The impact of isatin derivatives on antibiotic production by *Streptomyces hygroscopicus* CH-7

Jovan T. Ćirić, Sandra S. Konstantinović, Slavica B. Ilić, Gordana Gojgić-Cvijović, Dragiša S. Savić, Vlada B. Veljković

1Faculty of Technology, University of Niš, Leskovac, Serbia
2Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Belgrade, Serbia

Abstract

The effect of isatin derivatives as a nitrogen source on antibiotic (hexaene H-85 and azalomycine B) production by *Streptomyces hygroscopicus* CH-7 was studied. Isatin-3-hydrazono, 5-chloroisatin-3-hydrazono, isatin-3-tosylhydrazono, 5-chloroisatin-3-tosylhydrazono, isatin-3-(4'-hidroxy)benzoilhydrazono and 5-chloroisatin-3-(4'-hidroxy)benzoilhydrazono were synthesized in a crude glycerol, obtained during the biodiesel production from edible sunflower oil. The highest concentration of Hexaene H-85 is achieved with 5-chloroisatin-3-hydrazono (197 μg/cm³) in medium, while isatin-3-hydrazono has the greatest impact on azalomycine B production (72 μg/cm³).

Keywords: isatin derivatives, *Streptomyces hygroscopicus*, hexaene H-85, azalomycine.

A large number of bacteria and fungi have the ability to produce secondary metabolites. Microorganisms are the main sources of bioactive components, of which more than 60% are produced by Actinomycetales, 28% by moulds and about 11% by nonfilamentous organisms. Antibiotics are the most important secondary metabolites [1,2], and about three-quarters of known antibiotics with different chemical structures are produced by Actinomycetales [3,4]. Species of the genus Streptomyces are known as one of the best antibiotic producers [5], whereby some strains can produce more than 180 different secondary metabolites [6].

Streptomyces hygroscopicus CH-7 produces antibiotics such as hexaene H-85, nigericin and azalomycine B. By changing the conditions of fermentation process and the composition of the nutrient medium at an early stage of trial, it is possible to increase the yield of antibiotics [7,8].

The production of antibiotics by *Streptomyces* species depends on the growth phase. The secondary metabolism occurs when growth is limited, when nutrients are worn-out or their availability is reduced. The nature of limiting nutrient is very important, and essential ingredients of substrate are carbon, nitrogen and phosphorus. Other nutrients, such as mineral substances, have an impact on production, but their absence is not essential [9,10].

Isatin derivatives possess different biological activity, such as antimicrobial, anticonvulsative, anticancer, antiHIV, etc. [11,12]. The usage of some isatin derivatives, such as isatin-3-thiosemicarbazone, isatin-3-semicolonbazone and isatin-3-phenylhydrazono as a nitrogen source for antibiotic production of *S. hygroscopicus* CH-7 significantly increased hexaene H-85 and azalomycine B production [9,13,14]. Since those isatin derivatives were synthesized in crude glycerol as a green solvent, and similar compounds have a positive effect on antibiotic production, the idea was to replace a part of tryptophan with isatin products and gained even better results in hexaene H-85 and azalomycine B production.

