growth of disturbances, which indicates that the flow is unstable.

Results and discussion

The set of transformed non-linear eqs. (12), (13), and (18) along with the boundary conditions (16) and (19) were solved numerically using the bvp4c code from MATLAB. To clearly realize physical insight for boundary-layer flow of a nanofluid in presence of homogeneous-heterogeneous reactions, the obtained numerically results for the skin friction coefficient
The effect of curvature, γ, on the velocity, temperature and concentration profiles are depicted in figs. 1-3, respectively. Figure 1 shows that the velocity profiles decreases with increasing γ for first solution and consequently, the momentum boundary-layer thickness increases. While the opposite effect is observed for second solution. Physically, this is due to the fact that an increase in the diameter of cylinder leads to decrease in the velocity of fluid within the boundary. On the other hand, the temperature profile increases with γ for first and second solutions as shown in fig. 2. This is due to fact that due to increase in the value of curvature parameter that leads to decrease in radius of cylinder which offers less resistance. Figure 3 shows that the concentration profiles decreases with increasing γ for first solution as well as for second solution and thus the concentration boundary-layer thickness becomes thicker and thicker for both solutions. It is also note from this figure that the second solution displays a thinner boundary-layer thickness compared to the first solution. Further, it is clear from these figures that the momentum, thermal and concentration boundary-layer thicknesses become larger for cylinder ($\gamma > 0$) compared to flat plate ($\gamma = 0$). It is worth mentioning that both solutions satisfy the for field boundary conditions asymptotically which support the validity of the results of the problem.

Table 1. Thermophysical properties of fluid and nanoparticles

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Fluid phase (water)</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_p \ [\text{Jkg}^{-1}\text{K}^{-1}]$</td>
<td>4179</td>
<td>385</td>
</tr>
<tr>
<td>$\rho \ [\text{kgm}^{-3}]$</td>
<td>997.1</td>
<td>8933</td>
</tr>
<tr>
<td>$k \ [\text{Wm}^{-1}\text{K}^{-1}]$</td>
<td>0.613</td>
<td>400</td>
</tr>
<tr>
<td>$\alpha 10^{-3} \ [\text{m}^{2}\text{s}^{-1}]$</td>
<td>1.47</td>
<td>1163.1</td>
</tr>
</tbody>
</table>

$\theta'(0)$, the heat transfer rate $\theta'(0)$ as well as for velocity, temperature and concentration profiles are illustrated for different values of governing parameters involved in problem, viz., the nanovolume fraction, ϕ, the curvature parameter, γ, radiation parameter, N, strength of homogeneous reaction, K, and strength of heterogeneous reaction, K_p, in figs. 1-11. Following Oztop and Abu-Nada [31], the nanovolume fraction is from 0 to 0.2 in which $\phi = 0$ corresponds to the base fluid. The nanoparticles and the thermophysical properties of the base fluid are shown in tab. 1.

Figures 4-6 show the effect of nanoparticle volume fraction on the velocity, temperature and concentration profiles, respectively. Figure 4 shows that the velocity profiles increases with increasing values of ϕ and consequently decreases the momentum boundary-layer thickness for first solution, while the opposite trend is seen for second solution. This is because of the fact that the thermal conductivity increases by increasing the nanoparticle volume fraction which leads the further thinning of momentum boundary-layer. Figure 5 shows that the temperature profiles also increases with ϕ for first and second solutions and therefore, increases the thermal boundary-layer thickness. Since, the heat is transformed with faster rate from the sur-
face of cylinder to the fluid and thus warms the region of thermal boundary-layer. It is also observed from this figure that the thickness of the boundary-layer is larger for Cu-water compare to pure water ($\phi = 0$). This is due fact that thermal conductivity of Cu is high which in turns increases the thermal conductivity of fluid. Figure 6 shows that the concentration profiles increases with ϕ for first solution and decreases for second solution.

Figure 3. The concentration profiles for different values of γ

Figure 4. The velocity profiles for different values of ϕ

Figure 5. The temperature profiles for different values of ϕ

Figure 6. The concentration profiles for different values of ϕ

Figure 7 shows the temperature profiles for different values of radiation parameter N. The results showed that the temperature profiles decreases with increasing N for first and second solutions. Thus, the thickness of thermal boundary-layer becomes thinner and thinner in case of first and second solutions. This is because of the fact that the large values of radiation parameter implies the dominance of conduction and therefore decreasing the thermal boundary-layer thickness, despite of increasing the thermal conductivity of Cu nanoparticles. Figures 8 and 9 show the variation of concentration profile for different values of the homogeneous reaction, K_r, and heterogeneous reaction, K_{p_r}, respectively. Figures 8 and 9 show that the concentration profiles decreases with increasing K_r and K_{p_r} for first and second solutions and thus the boundary-layer thicknesses increase for both solutions. It is also seen from this figure that the boundary-layer thicknesses of reactant increase with η for first and second solutions, however after greater values of η, they coincide which means that the homogeneous-heterogeneous reactions have no effect on the concentration boundary-layer of the reactants. Further, it is seen
from fig. 8 that the second solution displays a thicker boundary-layer thickness compared to the first solution.

The skin friction coefficient, \(f' (0) \), and the heat transfer rate, \(- \Theta'(0)\), against \(S\) for different values of \(\gamma \) are depicted in figs. 10 and 11, respectively. Figures 10 and 11 show that the values of \(f' (0) \) and \(- \Theta'(0)\) decrease with increasing \(\gamma \) in case of first solution, whilst the values of \(f' (0) \) and \(- \Theta'(0)\) increases for second solution. It is also observed from these figures that the values of \(f' (0) \) and \(- \Theta'(0)\) are always positive which means that fluid exert a drag force on the cylinder and heat is moved from the hot cylinder to the cold fluid, respectively. Further, the dual similar solutions exist up to the critical value of suction parameter \(S = Sc < 0\) beyond which no solution exists. Based on our calculations, the critical values are 1.7010, 1.8000, and 1.9550 for \(\gamma = 0, 0.1, 0.3 \), respectively. Thus, the curvature parameter accelerate the boundary-layer separation.
Conclusions

In this research, the homogeneous-heterogeneous reactions on the flow of a Cu-water nanofluid past a permeable shrinking cylinder was studied numerically. Similarity solution of the transformed equations are obtained using bvp4c from MATLAB for different values of the governing parameters. From this study, the following conclusions could be drawn.

- Dual solutions are obtained for a certain range of suction parameter.
- The curvature parameter accelerate the boundary-layer separation.
- The velocity and concentration profiles increases due to nanoparticle volume fraction for first solution and decrease for second solution. While, the temperature profile increases with ϕ for both solutions.
- The concentration boundary-layer thickness increases with increasing homogeneous-heterogeneous reactions for first solution as well as for second solution.

Acknowledgement

We are very thankful to the editor and the reviewers for their valuable comments to improve the presentation of this paper.

References