POSTHARVEST SHELF LIFE OF TOMATO (Lycopersicon esculentum Mill.) MUTANATS (nor and rin) AND THEIR HYBRIDS

Dejan CVIKIĆ, Jasmina ZDRAVKOVIĆ, Nenad PAVLOVIĆ, Sladan ADŽIĆ and Mladen DORĐEVIĆ

Institute for Vegetable Crops, Smederevska Palanka, Serbia

Two tomato lines with normal maturation (NR-1 and NR-2) have been crossed with two mutant lines (NR-10 nor and NR-12 rin) with delayed maturation (shelf life). Determination of mutant genes has been done by χ^2 test on 100 fruits from F2 generation. Fruits have been picked 65 days from anthesis and kept for 60 days, when six evaluations have been done. Data have been collected every 10 days on parental lines and progeny F1 and F2 generation. Variance testing has been done on the basis of one- and two-factorial analysis and groups compared by contrasts. Fruits have been preserved in controlled conditions (in dark at 5°C). Tomato genotypes with nor or rin gene had desirable traits (delayed ripening, long shelf life and firm fruits) for modern selection, so they should be included in programmes aiming to create commercial F1 hybrids.

Key words: hybrid, mutant, nor, rin, tomato

Corresponding author: Dejan Cvikić, Institute for Vegetable Crops, Karadordeva 71, 11420 Smederevska Palanka, Serbia, Phone: 381 26 323 170, fax 381 26 323 785, e-mail: devikic@institut-palanka.co.rs
INTRODUCTION

Modern ways of tomato selection emphasize ticker pericarp as an imperative. This trait together with firmness of ectocarp and firmness of placenta enables longer shelf life and postharvest preservation. Mutant nor (non-ripening) and rin (ripening inhibitor) tomato lines have ticker pericarp besides the delayed ripening, which therefore means better firmness of fruits (Ho, 2003).

Fruits with greater firmness can be selected by accumulating firmness traits (Zdravkovic et al., 2010). Genotypes with “fruit firmness” gene cause long shelf life of mature tomato (Zdravkovic et al., 2003).

Heterozygous combination of rin and the mutants nor\(^a\), increases fruit firmness and the effect of the rin\(^+\)/rin, nor\(^+\)/nor\(^a\) genotypes on fruit firmness was roughly the sum of the individual effects of each locus. The rin allele was more efficient than nor\(^a\) to keep fruit firmness (Faria et al., 2006).

During shelf life, especially for fruits harvested in light green phase, synthesis of \(\beta\)-carotene is faster than lycopene synthesis (Brashlyanova and Pevicharova, 2009). Fruits harvested in light red phase had increased beta carotene (Brashlyanova and Ganeva, 2009). Packaging also affects traits and quality of fruits since fruits turn red from pink due to the change of carotene (Nasrin et al., 2008).

During postharvest period tomato fruits can change quality. Fruits are stored, packed and transported to the end consumers. Loss and changes of quality are important for consumers who use tomato fresh. Complex selection programmes enable commercial F\(_1\) hybrids and quality during postharvest shelf life.

MATERIALS AND METHODS

Four parental lines (NR-1, NR-2, NR-10 (nor) and NR-12 (rin)) were analysed genetically. Lines NR-1 and NR-2 with normal period of ripening and lines NR-10 (nor) and NR-12 (rin) with delayed ripening.

Hybridization of parental lines obtained F\(_1\) generation, and self-pollination of F\(_1\) hybrids F\(_2\) generation. Parents, F\(_1\) and F\(_2\) generation have been compared in random block system with three replications. Fruits were picked 65 days after pollination and kept in controlled conditions for 60 days. Data regarding the number of decayed fruits were taken every 10 days.

