Changes in Platelets and Anticoagulant Protein Activity During Adenosine-Exercise Single-Photon Emission Computed Tomography Stress Test

Slobodan Obrađović1, Vesna Subota2, Branislav Baškot3, Marija Dopudja3, Nebojša Antonijević4, Nemanja Djenić, Snježana Vukotic, Sonja Salinger5, Aleksandra Jovelić, Danijela Miković, Jovan Antović6, Aleksandra Grdenić9, Branko Gligić1

1 Clinic of Emergency Internal Medicine, Military Medical Academy, Belgrade, Serbia; 2 Institute of Clinical Biochemistry, Military Medical Academy, Belgrade, Serbia; 3 Institute of Nuclear Medicine, Military Medical Academy, Belgrade, Serbia; 4 Institute of Cardiovascular Diseases, Clinical Centre of Serbia, Belgrade, Serbia; 5 Institute of Cardiovascular Diseases, Clinical Centre of Niš, Niš, Serbia; 6 Institute of Cardiovascular Diseases, Sremska Kamenica, Serbia; 7 Department for Haemostasis and Thrombosis, Institute of Transfusiology, Belgrade, Serbia; 8 Department of Molecular Medicine and Surgery/Coagulation Research, Karolinska Institute, Stockholm, Sweden; 9 Department of Cardiology, Clinical Hospital Centre “Dr. Dragiša Mišović”, Belgrade, Serbia

SUMMARY

Introduction Activation of haemostasis during physical stress or during myocardial ischemia could be an important mechanism to trigger coronary and stent thrombosis. We examined changes in haemostatic parameters and its association with myocardial ischemia during adenosine-exercise-SPECT (adeno-EX) stress test in coronary patients at least 4 months after coronary stenting.

Objective The aim of this study was to examine relationship between changes in haemostatic parameters and stress induced myocardial ischemia quantified by perfusion scintigraphy in stented coronary patients.

Methods Thirty-seven patients on dual antiplatelet therapy (26 on clopidogrel plus aspirin and 11 on aspirin only) 4-8 months after successful intracoronary stent implantation were enrolled in the study. We determined the levels of platelet aggregability (PA) on ADP (PA-ADP) and epinephrine (PA-EPI), beta-thromboglobulin, platelet factor-4, protein C (PC) and antithrombin (AT) before and 15 minutes after intravenous injection of 150 μg/kg adenosine for 4 minutes concomitant with supine ergo-bicycle exercise test for 50 W. The size of stress perfusion defect was measured 15 minutes after stress and in rest 4 hours later by 99mTc-tetrofosmin single photon emission computed tomography (SPECT) within 17 myocardial segments.

Results There were no differences between haemostatic parameters before and after stress. A significant myocardial ischemia after exercise was registered in 12 patients on combined antiaggregation therapy and in 5 patients on aspirin. In this preliminary report, because of a small number of patients in the aspirin group we did not analyse difference in the levels of haemostatic markers and their correlations with the size of perfusion defect. The only significant difference between measured haemostatic parameters in the patients with stress induced ischemia compared to the patients without it, was a lower level of AT activity after stress (81.0% vs. 87.5%; p=0.027). Antithrombin activity before stress had significant negative correlation with the size of perfusion defect in rest (R²=0.219; p=0.016) and PC activity before stress had significant linear correlation with stress perfusion defect (R²=0.248; p=0.010).

Conclusion Baseline activities of natural anticoagulant proteins AT and PC are associated with the size of myocardial perfusion defect during adeno-EX-SPECT test. Patients with significant stress-induced ischemia had lower levels of AT activity after stress.

