Some Staphylococcus aureus strains, identified as causative agents of mastitis in cattle, exhibit the ability of producing a viscous extracellular polysaccharide layer (slime), which is nowadays considered to be a virulence factor, as it promotes bacterial adhesion onto the mammary epithelial cells and protects bacteria from opsonization and phagocytosis. Some strains of this genus are believed to exist in the form of a biofilm in the udder tissue, which may partly explain frequent therapeutic failures and a chronic course of infection. In this study we investigated the ability of slime production and biofilm formation in 70 subclinical and clinical bovine mastitis isolates S. aureus. Slime production was determined from colony morphology of isolates in Congo red agar. The ability of biofilm formation was assessed in a quantitative assay using a microtiter-plate test involving crystal violet staining and for selected strains, scanning electron microscopy on stainless steel coupons was done.

Eight S. aureus isolates (11.42%) formed black colonies of dry consistency, characteristic for slime-producing strains. According to the result of microtiter plate test, 9 isolates (12.86%) were categorized as strong biofilm producers, 21 (30%) as moderate, and 40 (57.14%) as weak biofilm producers. Scanning electron microscopy revealed differences between investigated isolates with respect to their ability to colonize stainless steel surfaces and to form a three-dimensional biofilm structure.

Key words: biofilm, mastitis, slime, Staphylococcus aureus

INTRODUCTION

Staphylococcus aureus is an opportunistic pathogen and causative agent of a number of human and animal infections, ranging from superficial skin infections to septicemias. This microorganism is one of the most frequent mastitis agents in herds of dairy cows, causing severe health and economical problems. The bacteria adhere to the ductular and alveolar epithelium in the gland producing
epithelial cell damage, inflammation of the mammary gland, impairment of the host immune system, macrophage activation, neutrophile migration from the blood into the milk resulting in increased somatic cell counts (Cucarella et al., 2004). Even in cases when Staphylococcus aureus isolates from milk exhibit good sensitivity to antibiotics in vitro, the treatment of such infections mostly remains ineffective, i.e. there is a discrepancy between the two parameters (Melchior et al., 2006). The ability of this organism to persist in the mammary tissue as a biofilm is one of the possible sources of chronic or persistent infections (Vaseduvan et al., 2003). A biofilm is defined as a microbially derived sessile community characterized by cells that are irreversibly attached to a substratum or interface or to each other, are embedded in a matrix of extracellular polymeric substances that they have produced, and exhibit an altered phenotype with respect to growth rate and gene transcription (Donland and Costerton, 2002). Bacteria in the biofilm exhibit increased resistance to components of the host's immune system and antimicrobial agents, as compared to their planktonic counterparts (Mah and O'Toole, 2001; Lewis, 2001; Dunne, 2002). Biofilm-forming ability has been increasingly recognized as an important virulence factor in staphylococci (Oliveira et al., 2006).

Formation of a biofilm begins with the attachment of bacteria to the host cells. This specific adhesion pattern is mediated by bacterial cell wall structures containing adhesins, which is a genetically determined feature of bacterial species. Adherence of Staphylococcus species to the host cells is mediated by specific cell-surface proteins such as fibronectin, fibrinogen and collagen. In coagulase negative staphylococci (CoNS), an exopolysaccharide containing layer (slime) is nowadays investigated as a possible major determinant of bacterial adherence to host cells and inert surfaces. The slime is viscous extracapsular layer, weakly immunogenic and of labile structure which is lost or partially lost on in vitro subcultures (Aguilar et al., 2001). Slime production is a virulence marker for clinically significant coagulase-negative staphylococci isolates and it is associated with intravenous-catheter-related bacteriemia and other prosthetic device infection (Ishak et al., 1985). Similarly, slime production was detected also in human and ruminant mastitis strains of Staphylococcus aureus. Slime-producing strains are considered to have increased ability of colonizing host tissue and better protection from opsonization and phagocytosis (Baselga et al., 1993; Aguilar et al., 2001; Arslan and Özkardes, 2007).

Slime production and biofilm forming ability of Staphylococcus aureus isolates from bovine clinical and subclinical mastitis was investigated in this study. Slime production was evaluated from colony morphology of isolates on Congo red agar. The ability of biofilm formation was assessed using a microtiter-plate test involving crystal violet staining and scanning electron microscopy.