Ten fruits per parent and F\(_1\) generation and 20 per F\(_2\) generation were taken. For testing the number of decayed fruits the proportion according to base line of units – fruits was calculated. The transformed data have been processed by one-way and two-way ANOVA. The transformation included:

\[
X_{ijk} = \arcsin \sqrt{X_{ijk}}
\]

\[
X_{ijk} = 2 \arcsin \sqrt{X_{ijk} \pm 1/2n}
\]

Sign + is used in case of \(X_{ijk} \approx 0\), sign – in case of \(X_{ijk} \approx 1\) and \(n\) is the number on the basis of which is calculated proportion (10 or 20). The transformed data have been processed by two-way ANOVA.
For the data of trait – fruits storage analysis included 10 genotypes measured three times (usual ripening dynamics) and 6 genotypes measured six times (prolonged ripening). One-way ANOVA aimed to estimate the significance of factors and variance homogeneity was calculated:

\[\chi^2 = 2.306 f \left(K \log Sp^2 - \sum_{i=1}^{k} \log Si^2 \right) / \left(1 + \left(K + 1 \right) / 3Kf \right) \]

\[Sp = \frac{\sum_{i=1}^{k} Si^2}{K}, \]

with \(f \) representing the number of degrees of freedom for each variance and \(K \) representing the number of variances. If the calculated value exceeds the table value, the data are transformed according to \(\log(x+1) \) formula, otherwise raw data are processed.

The data were processed by complex contrast comparison. Complex contrast with multiple degrees of freedom is a group of simple contrasts. It is usually defined as comparison among groups (\(s \)-number of groups):

\[M = g_1 \text{ with } g_2 \text{ with } g_3 \text{ with } \ldots \text{ } g_s \]

with \(g_i \) representing \(i \)-th group composed of \(m_i \) treatment.

The hypothesis of equality of group means was tested:

\[SS(M) = \frac{1}{rgs} \sum_{i=1}^{r} \sum_{g_i} \frac{Gi^2}{m_i} - \left(\sum_{i=1}^{r} \sum_{g_i} \frac{Gi^2}{m_i} \right)^2 \]

with \(r \) representing the number of replications, \(g \) terms of measurements, \(M = g_i \) with \(g_2 \) has \((s-1)=2-1=1 \) degrees of freedom.

\[F = \frac{SS(M)}{MSa} \]

\(F \)-table value for \(v_1=1 \) and \(v_2=60 \) degrees of freedom is 4.00 and 7.08 for 0.05 and 0.01 levels of probability, respectively.

Two groups \((s=2) \) of treatments, namely genotypes without prolonged shelf life (4) and mutant genotypes (6) have been considered:

- group \(g_1 \): Korona, R-83, Korona x R-83 F_1 and Korona x R-83 F_2 (\(m_1=4 \));
- group \(g_2 \): L-10, Korona x L-10 F_1, Korona x L-10 F_2, L-12, Korona x L-12 F_1 and Korona x L-12 F_2 (\(m_2=6 \)).

If the calculated \(F \) value exceeds the table value, the means of the observed groups are significantly different.
RESULTS AND DISCUSSION

Determination of nor and rin genotypes were determined according to colour of fruits of researched genotypes (per 100 fruits from F\textsubscript{2} generation), where:
- nor (light green),
- rin (light yellow),
- Normal (red).

All F\textsubscript{1} hybrid combinations of nor and normal ripening genotypes, as well as rin and normal ripening, gave light red and red fruits, which proves earlier studies regarding recessive character of this trait.

In F\textsubscript{2} generation there was an expected segregation (3:1) nor and rin genotypes comparing to genotypes with normal ripening, which proves the recessive character of single gene (nor and rin), Table 1.