MATERIALS AND METHODS

Organism, media and growth conditions

A strain *Streptomyces hygroscopicus* CH-7 (NCAIM (P) B-001336) was gained from the Microbial Collection at Faculty of Chemistry and Institute of Chemistry, Technology and Metallurgy in Belgrade, Serbia [15,16]. The culture was stored at 4 °C at soybean medium containing the following: 15 g/dm³ glucose; 10 g/dm³ soybean; 3 g/dm³ CaCO₃; 3 g/dm³ NaCl; 2 g/dm³ agar (pH 7.2). Flasks (250 ml) that contained 50 ml of this media were inoculated with 0.1 ml of spore suspension and incubated at 30 °C with shaking at 200 rpm. The fermentation media were inoculated with 5 vol.% of a preculture after 48 h growth and incubated at 30 °C for 240 h under the standard condition of aeration and agitation (200 rpm). The composition of media used for fermentation were: basal medium (M₁; 15 g/dm³ glucose; 10 g/dm³ soybean; 5 g/dm³ yeast extract; 3 g/dm³ CaCO₃; 3 g/dm³ NaCl; 0.5 g/dm³ MgSO₄·7H₂O; 0.5 g/dm³ KCl; 0.15 g/dm³ MnSO₄·H₂O; 0.15 g/dm³ FeCl₃·6H₂O; 0.05 g/dm³ ZnCl₂; 0.05 g/dm³ CuCl₂·2H₂O; 0.05 g/dm³ CaCl₂·2H₂O; 0.05 g/dm³ Na₂MoO₄·2H₂O; 0.05 g/dm³ CoCl₂·6H₂O; 0.05 g/dm³ FeSO₄·7H₂O; 0.05 g/dm³ KI; 0.05 g/dm³ Na₂S·9H₂O; 0.05 g/dm³ Na₂B₄O₇·10H₂O; 0.05 g/dm³ NaNO₃).
g/dm3 (NH$_4$)$_2$HPO$_4$; 1 g/dm3 K$_2$HPO$_4$); medium with
tryptophan (M$_2$; 15 g/dm3 glucose; 15 g/dm3 trypto-
phan; 3 g/dm3 CaCO$_3$; 3 g/dm3 NaCl; 0.5 g/dm3
MgSO$_4$·7H$_2$O; 0.5 g/dm3 (NH$_4$)$_2$HPO$_4$; 1 g/dm3 K$_2$HPO$_4$)
and media with isatin derivatives (15 g/dm3 glucose; 10
g/dm3 isatin derivatives; 5 g/dm3 tryptophan; 3 g/dm3
CaCO$_3$; 3 g/dm3 NaCl; 0.5 g/dm3 MgSO$_4$·7H$_2$O; 0.5
g/dm3 (NH$_4$)$_2$HPO$_4$; 1 g/dm3 K$_2$HPO$_4$).
The results were obtained by measuring absorbance
at $\lambda_{max} = 364$ nm (Hexaene H-85) and $\lambda_{max} = 252$ nm
(azalomycine B) with Perkin-Elmer Lambda 15 UV/Vis
spectrophotometer [15,16]. Microbial growth was
determined by measuring dry weights of cells [16].

Synthesis of isatin derivatives in the crude glycerol

All chemicals, except crude glycerol, were of analy-
tical grade and used without further purification. They
were purchased from Sigma Aldrich. The crude glycerol,
a by-product in the production of biodiesel from
sunflower oil, was obtained from the Laboratory for
Chemical Engineering, Faculty of Technology, Leskovac.
The excess of methanol was removed from the crude
glycerol by distillation. After distillation, the acidity of
crude glycerol was adjusted to pH 5 by addition of 85%
phosphoric acid. The inorganic salts formed in this
stage were then removed by centrifugation at 400 rpm
for 15 min.

Isatin derivatives were synthesized by the reaction
of equimolar amounts of isatin and amine components
in the crude glycerol as a green solvent [17]. The mix-
ture was refluxed at 80 °C. The products, precipitated
as a colored solid, were filtered and washed out with water.

RESULTS AND DISCUSSION

To achieve better concentration of antibiotics, soy-
bean and yeast extract in basal medium were replaced
with tryptophan (15 g/dm3) and mixtures of tryptophan
(5 g/dm3) and isatin derivatives (10 g/dm3). Amino acids
are known as a good nitrogen source [18,19], as well as
tryptophan, which was already used for antibiotic pro-
duction by *Streptomyces hygroscopicus* CH-7 [14]. Tryp-
tophan is similar to the isatin (indole moiety is cons-
stitutional part of their structure), and therefore, in this
paper, isatin derivatives were used as a nitrogen
sources for antibiotic production by *S. hygroscopicus*
CH-7. Isatin derivatives (Fig. 1) were synthesized by
using „green method“ in a crude glycerol obtained as a
by-product in biodiesel production.

Table 1 shows the effect of tryptophan and isatin-3-
hydrazone, 5-chloroisatin-3-hydrazone, isatin-3-tosyl-
hydrazone, 5-chloroisatin-3-tosylhydrazone, isatin-3-
-(4’-hidroxy)benzoylhydrazone and 5-chloroisatin-3-(4’-
-hidroxy)benzoilhydrazone on concentration of dry bio-
mass and antibiotics, while the kinetic of fermentation
is shown in Figures 2–4.

Figure 2 shows the variation of dry biomass during
the fermentation. Independently of nitrogen source,
the concentration of dry biomass increased during the
first 72 h of fermentation, after which it began to de-
crease. The highest concentration of dry biomass was
achieved in medium M₁ and medium modified with isatin-3-hydrazone, after 48 h (9.0 g/dm³). Comparing to all tested media, the lowest value of dry biomass was achieved with 5-chloroisatin-3-tosylhydrazone (8.0 g/dm³).

