Sudden death in children

Aleksandra Doronjski1,2, Milena Bjelica1, Slobodan Spasojević1,2, Tanja Radovanović1,2, Jelena Ćulafić1, Vesna Stojanović1,2
1Institute for Child and Youth Health Care of Vojvodina, Novi Sad, Serbia; 2University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia

SUMMARY
Introduction/Objective Sudden death in children may occur as a result of many diseases and accidents, while the cause often remains unknown. There are different terms in the literature that represent the causes of sudden death in children.

The aim of our study was to determine the most common cause of sudden death in children admitted to the Clinic of Pediatrics.

Methods The retrospective study was conducted in the period from January 1, 1995 to December 31, 2015 and included 49 patients, aged from 10 days to 17 years, in whom death occurred in the Emergency Department and in the first 48 hours of hospitalization.

Results In 23 patients (47%) the cause of death was infection, in 10 patients (20%) heart failure, four patients (8%) died due to status epilepticus, the same number of patients (8%) died due to aspiration of a foreign body, while the rest of the patients died due to diabetic ketoacidosis (2%), rickets (2%), carbon monoxide poisoning (2%), hemolytic anemia (2%), suicide by hanging (2%), drowning (2%), sudden infant death syndrome (2%), and sudden unexpected death in epilepsy (2%). Most of the patients in our study were infants (43%).

Conclusion Our study shows that infants are at the highest risk of sudden death, while the most frequent causes of death are infections and cardiovascular diseases.

Keywords: sudden death; child; infant

INTRODUCTION
The death of a child represents a dreadful event for the child's parents and for the doctors who participate in treatment of a child, especially if it is unexpected. When clinicians are faced with an imminent child death they must carry out many complex tasks. They need to treat the patient experiencing an acute medical situation, establish a compassionate relationship with the patient’s family, and support and work in team fashion with their colleagues as they acknowledge the human limitations to remedy a medical crisis [1].

About 10% of pediatric deaths after the first year of life are sudden and population based studies put the individual age-related risk between 1:20,000 and 1:50,000 per year [2].

The death certificate diagnoses in the case of pediatric sudden death may not be completely accurate, particularly in cases in which autopsy was not performed [3].

The death certificate diagnoses in the case of pediatric sudden death may not be completely accurate, particularly in cases in which autopsy was not performed [3].

The death of a child can be expected and explained (e.g. a child with malignancy who dies under appropriate circumstances, from complications of the underlying disease), expected and unexplained (e.g. a child with malignancy who dies earlier than expected or under unexplained circumstances), unexpected and explained (e.g. road traffic accident, meningococcal sepsis), and unexpected and unexplained (e.g. sudden infant death syndrome) [4]. Sudden death in children may occur as a result of infection, heart disease, malignant disease, asthma, aspiration or airway obstruction, congenital anomaly, genetic disorder, seizure, injury, suicide, homicide, etc., while the cause often remains unknown [2, 4, 5]. Death can occur in outpatient conditions, in the emergency department, or during the hospitalization of the patient [4].

There are different terms in the literature that represent the causes of sudden death (Table 1) [1, 2, 5–8].

Sudden unexpected infant death (SUID), also known as sudden unexpected death in infancy (SUDI), is a term used to describe any sudden and unexpected death, whether explained or unexplained [including sudden infant death syndrome (SIDS) and ill-defined deaths] occurring during infancy. After case investigation, SUID can be attributed to suffocation, infection, ingestion, metabolic diseases, arrhythmia, trauma, etc. [9]. The most frequently reported causes of SUID are sudden infant death syndrome (SIDS), ill-defined and unknown cause of mortality, and accidental sleep-related suffocation. However, it is not always easy to differentiate between explained and unexplained SUID [10].