Table 1. χ^2 test of splitting of F\textsubscript{2} generation to normal (nor and rin) genotypes

<table>
<thead>
<tr>
<th>Combination</th>
<th>normal</th>
<th>(nor – rin)</th>
<th>total</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exp.</td>
<td>teor.</td>
<td>exp.</td>
<td>teor.</td>
</tr>
<tr>
<td>NR-1 x NR-10</td>
<td>70</td>
<td>75</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>NR-1 x NR-12</td>
<td>77</td>
<td>75</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>NR-2 x NR-10</td>
<td>71</td>
<td>75</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>NR-2 x NR-12</td>
<td>81</td>
<td>75</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>total</td>
<td>299</td>
<td>300</td>
<td>118</td>
<td>100</td>
</tr>
</tbody>
</table>

$r=1$ 0.05=3.84 $r=4$ 0.05=9.49
$r=1$ 0.01=6.63 $r=4$ 0.01=13.28

Results of average number of decayed fruits during shelf life for researched genotypes (uniform and delayed ripening) are presented in Table 2.

Table 2. Average number of decayed fruits tested during shelf life

<table>
<thead>
<tr>
<th>date</th>
<th>04.08</th>
<th>14.08</th>
<th>24.08</th>
<th>03.09</th>
<th>13.09</th>
<th>23.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>genotypes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR-1</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NR-2</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NR-1 x NR-2 F\textsubscript{1}</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NR-1 x NR-2 F\textsubscript{2}</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NR-10</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>NR-1 x NR-10 F\textsubscript{1}</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>NR-1 x NR-10 F\textsubscript{2}</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>NR-12</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NR-1 x NR-12 F\textsubscript{1}</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>NR-1 x NR-12 F\textsubscript{2}</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Fruits of genotypes with uniform ripening (parents, F₁ and F₂ hybrids) decayed after the third measurement term, 20 days after harvest. Fruits of parents NR-2 lasted the longest. For nor and rin genotypes the first fruits started to senescence in the forth term of measurement, 30 days after harvest. Obviously, genotypes with nor gene last longer than genotypes with rin gene (they senescence slower, to be more precise) while both mutants can be preserved longer comparing to genotypes with uniform ripening.

Fruits with nor gene construction preserved longer (about three months after harvest) comparing to rin (about two months after harvest). These results have been incorporated by TANKSLY et al. (1998).

Nor and rin genotypes with delayed ripening have late or absent synthesis of lycopine, in favour of synthesis of β-carotene (KUZEMENSKI, 2007).

Analysis of variance for all 10 genotypes (with uniform and delayed ripening) was significantly different in six terms of measurements. Differences among the researched genotypes (311.256**), among the terms of measurements (167.384**) and for interaction genotype x measurement term (33.836**) were significant (Table 3).

Table 3. Two-factor analysis for number of decayed fruits for 10 genotypes in three measurement terms

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F-calculated</th>
<th>F-table</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Among measurement terms</td>
<td>1</td>
<td>8.236</td>
<td>8.236</td>
<td>311.256**</td>
<td>4.0</td>
</tr>
<tr>
<td>Among genotypes</td>
<td>9</td>
<td>39.861</td>
<td>4.429</td>
<td>167.384**</td>
<td>2.12</td>
</tr>
<tr>
<td>Interaction geno x meas. term</td>
<td>9</td>
<td>8.058</td>
<td>0.895</td>
<td>33.836**</td>
<td>2.12</td>
</tr>
<tr>
<td>Error</td>
<td>40</td>
<td>1.058</td>
<td>0.026</td>
<td></td>
<td>2.80</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>57.212</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group comparisons, mean value for the observed treatments of genotypes with uniform ripening (four) with nor and rin genotypes (six) clearly shows that average values of the observed groups of treatments were statistically different (F=821.45**). Obtained results (for genotypes with uniform ripening G₁=51.32 and for nor and rin genotypes G₂=22.81) proved that nor and rin genotypes senescence less since not a single fruit decayed during three terms of measurement comparing to genotypes with normal ripening. Comparisons refer to first three measurement treatments.

G₁=51.32
G₂=22.81
SS(M)=21.73

F=821.45** v₁=1 v₂=40 F₀₀.₅=4.08 F₀₀.₁=7.31
Results of two-factorial analysis of variance for the number of decayed fruits in postharvest period in nor and rin genotypes showed significant values (Table 4). Values among researched nor and rin genotypes (26.862**), measurement terms (12.357**) and interaction genotype x terms of measurements (2.068*) were significant at level of significance 0.05 (Table 4).

