SERUM LEVELS OF INSULIN LIKE GROWTH FACTOR - I AND TOTAL PROTEIN IN NEWBORN CALVES OFFERED DIFFERENT AMOUNTS OF COLOSTRUM

KIROVSKI DANIJELA*, STOJIĆ V* andNIKOLIĆ J. ANNA**

*Faculty of Veterinary Medicine, University of Belgrade, Yugoslavia **INEP - Institute for the Application of Nuclear Energy, Zemun, Yugoslavia

(Received 23. August 2002)

The aim of this investigation was to determine the concentrations of insulin like growth factor-I (IGF-I) and total protein in blood serum from calves consuming different amounts of colostrum during the first 32 h of postnatal life, as well as at 7 days old. The experiment involved two groups of calves. The first group was offered the standard amount of colostrum while the second group received half the recommended amount.

At birth serum concentration of IGF-I was in the range from 5 to 13 nmol/L. Compared to the initial level there was a marked decrease of mean IGF-I concentration in both groups of calves at 2 h after the first intake of colostrum. Thereafter, the level gradually increased until 20 h of age, more markedly in the group which received the full ration of colostrum. The highest mean IGF-I concentrations were recorded at 20 h in both groups (11.81 nmol/L for group one and 8.96 nmol/L for group two), and were significantly higher than values recorded 2 h after the first intake of colostrum. Two hours after the third intake of colostrum, serum concentration of IGF-I dropped in both groups, compared with the value recorded at 20 h.

During the time period from 4 h to 32 h after birth, the calves that received the standard amount of colostrum had a significantly higher mean concentration of serum IGF-I than the calves which received an insufficient amount.

Calves were born with serum concentrations of total proteins, which were lower than those found for adult animals. Serum protein concentrations in the calves that consumed normal amounts of colostrum increased more rapidly than in the calves that received insufficient amounts of colostrum. Presumably, total protein concentrations increased as a consequence of colostral immunoglobulin absorption.

Thus our results indicate that the amounts of colostrum received during the first 32 h of postnatal life had strong effects on the serum concentrations of IGF-I and total proteins.

The differences in IGF-I concentrations between the two groups of calves may have been a consequence of greater colostral IGF-I
absorption and/or the result of greater absorption of other colostral components, which stimulate endogenous synthesis of this bioactive substance in the tissues of neonatal calves.

Key words: neonatal calves, colostrum, insulin like growth factor-I, total protein, immunoglobulins.

INTRODUCTION

Colostrum is the only and sufficient source of nutrients (proteins, fat and carbohydrates) for newborn calves. In addition to the provision of nutrients, colostrum intake is essential for normal growth and health protection of newborns. Namely, it is an extremely rich source of immunoglobulins, which can be absorbed intact by neonatal intestine only for a limited time after birth (approximately 38 hours). Thus, colostrum intake provides passive immunity essential for the calf's survival. Colostrum also contains bioactive and growth-promoting substances (enzymes, hormones and growth factors) which are not essential but are very important for normal growth and development of newborns. Insulin-like growth factor I (IGF-I) is present in cow colostrum in high concentrations (Oda et al., 1989; Schams, 1994).

Colostral IGF-I ingestion has a strong influence on overall systematic and intestinal growth and development. It reduces intestinal enzyme activity in the early-postnatal period when the calves are colostrum fed (Read et al., 1994).

Examination of colostral IGF-I absorption from neonatal intestine has been the subject of many investigations (Hammon et al., 1997; Lee et al., 1995; Odle et al., 1996; Vacher et al., 1995). In addition, the local effects of colostral IGF-I on neonatal intestine has been studied (Baumrucker et al., 1994; Buhler et al., 1998; Guilloteau et al., 1995). Hammon et al. (1997) demonstrated that IGF-I concentrations in blood serum of calves depend markedly on the nutritional status in the neonatal period of life.

The objective of many experiments was to study the quantitative and qualitative changes of serum total protein concentrations in neonatal calves (Vukotic, 1967; Kiryama et al., 1989; Mao et al., 1994). It has been established that enterocytes, having membrane receptors for the Fc fragment (Bush et al., 1971; Staley et al., 1985), are capable of transferring intact immunoglobulin molecules from the intestinal lumen into the vascular system. Passage is most intensive during the first six hours of life (Marx et al. 1979). New enterocytes, 38 h after birth, are no longer able to take up intact colostral immunoglobulins because of the absence of Ig receptors on their membranes. Thus, changes in neonatal calf proteinemia are a consequence of abundant absorption of colostral proteins, specially immunoglobulins in the first hours of life.

