A STUDY ON ASSOCIATION OF POLYMORPHISMS IN Calpain10 AND TCF7L2 GENES WITH TYPE 2 DIABETES MELLITUS

Maryam REZAZADEH1,2, Nasim SOHRABIFAR1, Hossein JAFARI1, Mojtaba MOHADDES ARDABILI1, and Jalal GHARESOURAN1

1Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
2Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

Polymorphisms of the Calpain10 and TCF7L2 genes were identified as possible type 2 diabetes susceptibility genetic markers. We conducted a case-control study to evaluate the relation between SNP43 of calpain-10 and rs12255372 and rs7903146 in the TCF7L2 with type2 diabetes in western–north of Iran. The role of these variants in Iranian population was less clear. A total of 202 patients and healthy controls were enrolled to analyse the frequency distribution of Calpain10 and TCF7L2 polymorphisms (SNP43, rs12255372 and rs7903146) using polymerase chain reaction-restriction fragment length polymorphism (PCR – RFLP) method. The frequency of allele A in controls was significantly greater than that of diabetic patients (P=0.031), whereas the difference between distribution of SNP43 genotypes (A/A, A/G, G/G) were non-significant in case and control groups. Non significant association was also observed between G/G, A/G or A/A genotypes and type 2 Diabetes. The frequency of the “T” allele of rs12255372 (G/T) was significantly associated with type 2 diabetes (OR= 0.55, 95% confidence interval [CI], 1.11-1.51; P<0.001). No allelic association was found for rs7903146(C/T) polymorphism. The distribution of alleles in case and control groups are significantly different indicating the G allele is associated with type 2 diabetes. The rs12255372 (G/T) may be associated with type 2 diabetes.

Key words: Calpain10, Eastern Azerbaijan, Iran, SNP43, Type 2 Diabetes

INTRODUCTION

Diabetes mellitus is a heterogeneous metabolic disorder that manifests itself by increased blood sugar. The disease is caused by deficiency, dysfunction or absence of insulin in affected
individuals and may cause blindness, renal failure, heart failure, stroke, amputation of leg and decreased life expectancy in lack of efficient control (HORIKAWA et al. 2000). Diabetes mellitus is one of the most common disorders worldwide affecting more than 135 million of human population (LARIJANII et al. 2002; KING et al. 1998) and this will be increased to 300 million by 2025 according to the report of world Health Organization (WHO 1997). It is estimated that more than 7.7% of Iranian urban population are affected by diabetes (ESTEGHAMATI et al. 2008). The increase rate of affected individuals with diabetes is expected to be about 122% within years 1995-2025 (DELAVERY et al. 2004).

The cost of diabetes care is a major economical challenge in most countries. The budget needed for diabetes care in Iran has been reported to be about $10 billion per year (HOSSEINNEZHAD et al. 2002; AMINI et al. 2002). All of the above mentioned, indicate that prevention of T2DM is one of the most important health burden in most countries.

Previous linkage studies and candidate gene approaches have identified several genes associated with T2DM, such as CAPN10, ENPP1, HNF4A, ACDC, PPARG, KCNJ11 and SLC30A8 (WEEDON et al. 2003; HANIS et al. 1996; MOHADDES et al. 2012). Whole genome association studies (WGAS) has also showed genetic variants in more than 15 genes/loci to be associated with T2D (ZEGGINI et al. 2007; SAXENA et al. 2007; SCOTT et al. 2007).

Calpain10, a gene that encodes a nonlysosomal cysteine protease, has been recently proposed as a type 2 diabetes susceptibility gene in the non – insulin – dependent diabetes mellitus 1 region. An A to G variant in intron 3 (SNP43) of the Calpain10 gene was identified as a possible type 2 diabetes susceptibility genetic marker (WEEDON et al. 2003).

Similar results had been reported for a number of ethnicities when the present study was started (STUMVOLL et al. 2001; BAIER et al. 2000; SREENAN et al. 2001; COX et al. 2004; LYNN et al. 2002), however no published data was present about the population investigated in our study.