Table 4. Two-factor analysis of variance for number of decayed fruits in six generations in six measurements

<table>
<thead>
<tr>
<th>Among measurement terms</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F-calculated 0.05</th>
<th>F-calculated 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among measurement terms</td>
<td>4</td>
<td>9.504</td>
<td>2.376</td>
<td>26.862**</td>
<td>2.52</td>
</tr>
<tr>
<td>Among genotypes</td>
<td>5</td>
<td>5.465</td>
<td>1.093</td>
<td>12.357**</td>
<td>2.37</td>
</tr>
<tr>
<td>Interaction genot x meas. term</td>
<td>20</td>
<td>3.658</td>
<td>0.183</td>
<td>2.068*</td>
<td>1.81</td>
</tr>
<tr>
<td>Error</td>
<td>60</td>
<td>5.307</td>
<td>0.088</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSION

χ² test proved that hypothesis of mono-gene and recessive character of nor and rin gene. In F₂ generation there was expected segregation 3:1 of genotypes with normal ripening comparing to nor and rin genotypes.

Shelf life of fruits and dynamics of change of parameters of quality of tomato fruits (B-carotene, total acids and dry matter) after harvest was different depending on variety and presence of inhibitor gene of ripening (nor and rin).

During shelf life of harvested fruits, significant longer shelf life has been noted for nor and rin genotypes comparing to genotypes with uniform ripening. Nor fruits had longer shelf life than rin, and some fruits of nor-genotype were shelved three months after harvest and rin-genotype about two months.

Obviously, tomato genotypes with nor or rin gene have desirable traits (delayed ripening, long shelf life, good firmness) which are prerogative of modern selection, so they should be included in selection programs aiming to create commercial F₁ hybrids. Creation of such hybrids would enable longer shelf life, successful transport to further destination with minimal losses of quantity and quality.

REFERENCES

DUŽINA ČUVANJA PLODOVA PARADAJZA (Lycopersicon esculentum Mill.) MUTANATA (nor i rin) I NJIHOVIH HIBRIDA U POSLE ŽETVENOM PERIODU

Dejan CVIKIĆ, Jasmina ZDRAVKOVIĆ, Milan ZDRAVKOVIĆ, Nenad PAVLOVIĆ, Sladan ADŽIĆ i Mladen ĐORĐEVIĆ

Institut za povrtarstvo doo, Smederevska Palanka, Srbija

Izvršena su ukrštanja dve linije paradajza sa normalnim periodom sazревања plodova (NR-1 i NR-2) i dve mutantne linije (NR-10 nor i NR-12 rin) kod kojih je period sazревања odložен (shelf life). Izvršena je determinacija mutantних gena pomoću χ^2 testa na uzorku od 100 плода F$_2$ generacije. Plodovi су убрани 65 дана од антезиса и чуvани у периоду од 60 дана, када je izvršeno šest evaluacija. Podaci су узимани у интервалima на сваких 10 дана на родителским линијама и потомству F$_1$ и F$_2$ generacije. Testiranje varijanse izvršeno je na osnovu jednofaktorijalne i dvofaktorijalne analize на осноvу коjih су izvršena grupна poređenja korišćenjem složenih kontrasta. Plodovi су чuvани у контролисanim uslovima (u mraku, на температури од 5°C).

Možemo reći da genotipovi paradajza sa nor ili rin genom poseduju поželjne особine (одложено sazревање, могућност dugог чуvanja, kao и велику врстину плода) koje заhtevaju savremeni pravci selekcije, te ih s toga treba uklуčiti u selekcione programe коje za cilj imaju стварање комерцијалних F$_1$ hibridа.

Primljeno 03. XI. 2011.
Odobreno 03. XI. 2012.