Sudden infant death syndrome (SIDS) is the most common form of SUID and the leading cause of infant death. It is defined as sudden death of an infant which remains unexplained...
Table 1. Terms which define causes of sudden death

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden unexpected death in infants and children (SUDIC)</td>
<td>Sudden and unexpected death of an infant or a child</td>
</tr>
<tr>
<td>Sudden unexpected infant death (SUID) or sudden unexpected death in infancy (SUDI)</td>
<td>Sudden and unexpected death of an infant, explained or unexplained, including performance of a complete autopsy, examination of the death scene, and review of the child's medical history</td>
</tr>
<tr>
<td>Sudden infant death syndrome (SIDS)</td>
<td>Sudden death of an infant which remains unexplained after a thorough case investigation, including performance of a complete autopsy, examination of the death scene, and review of the child's medical history</td>
</tr>
<tr>
<td>Sudden unexplained death in childhood (SUDC)</td>
<td>Sudden and unexpected death of a child older than 1 year of age that remains unexplained after a thorough case investigation, including performance of a complete autopsy, examination of the death scene, and review of the child's medical history</td>
</tr>
<tr>
<td>Sudden unexpected death from infectious disease (SUIDID)</td>
<td>Sudden and unexpected death caused by infectious disease</td>
</tr>
<tr>
<td>Sudden cardiac death (SCD)</td>
<td>Sudden and unexpected death caused by cardiovascular disease</td>
</tr>
<tr>
<td>Sudden unexpected death in epilepsy (SUDEP)</td>
<td>Sudden, unexpected, witnessed or unwitnessed, non-traumatic or non-drowning death of people with epilepsy, with or without evidence of a seizure, excluding documented status epilepticus and in whom postmortem examination does not reveal a structural or toxicological cause of death</td>
</tr>
</tbody>
</table>

Table 2. San Diego definition of SIDS

<table>
<thead>
<tr>
<th>Term</th>
<th>Clinical</th>
<th>Circumstances of death</th>
<th>Autopsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDS general definition</td>
<td>Sudden and unexpected death of an infant under 1 year of age</td>
<td>Death unexplained after review of the circumstances</td>
<td>Absence of potentially fatal pathologic findings; minor respiratory system inflammatory infiltrates are acceptable; intrathoracic petechial hemorrhage is a supportive but not obligatory or diagnostic finding</td>
</tr>
<tr>
<td></td>
<td>Fatal episode occurring during sleep</td>
<td></td>
<td>No evidence of unexplained trauma, abuse, neglect, or unintentional injury</td>
</tr>
<tr>
<td></td>
<td>Death unexplained by clinical history</td>
<td></td>
<td>No evidence of substantial thymic stress effect (thymic weight of < 15 g and/or moderate/severe cortical lymphocyte depletion). Occasional “starry sky” macrophages or minor cortical depletion is acceptable</td>
</tr>
<tr>
<td>IA SIDS*</td>
<td>More than 21 days and < 9 months of age</td>
<td>Investigation of the various scenes where incidents leading to death might have occurred and determination that they do not provide an explanation for the death Found in a safe sleeping environment, with no evidence of accidental death</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal clinical history, including term pregnancy (gestational age of ≥ 37 weeks)</td>
<td></td>
<td>Negative results of toxicologic, microbiologic, radiologic, vitreous chemistry, and metabolic screening studies</td>
</tr>
<tr>
<td></td>
<td>Normal growth and development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No similar deaths among siblings, close genetic relatives (uncles, aunts, or first-degree cousins), or other infants in the custody of the same caregiver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB SIDS**</td>
<td>The same as for IA SIDS</td>
<td>Investigation of the various scenes where incidents leading to death might have occurred was not performed</td>
<td>One of the following analyses was not performed: toxicologic, microbiologic, radiologic, vitreous chemistry, or metabolic screening studies</td>
</tr>
<tr>
<td>II SIDS***</td>
<td>Age range outside that of category IA or IB [i.e. 0–21 days or 270 days (9 months) through the first birthday] Similar deaths among siblings, close relatives, or other infants in the custody of the same caregiver that are not considered suspect for infantile or recognized genetic disorders Neonatal or perinatal conditions (for example, those resulting from preterm birth) that have resolved by the time of death</td>
<td>Mechanical asphyxia or suffocation caused by overlaying not determined with certainty</td>
<td>Abnormal growth and development not thought to have contributed to death Marked inflammatory changes or abnormalities not sufficient to be unequivocal causes of death</td>
</tr>
<tr>
<td>Unclassified sudden infant death</td>
<td>Criteria for category I or II SIDS are not met</td>
<td>Alternative diagnoses of natural or unnatural death are equivocal</td>
<td>Autopsy has not been performed</td>
</tr>
</tbody>
</table>