Newly reported Transcription factor 7–like 2 (TCF7L2) gene is another susceptible gene that was strongly associated with type 2 diabetes mellitus. TCF7L2 gene coded protein is a transcription factor that has an important role in the Wnt signaling pathway and may regulate levels of glucagon-like peptide 1, which influences insulin secretion from the β-cells of the pancreas, so TCF7L2 may has a role in type 2 diabetes pathogenesis (GRANT et al. 2006).

Polymorphisms rs12255372 and rs7903146 in TCF7L2 gene were first reported by Florez et al to be associated with an evaluated risk of type 2 diabetes mellitus (FLOREZ et al. 2006) Although more and more T2D associated gene/loci are being identified, the replication study has played a critical role in confirming the reported T2D associated genes/loci, especially within different ethnic populations. Our team has initiated research in detection of risk factors in multifactorial disease from five years ago (GHARESOURAN et al. 2013; GHARESOURAN et al. 2014) and the present study was carried out to reveal the possible association of SNP43 within CAPN10 gene and the rs12255372 and rs7903146 polymorphisms of the TCF7L2 gene with T2D in the population of eastern Azerbaijan of Iran.

MATERIALS AND METHODS

Study subjects

Our case-control study was included 202 unrelated individuals including: 101 T2DM patients and 101 non-diabetic controls, collected by simple random sampling method according to the ADA definitions and criteria. The sampling was performed between 2009 until 2011. All the participants were residents of eastern Azerbaijan of Iran. Both study groups were provided with an
M. REZAZADEH et al: Calpain10 and TCF7L2 polymorphisms in T2DM

Informed consent form and the agreement of the ethics committee of Tabriz University of medical sciences was achieved for the study (agreement No: 5/4/7167). The sample size was calculated according to OD =1.4, the encounter incidence of about 70%, α = 0.05 and power of 80%. The patients received a standard questionnaire that contained questions regarding the sex, race, family history and other issues. Only patients with a clinical diagnosis of T2DM, with no insulin therapy and without attention to control level of blood sugar, consuming drug and side effect were recruited. The study individuals underwent a basic physical examination that included the measurement of height and weight. The control group contained only individuals with normal fasting glucose, normal GTT and negative family history of T2DM among first degree relatives. Both the case and control groups consisted of individuals aged between 40-70 years old.

DNA extraction and polymorphisms Genotyping

DNA samples were isolated from peripheral blood lymphocytes using standard salting out protocol and used for the PCR reaction and RFLP. PCR primers were designed using online Primer3 software. The PCR reaction was prepared using 0.1 µg of template DNA, 0.01 µg each of forward (5’CACGCTTGCTGTAAGTAATGC3’) and reverse (5’CTCTGATTCATGCTCTGAG3’) primers, 0.5 unit of Taq DNA polymerase, 0.2 mM each of dNTPs in 10 mM TrisCl and 50 mM MgCl2. The volume was adjusted to 25 µl by dH2O. The cycling conditions were as follows: after an initial denaturation at 94°C for 4 min, 35 cycles of polymerization was carried out by denaturation at 94°C for 1 min, hybridization at 59°C for 30s, and extension at 72°C for 30s. A final extension was performed at 72°C for 10 min.

The resulting 144 bp product was digested with restriction enzyme Nsil at 37°C for 12-16 hours followed by electrophoresis through a 2% agarose gel containing 250 nmol/L ethidium bromides. For SNP43, the presence of allele A, was associated with existence of a restriction site for Nsil enzyme and digestion of the 144 bp PCR product to 121 and 23 bp fragments; for the allele G, no Nsil restriction site was present.

