THE QUALITATIVE DETERMINATION OF OSELTAMIVIR PHOSPHATE IN TAMIFLU® CAPSULE BY CYCLIC VOLTAMMETRY

A gold electrode was used in the voltammetric determination of oseltamivir phosphate standard in 0.05 M NaHCO₃. Oseltamivir phosphate as a standard and as a component of Tamiflu® capsule exhibited the identical cyclic voltammogram. The peaks originating from excipients in the capsule did not appear under the applied electrochemical conditions. An electrochemical method for the qualitative determination of oseltamivir phosphate in Tamiflu® capsules by cyclic voltammetry was developed. The presence of oseltamivir phosphate as standard and as a content of Tamiflu® capsule in electrolyte as well as their concentrations were simultaneously checked by HPLC. The lack of the current/concentration dependency was established. The non-pretreated glassy carbon electrode cannot be used for the determination of oseltamivir phosphate under identical experimental conditions presented for the gold electrode.

It is known that antivirals are valuable supplementation to vaccines for the control and prevention of influenza [1], and are likely to be active against a new pandemic variant [2]. Oseltamivir phosphate (Figure 1) is the best known orally active neuraminidase inhibitor antiviral drug [3,4] that slows the spread of influenza virus between cells in the body by stopping the virus from chemically cutting ties with its host-cell median time to symptom alleviation is reduced by 0.5–1 days [5]. The neuraminidase inhibitors are effective against both influenza A and B and are considered less toxic and less likely to promote development of drug-resistant influenza than adamantanes [6].

Figure 1. Structural formula of oseltamivir phosphate.

Oseltamivir phosphate can be identified by thin-layer chromatography, specific optical rotation, infrared spectrophotometry and tests characteristic for orthophosphates [7]. Determination, by International Pharmacopeia, can be done by high-performance liquid chromatography [7,8] or by titration with perchloric acid [7].

Corresponding author: M. L. Avramov Ivić, ICTM – Institute of Electrochemistry, University of Belgrade, Belgrade, Serbia.
E-mail: milka@tmf.bg.ac.rs
Paper received: 8 September, 2010
Paper accepted: 22 November, 2010

EXPERIMENTAL

Materials

Oseltamivir phosphate has not been officially approved for use according to pharmacopeia and consequently, it is not possible to order the reference EDQM standard. Oseltamivir phosphate (Roche), kindly provided by the Medicines and Medical Devices Agency of Serbia (Belgrade, Serbia) was used as a pure substance without further purification. A comparative experiment was performed with capsulated oseltamivir phosphate (30 mg) marketed by Roche as Tamiflu®, which, in addition to oseltamivir contained the following excipients: talk, povidon, sodium stearil fumarate, corn starch and sodium croscarmellose. We dissolved 25 mg of oseltamivir phosphate in 10 cm³ of 0.05 M NaHCO₃ (stock solution) and added into electrolyte in equal aliquots starting from 1 cm³. 25 mg of Tamiflu® was dissolved in
solution containing 9 cm3 of 0.05 M NaHCO$_3$ and 1 cm3 CH$_3$OH (stock solution) and added into electrolyte in equal aliquots starting from 1 cm3. CH$_3$OH and NaHCO$_3$ were of analytical grade (Merck). The supporting electrolyte, 0.05 M NaHCO$_3$ was prepared with 18 MΩ deionised water.

Apparatus

Standard equipment was used for the cyclic voltammetry measurements using a three electrode electrochemical cell, as previously described in detail [15–17]. Polycrystalline gold (surface area 0.500 cm2) and glassy carbon Sigmadur GMBH Germany (surface area 0.29 cm2) which served as the working electrodes were prepared as earlier [15–17]. A gold wire was used as the counter electrode and a saturated calomel electrode as the reference electrode. All the potentials are given versus SCE. The electrolyte was deoxygenated by purging with nitrogen.

The characteristics of the HPLC instrument are already described in detail [15–17] and the HPLC method performed during the simultaneous electrochemical experiment for oseltamivir determination has been published by Lindegardh et al. [14].

RESULTS AND DISCUSSION

In our study of electrochemical behavior of oseltamivir phosphate and development of the appropriate method, a solution of oseltamivir phosphate standard was prepared as described in the Experimental part and used in the cyclic voltammetry measurements. In the first part of the work the gold electrode was used. The cyclic voltammogram of the clean gold electrode of oseltamivir phosphate (0.025 mg cm$^{-3}$) is presented in Figure 2. Simultaneous HPLC analysis of the bulk of electrolyte confirmed that 0.025 mg cm$^{-3}$ oseltamivir phosphate is presented in the electrolyte. Starting from –1.2 V one can observe an apparent reversible oxidative/reductive reaction between –0.5 and –0.7 V. In the anodic direction, the anodic current increases from 0.4 V and reaches the maximum starting from the area of the oxides formation. In the entire region of oxides formation at the gold electrode, the oxidative activity of oseltamivir phosphate is obvious. The lowering of the oxides reduction currents can also be noticed from the cyclic voltammogram. Starting from –0.8 V the exact same reactions were observed as it was obtained starting from –1.2 V, and as it is presented in Figure 3. The potential was cycled continuously for two hours and the cyclic voltammogram was quite stable in both cases. Holding the potential for 10 min at the peak potentials and in the area of oxide formation did not affect the voltammogram even in the first sweep. The cyclic voltammogram of oseltamivir phosphate at the gold electrode in 0.05 M NaHCO$_3$ (Figures 2 and 3) is quite reproducible.