From the results presented for serum IGF-I concentrations during the neonatal period, it is apparent that there are inconsistencies about whether the rise of its concentration is a consequence of greater colostral IGF-I absorption or due to endogenous synthesis in the various tissues of the calves.

The aim of our investigation was to determine if two levels of colostrum feeding affect concentrations of IGF-I and total protein in blood serum from newborn calves.
MATERIAL AND METHODS

Animals
The experiment involved two groups of eight calves of the Holstein-Friesian breed at Jabučki Rit farm (Belgrade Agricultural Corporation). The mean body mass of the calves at birth was 39.5±5.3 kg for group one and 36.5±5.1 kg for group two. All calves were born within 2 days and immediately placed in individual boxes in a byre where the temperature ranged from 15 to 20°C.

Colostral intake
The calves were suckled on their dam’s colostrum 2 h, 12 h and 24 h after birth through artificial teats. Calves in the first group were offered 1.5 L for the first two meals followed by 2 L colostrum for the third. Calves in the second group received 0.75 L for the first two meals and 1 L for the third.

Blood sampling
Blood samples were collected by v. jugularis puncture with a sterilised needle into tubes. After coagulation and centrifugation the serum was aspirated and stored at -20°C for later analysis. Blood samples were taken at birth (0h) and 4h, 6h, 8h, 16h, 18h, 20h, 28h, 32h and 7 days later.

Colostrum sampling
Colostrum samples were collected from mothers of newborn calves immediately before suckling at 2h, 12h and 24h postpartum. Colostrum was stored at -20°C for later analysis.

Analyses
Commercial 125I-RIA kits validated for bovine serum and colostrum were used to determine IGF I as described earlier (Nikolić et al. 1996; 1998).

Total protein concentration in colostrum was determined by the biuret reaction (Gornall et al., 1949).

Statistical analysis
The results are expressed as mean (M), standard deviation (SD), standard error (SE) and CV for each group of calves. Probability and the statistical significance of differences between mean values were calculated using Student’s t-test. Simple correlation coefficient and the regression of IGF-I concentrations in relation to body weights were also calculated and analyzed.

RESULTS

The IGF-I and total protein concentrations found in colostrum of mothers of calves in both groups involved in our experiment are presented in Table 1. It can be seen that the mean concentration of IGF-I decreased from the 1st to 3rd milking postpartum (p < 0.001). The mean concentration of total protein in colostrum also decreased between 1st milking and that at 12h (p < 0.01) and 24h postpartum (p < 0.001).

There was no difference in mean IGF-I and total protein concentrations between colostrum ingested by calves in group one and group two.

Mean values for IGF-I concentrations in blood serum samples in group one are given in Table 2.
Table 1. The mean serum levels of IGF-I (nmol/L) and total protein (g/L) in colostrum offered to each group of calves

<table>
<thead>
<tr>
<th>Group</th>
<th>IGF-I</th>
<th>TOTAL PROTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Milking 1</td>
<td>Milking 2</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>56.0</td>
<td>31.1</td>
</tr>
<tr>
<td>SD</td>
<td>20.8</td>
<td>19.0</td>
</tr>
<tr>
<td>SE</td>
<td>7.4</td>
<td>6.7</td>
</tr>
<tr>
<td>CV(%)</td>
<td>37.2</td>
<td>61.0</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>60.6</td>
<td>35.2</td>
</tr>
<tr>
<td>SD</td>
<td>24.5</td>
<td>14.5</td>
</tr>
<tr>
<td>SE</td>
<td>8.7</td>
<td>5.1</td>
</tr>
<tr>
<td>CV(%)</td>
<td>40.4</td>
<td>41.2</td>
</tr>
</tbody>
</table>

At birth mean serum IGF-I concentration was 9.98 nmol/L. The lowest mean IGF-I concentration (8.97 nmol/L) was recorded at 4h after birth, followed by a gradual increase until 20h of age. The highest IGF-I concentration was recorded at 20h of age (11.81 nmol/L), and was significantly higher than the value found 2h after the first intake of colostrum (p < 0.05). Thereafter, a general negative trend in concentration was seen down to 10.68 nmol/L at 32h of age.

At 7 days of age mean IGF-I concentration was 9.11 nmol/L which was not significantly different from the initial level (p > 0.05).

Serum levels for IGF-I found in the second group of calves are shown in Table 3.

Mean serum concentration of IGF-I at birth was 8.41 nmol/L. A gradual increase in serum IGF-I concentration occurred after the second intake of colostrum up to 20h of age when the highest level occurred (8.96 nmol/L). Mean IGF-I concentration then decreased significantly (p < 0.05) to 7.24 nmol/L at 28h after birth and remained at that level until 32h of age.