*Category IA includes infant deaths that meet the requirements of the general definition and also all of the requirements listed in the table; **Category IB includes infant deaths that meet the requirements of the general definition and also meet all of the criteria for category IA except one or both of the listed ones – classic features of SIDS are present but incompletely documented; ***Category II includes infant deaths that meet category I criteria except for ≥1 of the listed ones.
after a thorough case investigation, including a complete autopsy, examination of the scene of death, and a review of the child’s medical history [11, 12]. In order to more precisely define SIDS, a new classification was offered (San Diego definition from 2004) according to which SIDS is divided into categories depending on the patient’s medical history, examination of death circumstances, and the findings and completeness of the autopsy (Table 2) [13]. Risk factors for SIDS are irregular prenatal control, maternal smoking or alcohol and drug use during pregnancy, smoke in the infant’s environment after birth, premature birth, prone positioning during sleep, sleeping on a soft surface and/or with soft objects such as pillows or stuffed toys, bed-sharing with parents during sleep, overheating and head covering of the infant, lack of breastfeeding [9]. Since the first recommendations for supine placement of infants to prevent SIDS in 1992, SIDS postneonatal mortality rates declined 55% between 1992 and 2001 [14]. According to medical statistics, the incidence of SIDS in our country is 5.9% [15].

Sudden unexplained death in childhood (SUDC) is the term used for an unexpected death of a child older than one year which remains unexplained after a thorough examination of the case [16]. SUDC is less common than SIDS, and usually occurs between one and four years of age [5].

The causes of sudden death in children are often situations or events that could be prevented. Primary prevention includes the implementation of measures to prevent the occurrence of a situation or condition that could lead to death, as well as the recognition of symptoms and signs that may precede the fatal outcome, while secondary prevention implies adequate and timely conduction of cardiopulmonary resuscitation [9, 17].

The aim of our study was to determine the most common cause of sudden death in pediatric patients admitted to the Clinic of Pediatrics of the Institute for Child and Youth Health Care of Vojvodina.

RESULTS

In the period from January 1, 1995 to December 31, 2015 at the Emergency Department and in the first 48 hours of hospitalization at the Clinic of Pediatrics of the Institute for Child and Youth Health Care of Vojvodina, 124 deaths occurred. Medical history was available for 49 patients, so they were included in our study (Figure 1). Due to the age of the medical histories, which were not stored electronically, a part of the documentation relating to the hospitalization of the patients at the Clinic of Pediatrics and of the documentation from the forensic medical institution was not available.

Out of the total number of patients, 30 (61%) were male and 19 (39%) were female. There were three newborns (6%), 21 infants (43%), six children aged one to two years (12%), five children aged three to five years (10%), four children aged six to 10 years (8%), and 10 children aged 11 to 18 years (21%) (Figure 2).

Children who died were usually admitted to the hospital during the winter months [18 children (36%) from January to March] and at the end of the summer period [11 children (22%) in the August–September period]. Patients came to the Institute more frequently during the weekend.
CPR at the Institute was performed in 45 patients (92%). While 17 patients (35%) received no therapy. Certain therapeutic measures (antibiotics, anticonvulsants, cardiac therapy, inhaled therapy, oxygen therapy, parenteral hydration and antipyretics) were applied, while 17 patients (35%) received no therapy. CPR at the Institute was performed in 45 patients (92%).