With the addition of the next two aliquotes of stock solution of oseltamivir phosphate containing 2.5 mg cm$^{-3}$, the linearity of the current–concentration dependency was not observed, and even the voltammogram remained the same. With the simultaneous HPLC analysis of the bulk of electrolyte, the presence of the added concentrations was confirmed.

Figure 2. Cyclic voltammogram of the clean gold electrode in 0.05 M NaHCO$_3$ (dash line) and in the presence of 0.025 mg cm$^{-3}$ oseltamivir phosphate (full line) in the area of the potential from –1.2 to 1.0 V, sweep rate 50 mV/s.

Figure 3. Cyclic voltammogram of the clean gold electrode in 0.05 M NaHCO$_3$ (dash line) and in a presence of 0.025 mg cm$^{-3}$ oseltamivir phosphate (full line) in the area of the potential from –0.8 to 1.0 V, sweep rate 50 mV/s.

Additionally, the glassy carbon electrode was tested as a working electrode in the same manner of the electrode cleaning and under identical experimental condi-
tions as it was presented for the gold electrode. Start-
ing from \(-1.2\) V as well as from \(-0.8\) V in the presence of 0.025 mg cm\(^{-3}\) oseltamivir phosphate the cyclic voltam-
mogram of glassy carbon electrode was the same as
without it. The non-pretreated glassy carbon electrode
cannot be used as the working electrode.

In addition, the determination of oseltamivir phos-
phate in Tamiflu® capsules was performed at the gold
electrode. The cyclic voltammograms of the gold elec-
trode in a presence of 0.025 mg cm\(^{-3}\) Tamiflu® were
surprisingly the same as given for 0.025 mg cm\(^{-3}\) of
oseltamivir phosphate standard (Figures 2 and 3). The
cyclic voltammogram of Tamiflu® also remain stable
during the cycling. With the addition of the next two
aliquots of stock solution of Tamiflu® the voltam-
mogram remains the same and with the simultaneous HPLC
analysis of the bulk of electrolyte, the presence of the
added concentrations was confirmed.

The cyclic voltammograms of Tamiflu® are quite
reproducible. According to identical cyclic voltammo-
grams of oseltamivir phosphate standard (Figures 2 and
3) and Tamiflu® capsule content it is evident that osel-
tamivir phosphate can be qualitatively determined in cap-
sule Tamiflu® at gold electrode in 0.05 M NaHCO\textsubscript{3}.

The excipients presented in Tamiflu® capsules: talk,
sodium stearil fumarate, corn starch and sodium cro-
carmelose are insoluble in water \([18]\). Besides oseltam-
vir phosphate, only povidon is soluble in water, but it
is obvious that it is not electroactive under the condi-
tions presented in Figure 2. The excipients were separa-
tively tested in our previous investigations \([15–17,19]\)
concerning commercial pharmaceutical compounds. The
present excipients did not affect the electroactivity of
oseltamivir phosphate in Tamiflu® capsule. It is qualita-

tively determined as the component of the capsule Ta-
miflu® Roche in the same way as the pure standard.
The qualitative determination of oseltamivir phosphate as
standard and in Tamiflu® capsule in any case should not
be compared with our previously published results con-
cerning qualitative determination of macrolide antibio-
tics \([15–17]\) obtained under the same experimental
conditions. Azithromycin, clarithromycin and erythromycin
are strongly dependent on the starting potential \(-1.2\) V
and with the starting potential \(-0.8\) V, they are com-
pletely inactive on the gold electrode. The peak poten-
tials, peak height and peak reversibility are quite diffe-
rent for each antibiotic standard as well as for oseltam-
vir phosphate standard. Antibiotics in capsules and

tables in the presence of the excipients exhibit signifi-
cantly different electrochemical behavior and conse-
sequently the different cyclic voltammograms comparing to
their standards. Only oseltamivir phosphate exhibits the
quite same cyclic voltammogram as a standard and as a
content of Tamiflu® capsule.