At 7 days of age mean serum concentration of IGF-I was 8.16 nmol/L and there was no statistically significant difference compared with the initial level (p < 0.05).

During the time period from 4h to 32h after birth, the calves, which received the standard amount of colostrum had significantly higher serum IGF-I concentrations than the calves which received an insufficient amount (Fig. 1).
Table 3. The mean serum levels of IGF-I (nmol/L) in the group of calves offered half-recommended amount of colostrum.

<table>
<thead>
<tr>
<th>Age of calves (hours/days)</th>
<th>7 days</th>
<th>14 days</th>
<th>32 days</th>
<th>6 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.16</td>
<td>0.05</td>
<td>0.32</td>
<td>0.22</td>
</tr>
<tr>
<td>2.35</td>
<td>2.47</td>
<td>1.43</td>
<td>1.96</td>
<td>1.42</td>
</tr>
<tr>
<td>8.16</td>
<td>7.13</td>
<td>7.24</td>
<td>8.00</td>
<td>7.35</td>
</tr>
<tr>
<td>3.26</td>
<td>4.04</td>
<td>4.28</td>
<td>4.84</td>
<td>4.46</td>
</tr>
</tbody>
</table>

Table 2. The mean serum levels of IGF-I (nmol/L) in the group of calves offered the full ration of colostrum.

<table>
<thead>
<tr>
<th>Age of calves (hours/days)</th>
<th>7 days</th>
<th>14 days</th>
<th>32 days</th>
<th>6 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27</td>
<td>0.16</td>
<td>0.05</td>
<td>0.32</td>
<td>0.22</td>
</tr>
<tr>
<td>2.35</td>
<td>2.47</td>
<td>1.43</td>
<td>1.96</td>
<td>1.42</td>
</tr>
<tr>
<td>8.16</td>
<td>7.13</td>
<td>7.24</td>
<td>8.00</td>
<td>7.35</td>
</tr>
<tr>
<td>3.26</td>
<td>4.04</td>
<td>4.28</td>
<td>4.84</td>
<td>4.46</td>
</tr>
</tbody>
</table>

Figure 1. Mean serum IGF-I concentration (M ± SE nmol/L) in both experimental groups of calves.
Before first colostrum intake serum IGF-I concentrations were positively correlated with birth weight ($r=0.702$, $p<0.01$). (Fig 2).

![Graph showing the correlation between IGF-I levels and birth weight. The equation of the line is $y = 0.30x - 2.13$, with $r = 0.702$, $\sigma = 0.494$, and $p < 0.01$. The graph plots IGF-I levels (nmol/L) against birthweight (kg).]

The results for total protein concentrations in each group of calves are shown in Table 4 and Table 5.

Calves were born with total serum protein concentrations, which were lower than those found for adult animals (45.4 g/L for group one and 44.0 g/L for group two). Thereafter, mean values increased in both groups, more markedly in the group which received the full ration of colostrum. In group one mean protein concentrations were in the range from 54.7 g/L (4 h of age) to 70.3 g/L (32 h of age). In comparison with the initial level the difference became statistically significant 4h after birth ($p < 0.05$). In the group of calves which received half the recommended amount (group two) protein concentrations were in the range from 42.7 g/L (4 h of age) to 62.4 g/L (32 h of age). In comparison with the initial level the difference became statistically significant 16h after birth ($p < 0.05$).

At 7 days of age serum concentrations of total protein in both groups of calves were within the range found for adult animals (69.5 g/L for group one and 60.0 g/L for group two).

Total protein concentrations were significantly higher in group one than in group two where the calves consumed less colostrum. Even at day 7 the difference in protein concentrations between group one and group two remained significant $p = 0.0502$. (Fig. 3)
Table 4. The mean serum levels of total protein (g/L) in the group of calves offered the full ration of colostrum