Keywords: single photon emission computed tomography (SPECT); adenosine exercise stress test; platelets; protein C; antithrombin

INTRODUCTION

Both physical and mental stress can provoke myocardial ischemia in patients with coronary stenosis and even plaque rupture or erosion with subsequent intracoronary thrombus formation and the development of myocardial infarction [1]. Stress causes increase of oxygen demand and procoagulant state. Balance between coagulation and anticoagulation system can be of crucial importance for the outcome of plaque rupture or endothelial denudation caused by a stress event [2]. Elevated levels of fibrinogen and D-dimer have a prognostic value in patients with proven coronary artery disease in predicting cardiovascular death even after adjustment for conventional risk factors and C-reactive protein level [3]. Enhanced platelet reactivity and activity of several coagulation factors together with down-regulation of anticoagulant and fibrinolytic system are closely connected with several risk factors in coronary patients, which can trigger thrombus formation and myocardial infarction [4]. Furthermore, patients with acute coronary syndrome, especially myocardial infarction, have pronounced procoagulable state, with increased markers of platelet activation and thrombin generation and suppression of fibrinolytic system [5, 6]. The association of stress induced myocardial ischemia quantified by state of art perfusion scintigraphy imaging and changes in platelet function and other haemostatic parameters in coronary patients have not been established till now.
OBJECTIVE

The goal of this study was to establish if there is any relationship between changes in the platelet activity, coagulation and anticoagulation system during adenosine-exercise induced myocardial ischemia measured by perfusion scintigraphy with a 99mTechnetium-sestamibi (99mTc-MIBI) radiotracer in coronary patients submitted to percutaneous coronary intervention with stenting 4-6 months before testing.

METHODS

Subjects

Thirty-seven patients who underwent adenosine-exercise myocardial perfusion scintigraphy stress test at least 3 months after coronary stenting for acute coronary syndrome were enrolled in the study. All patients were on chronic aspirin therapy 100 mg per day, and 26 of them received 75 mg of clopidogrel daily. The main characteristics of patients are presented in Table 1. Only 5 patients had mild effort angina and all others were asymptomatic.

Stress test

Single photon emission computed tomography (SPECT) was performed after 30 minutes in rest with a 99mTc-MIBI (740 MBq) radiotracer administered at the end of the second minute of the combination of adenosine (150 µg/kg) for 4-minutes intravenous bolus injection concomitant with a low level of exercise on the ergo-bicycle in supine position (50 W for 4 minutes). Imaging started 15 minutes after stress by an Orbiter Siemens gamma camera. The second imaging was performed at rest 3-4 hours after the stress with 370 MBq of 99mTc-MIBI iv. bolus (imaging started 30 minutes after administration of radiotracer).

The quantification of myocardial perfusion defect was measured using the AutoQuant Software, within 17 myocardial segments and was shown as a total percentage of perfusion defect (uptake of radiotracer less than 50%) or using the sum of four-graded scoring across the segments (1 – normal perfusion; 2 – mild; 3 – moderate; and 4 – severe decrease of radiotracer uptake). Significant ischemia was defined as the difference of both total perfusion defects by more than 5% and scoring sum by more than 5 between rest and stress imaging (stress score – rest score ≥5%).

Haemostatic parameters

Venous blood was sampled in tubes containing 3.8% sodium citrate from an antecubital vein under minimal stasis after 30 minutes of rest and just before stress test and 15 minutes after the stress (4 minutes exercise plus adenosine bolus injection). Platelet-rich plasma (PRP) was obtained by centrifugation at 150× g for 10 minutes at room temperature. The platelet aggregation response to ADP (20 µmol/l) was recorded 5 min. after addition of the agonist using an aggregometer from BCT-system (Dade-Behring, Germany). For the determination of protein C (PC) and antithrombin (AT) activity, as well as β-thromboglobulin (BTG) and platelet factor-4 (PF4) concentrations, platelet poor plasma (PPP) was obtained from the citrated samples with 2000× g centrifugation for 15 minutes at room temperature and aliquots were frozen at -80°C till the time of final measurement. Protein C and antithrombin activity were determined by colorimetric assays (Berichrom, Dade-Behring, Germany). BTG and PF4 were assayed in plasma by enzyme immunoassay (Boehringer-Mannheim kits Asserachrom bTG and Asserachrom PF4, respectively). All procedures were performed according to the instructions from the manufacturer.

Statistics

Since this is a preliminary report with a relatively small number of participants and some variables had normal and some abnormal distribution assessed by Kolmogorov-Smirnov test, we decided to present non-parametric statistics for the description of data (median and interquartile range as 25-75 percentiles) and we used Wilcoxon’s test for the comparison of haemostatic parameters before and after stress. Linear correlation was performed using variables with normal distribution. The value p<0.05 was considered to indicate significance.