Distribution of patients by the time passed from the arrival to death

- **Infections (47%)**
 - meningococcal sepsis 5 patients from 4 months to 9 years
 - late neonatal sepsis and sepsis in infancy 5 patients 3 newborns and 2 infants
 - enterocolitis and sepsis 5 patients from 2 months to 4.5 years
 - pneumonia, pneumonia and sepsis 7 patients from 5 months to 17 years

- **Myocarditis**
 - 1 patient 6 months

- **Congenital heart defects**
 - paroxysmal supraventricular tachycardia 1 patient 2 months
 - myocardial infarction 1 patient 13 years
 - dilated cardiomyopathy 1 patient 2.5 months
 - hypertrophic cardiomyopathy 1 patient 7 years
 - endocardial fibroelastosis 1 patient 5.5 months

- **Status epilepticus (8%)**
 - 4 patients from 5.5 months to 5 years

- **Foreign body aspiration (8%)**
 - 4 patients from 2 months to 16 years

- **Diabetic ketoacidosis (2%)**
 - 1 patient 15 years

- **Rickets (2%)**
 - 1 patient 7.5 months

- **Carbon monoxide poisoning (2%)**
 - 1 patient 11 months

- **Hemolytic anemia (2%)**
 - 1 patient 9 years

- **Suicide by hanging (2%)**
 - 1 patient 15 years

- **Drowning (2%)**
 - 1 patient 2 years

- **SIDS (2%)**
 - 1 patient 2 months

- **SUDEP (2%)**
 - 1 patient 2 years

Eleven patients (22%) had been previously hospitalized for a short period of time in other medical institutions.

Chronic disease was present in 22 patients (45%) and it was associated with the cause of death in 21 patients. Only two children had an oncological disease (pilocytic astrocytoma in neurofibromatosis and one case of pineoblastoma). Ten children (20%) had a family history that could be associated with the cause of death.

In 25 patients (51%) death occurred within the first six hours after the arrival at the Institute (Figure 3). In seven patients (14%) death occurred in the Emergency Department, 34 patients (69%) died in the Intensive Care Unit, while eight patients (17%) died in other departments of the Institute. Distribution of patients by the cause of death is presented in Table 3.

Autopsy was conducted in 29 patients (59%). For 17 patients (35%) the autopsy report was available and the cause of death was determined according to it, while in others the cause of death was determined based on the medical history of the patient (anamnesis, clinical course, and diagnostic procedures).

DISCUSSION

The definition of sudden death is quite variable, with different authors setting limits of zero, one, six, and 24 hours from the time of onset of symptoms and signs to the time of death. There is a reason for such a flexible approach, given that too rigid adherence to definitions is impractical and may lead to the exclusion of important disease entities. However, patients generally have either been completely well or have been suffering from only an apparently minor illness immediately before death. If a chronic illness was present, it was thought to be stable. The common theme uniting all of these cases is that rapid deterioration occurred, culminating in death [3]. Unexpected death refers to the death of a child that was not anticipated as a significant possibility 24 hours before the death or where there was an unexpected collapse leading to or precipitating events that led to the death. This would also include unexpected death of a child with disabilities and/or chronic medical conditions [4].

In our study, patients who died within the first 48 hours after the arrival at the Institute were included. In some cases death was declared at the Emergency Department, while the other patients died within 48 hours of hospitalization. In 50% of patients death occurred within six hours from the arrival at the Institute, while in 90% of patients death occurred within 24 hours. The criterion of the first 48 hours was taken arbitrarily, in order to include the time when the death that occurred could be called sudden, whether it is due to acute disease, condition or accident, worsening of a chronic disease or of unknown cause. Death which occurred in this period of time was certainly sudden and rapid, both for doctors and for parents, having in mind that most of these children came to the tertiary health institution from the outpatient environment with a previously stable health condition, indicating no possible occurrence of death. A certain number of patients were
transferred from other medical institutions where they had been shortly hospitalized.