<table>
<thead>
<tr>
<th>Age of calves (hours/days)</th>
<th>n=6</th>
<th>0h</th>
<th>4h</th>
<th>6h</th>
<th>8h</th>
<th>16h</th>
<th>18h</th>
<th>20h</th>
<th>28h</th>
<th>30h</th>
<th>32h</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td>45.4</td>
<td>54.7</td>
<td>56.4</td>
<td>61.0</td>
<td>61.2</td>
<td>63.6</td>
<td>68.3</td>
<td>68.4</td>
<td>70.1</td>
<td>70.3</td>
<td>69.5</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>6.7</td>
<td>10.2</td>
<td>9.2</td>
<td>6.3</td>
<td>8.7</td>
<td>10.1</td>
<td>7.5</td>
<td>5.5</td>
<td>8.0</td>
<td>8.0</td>
<td>10.1</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td>2.4</td>
<td>3.6</td>
<td>3.2</td>
<td>2.2</td>
<td>3.1</td>
<td>3.6</td>
<td>2.7</td>
<td>2.0</td>
<td>2.8</td>
<td>2.8</td>
<td>3.6</td>
</tr>
<tr>
<td>CV(%)</td>
<td></td>
<td>14.7</td>
<td>18.6</td>
<td>15.7</td>
<td>10.4</td>
<td>14.3</td>
<td>15.8</td>
<td>11.0</td>
<td>8.1</td>
<td>11.4</td>
<td>11.4</td>
<td>14.5</td>
</tr>
</tbody>
</table>

- colostral intake time

Table 5. The mean serum levels of total protein (g/L) in the group of calves offered half recommended amount of colostrum

<table>
<thead>
<tr>
<th>Age of calves (hours/days)</th>
<th>n=6</th>
<th>0h</th>
<th>4h</th>
<th>6h</th>
<th>8h</th>
<th>16h</th>
<th>18h</th>
<th>20h</th>
<th>28h</th>
<th>30h</th>
<th>32h</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td>44.0</td>
<td>42.7</td>
<td>47.2</td>
<td>49.8</td>
<td>55.5</td>
<td>57.7</td>
<td>59.8</td>
<td>61.1</td>
<td>59.8</td>
<td>62.4</td>
<td>60.0</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>14.0</td>
<td>10.6</td>
<td>10.4</td>
<td>10.0</td>
<td>2.8</td>
<td>4.7</td>
<td>4.7</td>
<td>6.0</td>
<td>8.6</td>
<td>12.4</td>
<td>8.6</td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td>5.0</td>
<td>3.7</td>
<td>3.7</td>
<td>3.5</td>
<td>1.0</td>
<td>1.7</td>
<td>1.7</td>
<td>2.1</td>
<td>3.0</td>
<td>4.4</td>
<td>3.0</td>
</tr>
<tr>
<td>CV(%)</td>
<td></td>
<td>31.9</td>
<td>24.8</td>
<td>22.0</td>
<td>20.1</td>
<td>5.1</td>
<td>8.1</td>
<td>7.9</td>
<td>9.8</td>
<td>14.4</td>
<td>19.3</td>
<td>14.2</td>
</tr>
</tbody>
</table>

- colostral intake time
Figure 3. Mean plasma total protein concentration (M ± SE g/L) in both experimental groups of calves.

<table>
<thead>
<tr>
<th>Time Intervals</th>
<th>7 day</th>
<th>14 day</th>
<th>21 day</th>
<th>28 day</th>
<th>35 day</th>
<th>42 day</th>
<th>49 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Acta Veterinaria (Belgrade), Vol. 52, No. 5-6, 2022

Colostral intake affects serum levels of insulin-like growth factor-1 and total protein in newborn calves offered different amounts of colostrum.
DISCUSSION

The results obtained here for colostral levels of IGF-I in Holstein dairy cows on the day of parturition correspond to those obtained by other authors, which ranged from around 18.8 nmol/L (Hammon et al., 2000) to 76 nmol/L (Hadsell, 1999). In agreement with our data, other investigators, too, found a decrease of IGF-I levels from 1st to 3rd milking.

As expected, the typical changes in total protein concentration in colostrum were exhibited by our cows. Our data for protein concentrations were similar to those reported by many other authors (Oyeniyi et al., 1978, Grutter et al., 1991). Namely, there was a significant decrease of total protein levels in colostrum within two days following parturition.

Calves were born with total serum protein concentrations lower than those found for adult animals (Vukotić, 1967; Kurz et al., 1991). In both groups of calves serum protein concentrations sharply increased within first two hours after the first meal, more markedly in group one, and then remained elevated until the end of the experimental period. Presumably, total protein concentrations increased as a consequence of colostral immunoglobulin absorption.

The significantly lower serum protein concentrations in the group which consumed restricted amounts of colostrum indicate that the quantity of colostrum consumed during the first 32 h of postnatal life had a prolonged effect on the concentration of serum proteins, probably as a consequence of the long half-life of circulating immunoglobulins. Thus, higher concentrations of total protein in calves fed normal amounts of colostrum remained on day 7 which confirms the results of other studies (Hammon et al., 1997).