Genotyping of rs12255372 and rs7903146 polymorphisms were performed by using PCR/RFLP with the following primers: forward, 5’-CCCAGGAATATCCAGGCAAGGAT-3’, reverse 5’-CAAATGGAGGCTGAATCTGGCA-3’, forward, 5’-TTAGAGCTAAGCAACTTTTAGTA-3’, reverse 5’-ACTAAGTTACTTGCCTTCCTCG-3’, respectively. The PCR reaction was prepared in a final reaction volume of 15 µL of polymerase chain reaction containing 100 ng genomic DNA, 1 Mmol of each primer, polymerase chain reaction buffer with 1 Mmol/L of MgCl2, 0.5 Mmol/L of each deoxynucleotide triphosphate (dNTP), and 0.5 U of Taq polymerase. Thermal Cycler optimized with following conditions: 95°C for 5 minutes, followed by 31 cycles of 95°C for 2 minutes, 60°C for 1 minute, 72°C for 2 minutes, and a final extension of 72°C for 5 minutes. PCR products were digested using BseGI enzyme for the rs12255372 (G/T) polymorphism and RsaI for the rs7903146(C/T) polymorphism. The resulting products were electrophoresed on a 2% agarose gel.

Statistical analysis:

The data analysis was performed using descriptive statistical method (frequency-percent), chi-square test, or Fisher’s exact test. The independent samples t-test was employed to compare the frequency distribution and quantitative variables between the two study groups. Logistic regression models by SPSS package ver. 17 was used to estimate the Odds Ratio (OR) with 95%
accuracy. The P values lower than 5% were considered as significant in this study from statistical point of view.

RESULTS

In this study 101 diabetic cases and 101 healthy controls were evaluated. The case control groups were matching by age, sex and dwelling, however the mean of low density lipoprotein (LDL) and triglyceride (TG) were significantly different between the two groups (P<0.05, Table 1).

Table 1. Characteristics of participants (mean±sd) in case and control groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>Case(N=101)</th>
<th>Control(N=101)</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(year)</td>
<td>55.51±7.35</td>
<td>54.66±8.64</td>
<td>0.26</td>
</tr>
<tr>
<td>Sex (Male %)</td>
<td>50.5</td>
<td>49.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Education (lower than high school pass certificate %)</td>
<td>74.5</td>
<td>73.6</td>
<td>0.89</td>
</tr>
<tr>
<td>Income (Less than 2500000 Rials %)</td>
<td>26.5</td>
<td>33.3</td>
<td>0.081</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>27.7±4.4</td>
<td>31.55±6.9</td>
<td>0.24</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>225.12±47.04</td>
<td>192.57±44.88</td>
<td>0.16</td>
</tr>
<tr>
<td>LDL (mmol/l)</td>
<td>168.54±19.61</td>
<td>136.25±31.73</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>44.63±7.33</td>
<td>53.40±13.86</td>
<td>0.15</td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>228.04±61.78</td>
<td>149.94±51.26</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Approximately 1.5 percent of participants were homozygous for allele A (A/A), 89.6 percent were Homozygous for allele G (G/G) and 8.9 percent were heterozygous (A/G). In diabetic and control groups the frequency of A/A was zero and 3 percent, G/G was 6.9 and 11 percent and A/G was 93.1 and 86 percent respectively. Because of the significant role of LDL and TG on developing diabetes, these variables were considered as co-variants and their effects were calculated on the allele frequencies.

Table 2 shows distribution of A and G alleles in diabetic and control groups by Hardy-Weinberg equilibrium. The results indicate that the frequency of allele A in controls is significantly greater than that of diabetic patients (P=0.03). Whereas the difference between distribution of SNP43 genotypes (A/A, A/G, G/G) were non-significant in case and control groups (p=0.12, Table 3).

Table 2. Distribution of SNP43 alleles in calpain-10 gene in case and control groups, frequency

<table>
<thead>
<tr>
<th>Groups</th>
<th>Alleles</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>Case (T2DM)</td>
<td>197 (96.6%)</td>
<td>7 (3.4%)</td>
</tr>
<tr>
<td>Control</td>
<td>183 (91.5%)</td>
<td>17 (8.5%)</td>
</tr>
</tbody>
</table>
Table 3. Distribution of SNP43 genotypes in Calpain10 in case and control groups, frequency

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Case</th>
<th>Control</th>
<th>OR (%95CI)</th>
<th>P_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/G</td>
<td>95 (93.1%)</td>
<td>86 (86%)</td>
<td>1.73(0.64-4.67)</td>
<td>0.27</td>
</tr>
<tr>
<td>A/G</td>
<td>7 (6.9%)</td>
<td>11 (11%)</td>
<td>1.58(0.74-3.29)</td>
<td>0.17</td>
</tr>
<tr>
<td>A/A</td>
<td>0 (0%)</td>
<td>3 (3%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tables 4 and 5 show the genotype and allelic distribution of the rs12255372 (G/T) and rs7903146(C/T) polymorphisms in cases and controls. The frequency of the “T” allele of rs12255372 (G/T) was significantly associated with type 2 diabetes (OR= 0.55, 95% confidence interval [CI], 1.11-1.51; P<0.001). No allelic association was found for rs7903146(C/T) polymorphism.