The results obtained during the fermentation show that isatin derivatives have different impact on antibiotic production by *Streptomyces hygroscopicus* CH-7 (Table 1 and Fig. 3). The concentration of hexaene H-85 increases in first 48 h and reaches the highest values (197 µg/cm³) with 5-chloroisatin-3-hydrazone as a nitrogen source in 4th day of fermentation. This is 72% higher, while the yield of hexaene H-85 in medium with 5-chloroisatin-3-tosylhydrazone is higher for 51% than value for medium M₁, actually 26 and 11% higher than medium M₂. Higher values for antibiotic concentration, comparing to basal medium and medium with tryptophan were also obtained in medium with isatin-3-tosylhydrazone (165 µg/cm³) and isatin-3-hydrazone (183 µg/cm³). The highest concentration of hexaene H-85 in a medium with tryptophan is achieved during the 72 h of fermentation (156 µg/cm³), which is 36% higher than in medium with soybean and yeast extract.

The variation of azalomycine B during the fermentation is given in Fig. 4. The highest concentration of azalomycine B in basal medium was reached after 72 h of fermentation (36 µg/cm³) and in the media with tryptophan and isatin derivatives during 72–96 h. The increase of azalomycine B concentration in the medium with tryptophan is 33% higher than basal medium (Table 1). The addition of 5-chloroisatin-3-hydrazone stimulates azalomycine B production, with maximum 61 and 54 µg/cm³, respectively. The higher yield was achieved in media with isatin-3-tosylhydrazone (67 µg/cm³) and isatin-3-(4'-hidroxy)benzoilhydrazone (72 µg/cm³).

It’s very difficult to find a connection between the structure of isatin derivatives and antibiotic production. The results show that isatin-3-hydrazone and 5-chloroisatin-3-hydrazone have greater influence on hexaene H-85 production. The main structure of those compounds is identical, and the only difference is in sub-

<table>
<thead>
<tr>
<th>Nitrogen source</th>
<th>Dry biomass X_{max} / g dm⁻³</th>
<th>Hexaene H-85 c_{Hmax} / µg cm⁻³</th>
<th>Azalomycine B c_{Emax} / µg cm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>9.0</td>
<td>114</td>
<td>36</td>
</tr>
<tr>
<td>M₂</td>
<td>8.3</td>
<td>156</td>
<td>48</td>
</tr>
<tr>
<td>5-chloroisatin-3-hydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>8.6</td>
<td>197</td>
<td>61</td>
</tr>
<tr>
<td>5-chloroisatin-3-tosylhydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>8.0</td>
<td>172</td>
<td>54</td>
</tr>
<tr>
<td>Isatin-3-tosylhydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>8.1</td>
<td>165</td>
<td>67</td>
</tr>
<tr>
<td>Isatin-3-hydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>9.0</td>
<td>183</td>
<td>72</td>
</tr>
<tr>
<td>Isatin-3-(4'-hidroxy)benzoilhydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>8.2</td>
<td>145</td>
<td>49</td>
</tr>
<tr>
<td>5-chloroisatin-3-(4'-hidroxy)benzoilhydrazone + tryptophan (10 g/dm³ + 5 g/dm³)</td>
<td>7.9</td>
<td>162</td>
<td>51</td>
</tr>
</tbody>
</table>

Fig. 2. Variation of dry biomass concentration during the fermentation of *Streptomyces hygroscopicus* CH-7 in basal medium (■) and media with tryptophan (●); 5-chloroisatin-3-hydrazone (▲); 5-chloroisatin-3-tosylhydrazone (▼); isatin-3-tosylhydrazone (♦); isatin-3-hydrazone (►); isatin-3-(4'-hidroxy)benzoilhydrazone (◄); 5-chloroisatin-3-(4'-hidroxy)benzoilhydrazone (◊).
J.T. ĆIRIĆ et al.: ISATIN DERIVATIVES AND ANTIBIOTIC PRODUCTION BY S. hygroscopicus

Fig. 3. Variation of Hexaene H-85 concentration during the fermentation in basal medium (■) and media with tryptophan (♦); 5-chloroisatin-3-hydrazone (▲); 5-chloroisatin-3-tosylhydrazone (▼); isatin-3-tosylhydrazone (▲); isatin-3-hydrazone (►); isatin-3-(4'-hidroxy)benzoilhydrazone (◄); 5-chloroisatin-3-(4'-hidroxy)benzoilhydrazone (◊).