RESULTS

The baseline characteristics of the patients are shown on Table 1. The patients on clopidogrel and aspirin therapy had increased heart rate during test from 62±11 beats/min to maximum of 116±15 beats/min at the end of test. A similar increase of heart rate was noticed in the aspirin group. Because of the small number of patients, especially in the aspirin group, in this preliminary report we did not compare demographic parameters between the two groups. There were no significant changes of haemostatic parameters after stress (Table 2).

Significant ischemia was induced in 12 patients on clopidogrel plus the aspirin group and 5 patients on aspirin only. There was no difference between platelet aggregability and markers of platelet activation between the patients with Table 1. Baseline characteristics of study population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Clopidogrel + Aspirin</th>
<th>Aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (male/female)</td>
<td>26 (19/7)</td>
<td>11 (10/1)</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>57 (33-76)*</td>
<td>55 (28-69)*</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>26.6 (20.5-31.0)*</td>
<td>26.2 (23.8-29.5)*</td>
</tr>
<tr>
<td>Hypertension treated (n)</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>Diabetes (n)</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Previous infarction (n)</td>
<td>19</td>
<td>7</td>
</tr>
</tbody>
</table>

* range; n – number
and without ischemia in both groups. In the clopidogrel plus aspirin group and in all patients antithrombin activity after stress was significantly lower in the patients with ischemia (Graphs 1 and 2).

In the clopidogrel + aspirin group both PC and AT activity showed significant but opposite linear correlation with the size of perfusion defect in rest and stress, respectively. AT activity before stress had the best negative correlation with the size of rest perfusion defect (Graph 3), and PC activity before stress had the strongest positive correlation with stress perfusion defect (Graph 4). Other haemostatic parameters did not show significant linear correlation with the size of perfusion defect either in rest or stress SPECT (Table 3).

DISCUSSION

In our study pharmacological-exercise stress test with adenosine plus a concomitant mild physical exercise did not influence the measured haemostatic parameters, but induced significant myocardial ischemia in 16/37 patients. In these patients we found lower levels of antithrombin activity. Such event mimicked unstable angina as a mismatch between myocardial perfusion and needs. In this situation thrombin generation was raised during acute myocardial ischemia [7] and the activity of antithrombin lowered very probably due to the consumption of this anticoagulant protein [8] and its capture in the microcirculation of ischemic myocardium. Since there was no differ-

Table 2. Haemostasis parameters before and 15 minutes after stress (median value and IQR in parentheses)

<table>
<thead>
<tr>
<th>Haemostatic parameters</th>
<th>Clopidogrel + Aspirin</th>
<th>Aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before stress</td>
<td>After stress</td>
</tr>
<tr>
<td>Platelet aggregability on ADP</td>
<td>37.1 (13.7-56.3)</td>
<td>38.2 (30.0-55.3)</td>
</tr>
<tr>
<td>Platelet aggregability on EPI</td>
<td>35.2 (29.0-47.4)</td>
<td>36.7 (31.7-43.7)</td>
</tr>
<tr>
<td>Protein C activity</td>
<td>110.0 (99.0-122.0)</td>
<td>109.5 (100.0-117.0)</td>
</tr>
<tr>
<td>Antithrombin activity</td>
<td>87.0 (84.0-89.0)</td>
<td>87.0 (82.0-89.0)</td>
</tr>
<tr>
<td>Platelet factor 4</td>
<td>50.0 (45.0-50.0)</td>
<td>50.5 (45.0-59.0)</td>
</tr>
<tr>
<td>Beta-thromboglobulin</td>
<td>100.0 (77.0-105.0)</td>
<td>96.0 (80.0-100.0)</td>
</tr>
</tbody>
</table>

* none of the values were statistically significant
ence between antithrombin level change during adenosine-exercise challenge in the patients with and without stress induced ischemia, our results support the hypothesis that antithrombin levels are predetermined very probably with repeated attacks of myocardial ischemia. Neither aspirin [9] nor clopidogrel [10] could inhibit the development of procoagulant state and platelet activation during exercise and this decrease of antithrombin levels probably mirrored the defensive mechanism in such situation.