IGF-I at birth originates from endogenous synthesis in various fetal tissues. Our data for initial concentrations of serum IGF-I were in accordance with previous studies (Grutter et al., 1991; Nikolic et al., 1996). Groenewegen and coworkers (1990) indicated that serum IGF-I levels appear to reflect growth rate in young cattle. Breier and coworkers (1988) and D’Ercole and coworkers (1980) found a high positive correlation between birth weight and IGF-I concentrations. Our results confirm these findings. Moreover, there was no immediate increase of serum IGF-I concentrations after the first meal. This result agrees the findings of other authors (Baumrucker et al., 1994; Eglia et al., 1998; Hammon et al., 1997). In addition, we recorded a slight decrease in serum IGF-I concentrations at 4 h of age (group one) and at 4 h, 6 h and 8 h of age (group two) compared with initial levels. Hadorn and coworkers (1997) found that omission of colostrum intake provoked a rapid fall of blood IGF-I in neonatal calves. This was also the case in neonatal calves, when milk replacer, containing less nutrients and energy than colostrum, or water were fed instead of colostrum (Hammon et al., 1998, Grutter et al., 1991). Thus feeding first colostrum appears to have a particularly great influence on IGF-I concentrations.

Our results show that serum IGF-I concentrations were higher in group one than in group two from 4 h to 32 h of age and indicate that the amounts of colostrum received during the first 32 h of postnatal life had strong effects on the concentrations of IGF-I. Differences in IGF-I concentrations between the two groups of calves involved in our investigation may be a consequence of greater colostral IGF-I absorption and/or a result of greater endogenous synthesis in various tissues of the neonatal calves. Greater synthesis may be due to the twofold
greater intake of colostral nutrients in group one. Namely, the group of calves which received the full ration of colostrum consumed double the amount of colostral proteins, as well as energy and other colostral components which might stimulate endogenous synthesis of IGF-I in neonatal tissues. Muira and coworkers (1992) demonstrated that amounts of ingested colostral proteins appear to play a major role in the regulation of hepatic IGF-I production. These authors suggest that colostral IGF-I does not enter the calf circulation in measurable quantities and that it mainly has local effects on neonatal intestine.

Two hours after the third intake of colostrum IGF-I serum concentration decreased in both groups, compared with value recorded at 20 h. The established rapid fall in concentration is a characteristic of all low molecular weight proteins (Kiriyma et al., 1989).

At 7 days of age there were no differences in serum IGF-I levels between the groups of calves. These data indicate that the amounts of ingested colostrum had no influence on the development of mechanisms involved in the maintenance of blood IGF-I level.

Address for correspondence:
Danijela Kirovski, M.Sci
Faculty of Veterinary Medicine
Department of Physiology and Biochemistry
Bul JNA 18, 11 000 Belgrade
Yugoslavia

REFERENCES

15. Hammon H, Blum JW; 1998. Metabolic and endocrine traits of neonatal calves are influenced by feeding colostrum for different duration or only milk replacer. J. Nutr, 128, 624-32.

KONCENTRACIJA IGF-I I UKUPNIH PROTEINA U KRZNOM SERUMU NOVORODENE TELADI NAPAJANE RAZLIČITOM KOLIČINOM KOLOSTRUMA

KIROVSKI ĐANIJELO, STOJIĆ V I NIKOVIĆ J. ANNA

SADRŽAJ

U vremenskom periodu od 4. do 32. sata života teladi prve grupe koja su napajana normalnom količinom kolostruma imala su statistički značajno višu koncentraciju IGF-I u krvnom serumu u odnosu na telad koja su napajana manjom količinom kolostruma.

Teladt obe ogledne grupe su rođena sa koncentracijom proteina koja je značajno niža nego kod odraslih jedinki. Porast koncentracije proteina u krvnom serumu teladi napajane sa duplo manjom količinom kolostruma u ispitivanom periodu je bio znatno sporiji u poređenju sa rastom proteinemije teladi prve ogledne grupe.

Naši rezultati ukazuju da nivo popijenog kolostruma u prva 32h neonatalnog života ima veliki uticaj na koncentraciju insulinu sličnog faktora rasta I (IGF-I) i ukupnih proteina.

Za porast proteinemije možemo sa sigurnošću tvrditi da je rezultat resorpcije kolostralnih imunoglobulina.

Različiti nivoi IGF-I utvrđeni u našem ogledu na dve grupe teladi mogu biti posledica veće resorpcije IGF-I prisutnog u kolostrumu i/ili veće resorpcije nekih od još neidentifikovanih sastojaka kolostruma koji indukuju endogen sintezu ovog biološki aktivnog jedinjenja u mnogim tkivima novorođene jedinke.