Seasonality of mortality and, in general, of disease is a well-known phenomenon in many countries worldwide. In addition to atmospheric effects, the seasonal pattern of mortality is shaped by non-atmospheric determinants such as environmental conditions or a socioeconomic status [18]. Temperature differences are associated with mortality, but it is believed that the ability of people to protect themselves adequately from this is what predetermines the effect of temperature on the mortality of the population [19]. In developed countries, there is higher mortality in the winter months, due to the predominance of respiratory diseases, while in tropical countries mortality is higher during the summer months, which is associated with high prevalence of intestinal infections [18]. It is observed that the effect of the time of year on mortality is especially strong in children, particularly in the first years of life, when they are most vulnerable to environmental factors. This phenomenon is the most prominent in rural areas [18, 20]. Although data on the seasonal distribution of sudden death in children are missing in the literature, we can conclude, based on our research, that they match the overall epidemiology of mortality in children in developed countries. In our study, the majority of children (36%) died in the first trimester of the year.

There are studies that indicate that the incidence of SIDS is more frequent on weekends compared to working days. Suggestions given for this finding are restricted access to medical care over the weekend, parents who might be more relaxed during the weekend, may pay less attention to children and may be less willing to seek medical help over the weekend for apparently minor illnesses. Some studies suggest sleep deprivation in children over the weekend as a possible factor that contributes to increased mortality, especially among uneducated mothers [21, 22]. In our study, more patients were admitted to hospital over the weekend compared to working days, while the majority of them was received during the night, over a period of 6 PM to 6 AM (57%).

In our study, the predominance of male children is recorded (61%). It is known that mortality is higher in boys than girls in most parts of the world [23, 24]. This also applies to the sudden death [3]. This has been explained by sex differences in genetic and biological makeup, with boys being biologically weaker and more susceptible to diseases and premature death. These differences are particularly expressed in neonatal period and early infancy and are attributable to different sex chromosomes, as well as weaker immune systems due to the impact of male hormones [23, 24]. Recent studies have found that numerous preconception or prenatal environmental factors affect the probability of a baby being conceived male or female and that these factors can explain the differences in mortality between the sexes [23]. Serbia is among the countries where the sex difference in the mortality of infants is high, with a predominance of males [24].

Children are much more likely to die during the first year of life than at a later age. The risk of death gradually decreases with age, then again increases as they reach high school age [25]. This also applies to sudden death, taking into account that SIDS is 37 times more often than SUDC [5]. Our study included patients from neonatal age through adolescence. Newborns who were hospitalized at the Institute after birth were excluded from the study, because of the specificity of early neonatal period and pathology of these patients. Most patients in our study were infants (43%), which is in accordance with the literature.

Sudden unexpected death in the young is always a tragic and devastating event leaving the relatives not only with grief but also with the awareness that sudden death may strike the family again. Thus, if a young person dies suddenly and unexpectedly, an autopsy (including blood or tissue samples for the purpose of genetic testing) is required for the clinician to be able to manage the family in regard to inherited diseases. The study conducted in Denmark showed that despite operating under the same set of laws there were significant regional differences in forensic investigations of young persons suffering a sudden unexpected death [26]. Cases of incomplete and inadequate autopsies in children are also described in other publication [3]. Of the 49 patients included in our study 29 (59%) underwent autopsy and the autopsy report was available for 17 patients (35%). In patients in whom autopsy was not carried out the cause of death was established by doctor on the basis of anamnesis, clinical course of disease and diagnostic procedures.

When we talk about the analysis of the causes of sudden death in children we need to have in mind that our study included patients who died in the pediatric Emergency department and at the Clinic of Pediatrics of our Institute. This study did not include patients who died in surgical Emergency department and at the Clinic of Pediatric Surgery of our Institute. This indicates that trauma, as a possible cause of sudden death in children, was excluded from our study.

SIDS remains the most common cause of sudden and unexpected death in infancy despite dramatic falls in rates over the past decade. Over one year of age, the major causes of sudden natural death are malignancies, congenital anomalies, and infections [3].