Lower activity of protein C and antithrombin predict ischemic events in patients with acute coronary syndrome without ST segment elevation [11]. However, it is unknown if these parameters are somehow changed after myocardial infarction and how lower ejection fraction can influence the activity of anticoagulant proteins activity. Our results show that antithrombin and protein C levels correlate with myocardial perfusion at rest and stress. The myocardial perfusion defect at rest represents the size of irreversible myocardial damage by the previous infarction and the defect in stress is wider as a consequence of significant ischemia. It seems that patients with larger infarctions have depressed level of antithrombin activity and up-regulation of protein C activity. We hypothesized that patients with larger infarction, somehow have up-regulation of protein C activity probably as a natural response to prothrombotic state in patients with ischemic cardiomyopathy.

CONCLUSION

The activity of natural anticoagulant system, especially antithrombin and protein C, has been neglected in the pathophysiology of acute myocardial infarction and ischemia, but they may have a very important role for the fate of plaque erosion and rupture, the initial events for the coronary thrombosis. A larger study is needed together with the determination of other haemostatic parameters which can interplay with myocardial ischemia and antiplatelet drugs.

REFERENCES

Промене у tromboцитима и aktivnosti antikoagulantskih proteina
tokom adenosinzke vежbe za ispitivawe strresa — cizintiglijskij prlegal
(adeno-EX-SPECT)

Slobodan OBRADOVIĆ
Clinic of Emergency Internal Medicine, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
Email: sloba.d.obradovic@gmail.com

1 Клиника за ургентну интерну медицину, Војномедицинска академија, Београд, Србија;
2 Институт за клиничку биохемију, Војномедицинска академија, Београд, Србија;
3 Институт за нукlearну медицину, Војномедицинска академија, Београд, Србија;
4 Институт за кардиоваскуларне болести, Клинички центар Србија, Београд, Србија;
5 Институт за кардиоваскуларне болести, Клинички центар Ниш, Ниш, Србија;
6 Институт за кардиоваскуларне болести, Сремска Каменица, Србија;
7 Одељење за хемостазу и trombozu, Институт за трансфузију крви Србије, Београд, Србија;
8 Одељење за молекуларну медицину и хирургију/истраживање коагулације, Институт Каролинска, Стокхолм, Шведска;
9 Одељење за кардиоположију, Клиничко-болнички центар „Др Драгиша Мишовић”, Београд, Србија

KRATAK SADRŽAJ

Uvod Aktivacija hemostaze tokom fizičke aktivnosti ili is­
hemije miokarda može biti vajlje mechanizam za na­
bac trom­
boze stenta. Ispitivali smo promene parametara hemostaze i
njihove veze sa ishemijom miokarda tokom kombinovanog adeno­
zinskog i fizičkog strc-sintiglijskog pregleda (adeno-EX-
SPECT) kod bolnica sa ishemijom boljce srdca na­jmanje ce­
tiri meseci nakon intrakorona­re ugradbe stenta. Vrsta jađe je bio da se na osnovu perfor­
zioni­ne cizintiglijske utvrdi odnos između promena parametara
hemostaze i ishemije miokarda izazvane strcem kod korona­
rih bolnica sa stentom.

Metode pada U studiju je uključeno 37 bolnica na antikoagul­
acijskoj terapiji – 26 na plapadigorel i acetylsalicyline­nai
kiselinu (AK) i 11 samo na AK – 4-8 meseci nakon uspešne im­
plantacije korona­nog stenta. Određivani su aegerabilnost
trombo­za i adenoszindifosfat (ADP) i epinefrin i ovo
beta-tromboglobulina, trombocisti­nog faktora 4, proteina C
i antitrombina pre i 15 minut nakon четвор минутне ин­
travenske injekcije 150 μ/kg adenosina uz opere­nje na er­
globičku od 50 W. Velicina miokardne perfore­ije određu­va­na je 15 minut nakon opere­nje, a velicina perfore­ije u mi­
ro­va­ni četiri sata kaski cizintiglijskog s μjeku­jumom
99m (99mTc) i tetrafizom (engl. single photon emission com­