CONCLUSION

In conclusion, it should be pointed out that a simple
and fast voltammetric method for the qualitative
determination of oseltamivir phosphate was developed
and applied for the qualitative determination of oseltamivir
phosphate in Tamiflu® capsules. Starting from \(-1.2\) V as
well as from \(-0.8\) V, an apparent reversible oxideti-
ve/reductive reaction between \(-0.5\) and \(-0.7\) V occurs.
In the anodic direction, the anodic current increases
from 0.4 V and reaches a maximum starting from the
area of the oxides formation. In the entire region of the
oxides formation at the gold electrode this maximum
oxidative currents of oseltamivir phosphate remain un-
changed. The lowering of the oxides reduction currents
is also noticed. The identical cyclic voltammograms of
oseltamivir phosphate standard and of Tamiflu® capsule
content showed that oseltamivir phosphate is qualita-
tively determined in Tamiflu® capsule content at the
gold electrode in 0.05 M NaHCO\textsubscript{3}. The glassy carbon
electrode cannot be used as working electrode and did
not exhibited any affinity to the oxidative/reductive re-
actions of oseltamivir phosphate starting from \(-1.2\) V as
well as from \(-0.8\) V.

Acknowledgment

The authors are grateful to the Ministry of Science
and Technological Development of Serbia for financial
support (Project 172013).

REFERENCES

\[1\] P. Wutzler, K.D. Kossow, H. Lode, B.R. Rif, H. Scholz,
G.E. Vogel, Antiviral treatment and prophylaxis of inf-
uenza in primary care: German recommendations, J.

\[2\] C.U. Kim, X. Chen, D.B. Mendel, Neuraminidase
inhibitors as anti-influenza virus agent, Antivir. Chem.

\[3\] A.S. Monto, The role of antivirals in the control

\[4\] W. Lew, X. Chen, C.U. Kim, Discovery and develop-
ment of GS 4104 (oseltamivir): An orally active in-

\[5\] J. Burch, M. Corbett, C. Stock, K. Nicholson, A. Elliot,
S. Duffy, M. Westwood, S. Palmer, L. Stewart, Pres-
cription of anti-influenza drugs for healthy adults: a
systematic review and meta-analysis. Lancet. Infect.
Dis. 9 (2009) 537–545.

\[6\] AHFS Drug Information 2008, p.782.

\[7\] WHO, Oseltamivir phosphate, Final text for addition to
The International Pharmacopoeia, Document QAS/
06.190/FINAL, December 2008.

\[8\] J. Joseph-Charles, C. Geneste, E. Laborde-Kummer, R.
Gheyouche, H. Boudis, J.-P. Dubost, Development and
validation of a rapid HPLC method for the determination

IZVOD
KVALITATIVNO ODREĐIVANJE OSELTAMIVIR-FOSFATA U TAMIFLU® KAPSULAMA POMOĆU CIKLIČNE VOLTAMETRIJE
Milka L. Avramov Ivić1, Slobodan D. Petrović2,3, Dušan Ž. Mijin2, Katica M. Drljević-Đurić4
1IHTM – Centar za Elektrohemiju, Univerzitet u Beogradu, Beograd
2Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Beograd
3Hemofarm Stada, Farmaceutska hemijska industrija, Vršac
4Agencija za lekove i medicinska sredstva Srbije, Beograd
(Naučni rad)

Aktuelna ispitivanja lekova zahtevaju razvoj brzih metoda za prepoznavanje standarda lekova u komercijalnim kapsulama i tabletama. U opsegu potencijala od –1,2 V kao i od –0,8 V do 1,0 V oseltamivir-fosfat kao standard i sastojak Tamiflu® kapsule podleže oksidativno-reduktivnoj reakciji između –0,5 i –0,7 V kao i anodnoj reakciji počevši od 0,4 V, sa platoom struja uočenih u celom opsegu potencijala formiranja oksida na elektrodi od zlata. Oseiltamivir-fosfat kao standard i kao komponenta Tamiflu® kapsule snižava struje redukcije oksida na zlatu. Držanje potencijala na vrednostima pojave pikova ne utiče na promenu cikličnog voltamograma, tj. na navedene reakcije. Cikliziranje potencijala u toku više časova ne dovodi do promene cikličnog voltamograma u oba opsega potencijala. Ciklični voltamogram za koncentraciju oseltamivir-fosfata kao standarda i kao sastojka Tamiflu® kapsule od 0,025 mg cm–3 bio je identičan i po dodatku naredne dve koncentracije pa se na elektrodi od zlata ne može ispitivati i koncentracija zavisnost u 0,05 M NaHCO3. Koncentracije leka u elektrolitu su potvrđene simultanom HPLC analizom prema aktuelnoj farmakopeji. Ekscipijenti prisutni u Tamiflu® kapsuli nisu ni na koji način uticali na ponašanje oseltamivir-fosfata kao standarda, tj. neaktivni su pod primenjenim eksperimentalnim uslovima. Elektroda od staklastog ugljenika je takode testirana u oba opsega potencijala i pod identičnim eksperimentalnim uslovima je potpuno neaktivna, za razliku od elektrode od zlata, u prisustvu oseltamivir-fosfata kao standarda i kao sastojka Tamiflu® kapsule. Elektroda od zlata se u navedenim opsezima potencijala koristeći 0,05 M NaHCO3 kao elektrolit i pod navedenim elektrohemjskim uslovima može efikasno koristiti za kvalitativno određivanje oseltamivir-fosfata u Tamiflu kapsuli.