In our study, which included 21 infants, in only one case can we talk about SIDS. It was a male infant aged two months, who was sleeping in bed with his mother. The autopsy could not determine the cause of death. Bed-sharing is a well-known risk factor for SIDS. In this case we can also consider accidental suffocation as a kind of SUID, which is very difficult to distinguish from SIDS in some cases [9]. If we talk about the diagnosis of SIDS in this case, according to the San Diego definition it would be the category IB, when SIDS is not fully documented due to lack of investigation of the scene where incidents leading to death occurred and caring out incomplete autopsy (which includes toxicological, microbiological, radiological analysis, chemical analysis of the vitreous body, and metabolic screening) [13].

In high-income countries, mortality from infectious diseases in children and young people is uncommon. Occasionally, the clinical course of an infectious disease is
atypical and very aggressive and death occurs suddenly. Sudden unexpected death from infectious disease (SU-DID) accounts for 10–30% of all sudden deaths in children. SU-DID incidence is especially high in infants as their immune system is still developing. The most common infections that lead to sudden death among children and young people are myocarditis, respiratory infections, and invasive meningococcal infections [6]. In accordance with the literature in our study, the largest number of deaths was due to infection (47%). Systemic bacterial infection (83%) was the most frequent cause. There were also three cases of pneumonia and one case of myocarditis.

Cardiovascular diseases are together with infections a major cause of sudden deaths in children [3]. Although all deaths result in asystole, not all sudden deaths are caused by arrhythmias [2]. Sudden cardiac death (SCD) is defined as death that is abrupt, unexpected and due to a cardiovascular cause. It is generally recognized as death that occurs within one hour from the onset of cardiovascular symptoms. In young people it typically occurs within a few minutes of symptom onset. Etiology of SCD can be divided into two categories: arrhythmic and non-arrhythmic, with hypertrophic cardiomyopathy being the commonest. Approximately 20–25% of SCD occur during sports activities [7]. In our study, there were 10 sudden cardiac deaths (20%).

Patients with epilepsy, including children, have an increased mortality rate compared with the general population. Most cases of death among these children can be attributed to the underlying neurological disease, but some are epilepsy related, including accidents, drowning, status epilepticus, and SUDEP [27]. The definition of SUDEP is written in Table 1. The exact pathophysiology of SUDEP is currently unknown [8]. SUDEP is less common among children than among adults. Children with severe epilepsy and comorbid conditions are at a higher risk [28]. In our study there was one case of SUDEP. It was a boy aged two years with chronic disease (epileptic encephalopathy, severe mental retardation, amaurosis and atrophy of the optic nerve), who stopped breathing at home, 20 minutes before arrival at the Institute.

Status epilepticus is a rare but serious condition that is fatal in about 1% of children. The incidence is the highest in children under one year of age [29]. The most common causes of status epilepticus are atypical febrile seizures, metabolic abnormalities, central nervous system infections, brain tumors, cerebral dysgenesis, changes in dose of antiepileptic drugs, and drug overdose [30]. In our study, there were four patients who died due to epileptic status of different etiology. Although the majority of deaths in patients who have malignancies are expected, in some cases such death can be sudden, if it occurs earlier than expected or under unexplained circumstances [4]. In our study there was a boy with pineoblastoma, aged three years, who died due to recurrent seizures caused by the progression of the disease despite the oncological treatment.

Choking is a leading cause of morbidity and mortality among children, especially in those who are three years of age or younger. The main reasons for this are the charac-

teristics of the child’s airway, the underdeveloped ability to chew and swallow food, still insufficiently developed cough reflex and the tendency of small children to explore their environment by putting various objects in their mouth. Children with swallowing disorder caused by neuromuscular disease, developmental delay, and other conditions are at an increased risk of a foreign body aspiration [31]. Our study recorded four deaths after aspiration of a foreign body – food. The patients were two infants – a boy aged 14 years with cerebral palsy and an adolescent girl aged 16 years.

Rickets is a major health problem in many countries around the world. It is mainly caused by a lack of vitamin D and can lead to hypocalcemic seizures, cardiac arrest and sudden death of a child [32]. Our study included a seven-month old infant who died due to hypocalcemic tetany caused by rickets.