Table 4. Allelic distribution of polymorphisms in TCF7L2 in cases and controls

<table>
<thead>
<tr>
<th>Allele</th>
<th>AD patients n=117</th>
<th>Healthy controls n=117</th>
<th>P value</th>
<th>OR(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7903146(C/T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>65(55.31)</td>
<td>61(52.13)</td>
<td>P=0.58</td>
<td>0.91(0.67-1.24)</td>
</tr>
<tr>
<td>T</td>
<td>52(44.68)</td>
<td>56(47.76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs12255372 (G/T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>78(66.7)</td>
<td>62(52.8)</td>
<td>P<0.001</td>
<td>0.55(0.40-0.76)</td>
</tr>
<tr>
<td>T</td>
<td>39(33.3)</td>
<td>55(47.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Genotypic association analysis of polymorphisms in cases and controls

<table>
<thead>
<tr>
<th>Allele</th>
<th>AD patients n=117</th>
<th>Healthy controls n=117</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs7903146(C/T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>30(25.6)</td>
<td>77(65.8)</td>
<td>P=0.08</td>
</tr>
<tr>
<td>TC</td>
<td>65(55.6)</td>
<td>36(30.8)</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>22(18.8)</td>
<td>4(3.4)</td>
<td></td>
</tr>
<tr>
<td>rs12255372 (G/T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/G</td>
<td>28(23.9)</td>
<td>71(60.7)</td>
<td>P<0.001</td>
</tr>
<tr>
<td>T/G</td>
<td>71(60.7)</td>
<td>40(34.2)</td>
<td></td>
</tr>
<tr>
<td>T/T</td>
<td>18(15.4)</td>
<td>6(5.1)</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Calpain10 was the first susceptible gene to type 2 diabetes which, was recognized by linkage analysis in Hispanic population (HANIS et al. 1996). The linkage of SNP43 within Calpain10 gene had previously been identified by several studies, but these studies were mainly performed in other populations. Horikawa et al. 2000 and Garant et al. 2002 in two unrelated studies showed that in both Mexican-American and African-American populations, existence of G
allele was correlated with increased risk of T2DM. Similar results were reported by other investigators for different populations (BAIER et al. 2000; CASSELL et al. 2002).

We replicated previous findings of association for SNP43 in Azeri population of Iran suggesting that the selected SNP is also associated with the disease in our population. We analyzed SNP43 within Calpain10 gene in a type 2 diabetes case-control cohort comprising 201 Azeri individuals. The distribution of alleles in case and control groups was significantly different ($P=0.03$; Table2). On the other hand, we showed that the G allele is associated with type 2 diabetes (OR=2.61; %95 CI: 1.06-6.45, $P=0.03$).

The result obtained from the present study is similar to that reported by Horikawa et al. 2000, but disagrees with the results reported for population of UK (EVANS et al. 2001), Oji-Cree (HEGIELE et al. 2001) and Caucasians (ELBEIN et al. 2002). This may be explained by different environmental risk profiles between our population, body composition and genetic backgrounds.

Similar to the results reported by MALECKI et al. (2002) no association was observed between the genotypes and T2D. We also found no correlation between genotypes and related characteristics of T2D ($P>0.05$) which is in agreement with report of GARANT et al.(2002) in this instance. A greater frequency of G allele were detected in the Azeri population compared to the 5 other countries by cluster analysis, while the frequency was similar to those of Biak (0.91), Druzel (0.90) and Nasioi (0.90) populations.