Fig. 4. Variation of Azalomycine B concentration during the fermentation in basal medium (■) and media with tryptophan (♦); 5-chloroisatin-3-hydrazone (▲); 5-chloroisatin-3-tosylhydrazone (▼); isatin-3-tosylhydrazone (▲); isatin-3-hydrazone (►); isatin-3-(4'-hidroxy)benzoilhydrazone (◄); 5-chloroisatin-3-(4'-hidroxy)benzoilhydrazone (◊).

stuent at position 5, which means that chloro-ion does not have a negative effect on antibiotic production.

On the other hand, isatin derivatives with no chloro substituent in position 5 (isatin-3-tosylhydrazone and isatin-3-hydrazone), have a better influence on azalomycine B production. Isatin-3-hydrazone has the best impact on azalomycine B production. It’s main difference with isatin-3-tosylhydrazone is in SO2 group and aromatic moiety, which means that those groups reduce azalomycine B production.

CONCLUSIONS

Comparing to the results obtained for similar nitrogen sources [13,14] the impact of isatin-3-hydrazone, 5-chloroisatin-3-hydrazone, isatin-3-tosylhydrazone, 5-chloroisatin-3-tosylhydrazone, isatin-3-(4'-hidroxy)benzoilhydrazone and 5-chloroisatin-3-(4'-hidroxy)benzoilhydrazone on antibiotic production is lower than those achieved for isatin-3-thiosemicarbazone, isatin-3-emicarbazone and isatin-3-phenylhydrazone [13,14]. Those were expected, especially with isatin-3-thiosemi-
carbazone and isatin-3-semicarbazone, since their structure is the most similar with tryptophan.

Acknowledgements
This work has been funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project III 45001).

REFERENCES
IZVOD

UTICAJ DERIVATA IZATINA NA PRODUKCIJU ANTIBIOTIKA POMOĆU \textit{Streptomyces hygroscopicus} CH-7

Jovan T. Ćirić, Sandra S. Konstantinović, Slavica B. Ilić, Gordana Gojgić-Cvijović, Dragiša S. Savić, Vlada B. Veljković

\textit{Tehnološki fakultet u Leskovcu, Univerzitet u Nišu, Bulevar oslobođenja 124, 16000 Leskovac, Srbija}

Institut za hemiju, tehnologiju i metalurgiju, Njegoševa 12, P.O. Box 815, Beograd 11000, Srbija

Intenzivna istraživanja poslednjih godina vrše se na polju poboljšanja produkcijske sekvantarnih metabolita sa različitom aktivnošću i primenom u biotehnologiji. \textit{Streptomiceta} \textit{Streptomyces hygroscopicus} raste i produkuje sekundarne metabolite na podlagama različitog sastava. Izvor azota značajno utiče kako na primarni tako i na sekundarni metabolizam, odnosno na rast, razvoj i produkciju sekundarnih metabolita. Pri fermentaciji u tečnoj podlozi, ovaj soj proizvodi smešu antibiotika. U ovom radu je proučavan uticaj derivata izatina, kao izvora azota na produkciju antibiotika heksena H-85 i azalomicina B pomoću soja \textit{Streptomyces hygroscopicus} CH-7. Derivati izatina poseduju različite biološke aktivnosti i dosadašnjim istraživanjima je ustanovljeno da imaju stimulativno dejstvo kako na primarni tako i na sekundarni metabolizam. Izatin-3-tozilhidrazon, izatin-3-hidrazon, izatin-3-(4`-hidroksi)benzoilhidrazon, 5-hloroizatin-3-(4`-hidroksi)benzoilhidrazon, 5-hloroizatin-3-tozilhidrazon i 5-hloroizatin-3-hidrazon su sintetisani u sirovom glicerolu dobijenom tokom procesa proizvodnje biodizela od jestivog suncokretnog ulja. Najviša koncentracija Heksena H-85 je postignuta u podlozi sa 5-hloroizatin-3-hidrazonom (197 μg/cm³) dok je izatin-3-hidrazon imao najveći uticaj na produkciju azalomicina B (72 μg/cm³).

Ključne reči: Derivati izatina • \textit{Streptomyces hygroscopicus} • Heksaena H-85 • Azalomicina B