Evans syndrome is the association of immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA) mediated by autoantibodies and the diagnosis is made after excluding other diseases. Bycitopenia can occur at the same time or at different periods of time. This syndrome has a mortality rate of 10–36%, and the main causes of death are hemorrhage and infection [33]. In our study we considered this diagnosis in a boy aged nine years with recurrent thrombocytopenia and acute hemolytic anemia.

Even in developed countries, some 15–70% of all newly diagnosed children with diabetes present with diabetic ketoacidosis (DKA). Cerebral edema occurs in 0.5–1% of all episodes of DKA in children and is the most common cause of mortality in children with DKA [34]. In our study, death due to DKA occurred in an adolescent girl aged 15 years.

Carbon monoxide (CO) is a toxic, colorless, odorless gas which is a product of incomplete combustion of gas, coal, wood, and petrol. The largest number of poisoning happens at home. Children and the elderly are at higher risk for poisoning by this gas compared to healthy adults [35, 36]. In our study there was a single case of CO poisoning, which resulted in a fatal outcome.

In most countries in the world, drowning is one of the three most common causes of death from unintentional injury, with the highest rate in children under five years of age [37]. In our study there was a single case of a boy aged two years who drowned in a cesspool.

In 2012, an estimated 1.3 million adolescents died around the world. The leading causes of death among adolescents in 2012 were road injury, HIV, suicide, lower respiratory tract infections, and interpersonal violence [38]. In our study there was a single case of suicide by hanging in an adolescent boy aged 15, who was found by his mother hanging on the water supply pipe in the bathroom.

Despite the fact that medical crisis started before the arrival of patients at the Institute, in only 18% of them CPR was performed before hospital admission, while 35% of patients received no therapy. Many pediatric emergencies are managed primarily by providers who are not pediatric specialists and who have limited pediatric emergency medical experience. Therefore, it is necessary to educate them in
terms of timely and adequate care of life-threatened children, in accordance with the latest recommendations [39].

CONCLUSION

Our study shows that infants are at the highest risk of sudden death, while the most frequent causes of death are infections and cardiovascular diseases. Sudden death in children can be prevented in most cases. Gaining insight into the structure of sudden death in children gives us an opportunity to promote preventive measures and highlights the need for health education of parents and timely diagnosis and therapy in both pre-hospital and intra-hospital care of life-threatened patients.

REFERENCES

Изненадна смрт код деце

Александра Дороњски1,2, Милена Бјелица1, Слободан Спасојевић1,2, Тања Радовановић1,2, Јелена Ћулафић1, Весна Стојановић1,2
1Институт за здравствену заштиту деце и омладине Војводине, Нови Сад, Србија;
2Универзитет у Новом Саду, Медицински факултет, Нови Сад, Србија

САЖЕТАК
Увод/Циљ. Изненадна смрт код деце може настати као последица многих обољења и акцијата, док врло често узрок остаје непознат. У литератури се срећу различити термини који означавају узроке изненадне смрти код деце. Циљ овог рада је био да се утврде најчешћи узроци изненадне смрти деце примљене на Клинику за педијатрију.

Резултати. Код 23 деце (47%) узрок смрти је била инфекција, код 10 (20%) срчана инсуфицијација, код 4 (8%) радило се о епилептичком статусу, код 4 (8%) смрт је наступила због аспирације страног тела, а по једно дете (2%) егзитирало је услед дијабетесне кетоацидозе, рахитиса, интоксикације угљен-моноксидом, хемолитичке анемије, суицида вешањем, акцијата утапања, синдрома изненадне смрти одојчета и изненадне неочекиване смрти код епилепсисе. Највећи број болесника у нашој студији била су одојчад (43%).

Закључак. Наша студија је показала да су одојчад у највећем ризику од изненадног смртног исхода, а да су најчешћи узроци изненадне смрти код деце инфекције и кардиоваскулярне болести.

Кључне речи: изненадна смрт; дете; одојче

DOI: https://doi.org/10.2298/SARH170113114D