Similar several studies in different populations, we observed a significant association between the T allele of the rs12255372 (G/T) and type 2 diabetes mellitus in Azeri population, but unlike these studies there was no allelic association between rs7903146(C/T) and T2DM.

In several studies which have been done in British (GROVES et al. 2006), US (ZHANG et al. 2006), northern Swedish (MAYANS et al. 2007), and Indian (BODHINI et al. 2007) populations association of rs12255372 (G/T) and rs7903146(C/T) polymorphisms with type 2 diabetes mellitus was confirmed. Horikoshi and et al. demonstrated only association of the rs7903146 polymorphism with type 2 diabetes mellitus in Japanese population (HORIKOSHI et al. 2007).

WANG et al. (2013) in a meta-analysis study suggest that the rs7903146 SNP of the TCF7L2 gene is associated with increased susceptibility to T2DM in the Chinese population. Unlike their report we found no association between the rs7903146 and T2DM in our population.

Recently another study performed by JYOTHI et al. (2013) they found significant association between allelic frequency of these two SNPs of TCF7L2 and T2DM susceptibility, but we just found association only with rs12255372 (G/T) SNP.

In contrast with AMOLI et al. (2010) report that confirms the association between the rs7903146 T allele and T2DM in an Iranian population we don’t found any relation between this SNP and T2DM. Another study performed in the province of Isfahan, Iran show that rs7903146 of TCF7L2 gene is associated with susceptibility for T2DM (PALIZBAN et al. 2012).

The allelic distribution of these 3 SNPs in different populations and the related stratification of G and A alleles have been demonstrated in tables 6 and 7 respectively.

ACKNOWLEDGEMENTS

We would like to thank Deputy for Research, Tabriz University of Medical Sciences. The authors are appreciative to all of the subjects who kindly agreed to participate in this study.

Received October 29th, 2014

Accepted February 05th, 2015
REFERENCES

BODHINI, D, V RADHA, M DHAR, N NARAYAN, VM HOHAN (2007): The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism Clin Exp Med. 56:1174–1178.

GRANT SF, G THORLEIFSSON, J REYNISDOTTIR, R BENEDECKSTSSON, A MANOLESCU, J SAINZ, A HELGASON, H STEFANSSON, V EMLISSON, A HELGADOTTIR, U STYRKARSSDOTTIR, KP MAGNUSSON, WALTERS GR, FALSDOTTIR E, JONSODOTTIR T, T GUDMUNSDOTTIR, A GYLFASON, J SAEUMISDOTTIR, RL WILENSKY, DJ RADER, Y BAGGER, C

ISPITIVANJA ASOCIJACIJE POLIMORFIZMA GENA Calpain10 i TCF7L2 SA TIPOM 2 Diabetes mellitus

Maryam RezaZadeh1,2, Nasim Sohrabifar1, Hossein Jafari1, Mojtaba Mohaddes Ardabili1 i Jalal Gharesouran1

1 Odelenje medicinske genetike Medicinskog fakulteta, Univerzitet medicinskih nauka, Tabriz, Iran
2 Genetički istraživački centar, Univerzitet nauka za socialnu pomoć i rehabilitaciju, Tehran, Iran

Izvod

Polimorfizam gena Calpain10 i TCF7L2 su identifikovani kao mogući genetički markeri tipa 2 diabetesa. Izvršena je evaluacija odnosa između SNP43 calpain-10 i rs12255372 i rs7903146 u TCF7L2 slučajevima tipa 2 diabetesa u severozapadnom Iranu. Vršena su ispitivanja distribucije Calpain10 i TCF7L2 polymorfizma (SNP43, rs12255372 i rs7903146) kod ukupno 202 pacijenta uključujući i zdrave pacijente kao kontrole, korišćenjem PCR – RFLP metoda. Utvrđeno je da je razlika distribucije alela kod oboljelih i kontrolnih pacijenata statistički značajna ukazujući da je G alel vezan sa tipom 2 diabetesa kao i mogućnost asocijacije rs12255372 (G/T) sa tipom 2 diabetesa.

Primljeno 29. X. 2014.
Odobreno 25. II. 2015.