MATERIALS AND METHODS

Bacterial isolates

The investigation was carried out on 70 mastitis isolates of Staphylococcus aureus. The isolates were identified by their cultural characteristics, microscopic
appearance in Gram stained preparations, positive catalase reaction, hemolysin, coagulase test with rabbit plasma and biochemical analysis utilizing Microbact™ Staphylococcal identification system (Oxoid LTD, UK). Until examination the isolates were stored on Tryptone Soya broth (TSB, Oxoid LTD, UK), to which 20% sterile glycerol was added, at -80°C. Immediately before testing the isolates were multiplied on blood agar with 5% ovine blood.

Detection of slime production
Slime production of all isolates was evaluated by Congo red agar method (CRA), according to the protocol of Freeman et al. (1989). The medium was prepared with 37 g/L brain heart infusion broth (BHI, Biokar Diagnostics), 50 g/L sucrose, 10 g/L agar and 0.8 g/L Congo red (MP Biomedicals, LCC, France). The medium was autoclaved at 121°C for 15 minutes. Congo red stain was prepared as a concentrated aqueous solution and autoclaved (121°C for 15 minutes) separately from the other medium constituents, and was then added when the agar had cooled to 55°C. Plates were inoculated and incubated aerobically for 24h at 37°C, followed by storage at room temperature for 48h. A positive result was indicated by black colonies with a dry crystalline consistency.

Microtiter-plate test
Preparation of the inoculum:
All S. aureus isolates were multiplied in pure culture on blood agar during 24 hours of incubation at 37°C. Groups of three single colonies were inoculated in 3 mL Tryptone Soya broth. Suspensions were incubated for 24h at 37°C and then diluted at 1:40 in a fresh TSB (2-7 x 10⁷ cfu/mL). This dilution was used as the inoculum in the microtiter plate test.

Test design:
Microtiter plate test was performed by the method of Stepanović et al. (2000) with certain modifications. For each S. aureus isolate 200-µL aliquots of prepared suspension were inoculated into four wells of the 96-well tissue culture plates (NunclonDelta, Nunc, Roskilde, Denmark). Each culture plate included a negative control and four wells with TSB. The plates were incubated at 37°C for 24h. Afterwards, the well content was removed by pipetting and the wells were rinsed three times with 250 µL sterile physiological saline. The plates were dried in inverted position. The attached bacteria were fixed for 15 minutes at room temperature by adding 200-µL-volumes of methanol into each well. The plates were stained with 160 µL 0.5% aqueous solution of crystal violet (Crystal Violet, Fluka) for 15 minutes at room temperature. Following staining, the plates were rinsed under running water until there was no visible trace of stain. The stain bound to bacteria was dissolved by adding 160 µL of 95% ethanol. Optical density (OD) was measured spectrophotometrically (Labsystems Multiscan® MCC/340) using 595 nm filter.

Cut-off OD (ODc) is defined as three standard deviations above the mean OD of the negative control. Strains were classified as follows:
– non-biofilm producers (OD ≤ ODc);
weak biofilm producers (ODc < OD ≤ 2 x ODc);
moderate biofilm producers (2 x ODc < OD ≤ 4 x ODc);
strong biofilm producers (4 x ODc < OD).

Scanning electron microscopy

Three *S. aureus* isolates were selected for scanning electron microscopy. The isolates were selected according to results obtained in the microtiter plate test, i.e. strong, moderate and weak biofilm producers. For biofilm formation sterile stainless steel coupons (1 x 1 x 0.2 cm) were used. The coupons were placed separately into the wells of the Nunc polystyrene plate with 12 wells (Roskilde, Denmark). 100 μL-volumes of *S. aureus* isolates were inoculated onto the coupon surface. Bacterial adherence was enabled by incubation at room temperature over three hours, with subsequent pipetting of the suspension. The coupons were rinsed with sterile physiological saline and dipped in 2 mL of fresh TSB. Coupons were incubated over 5 days at 37°C and washed at 2-days intervals, and wells were inoculated with 2 mL of fresh TSB-YE.

After 5 days of incubation the coupons were removed from the well and washed by mild pipetting with 3 mL of sterile saline to remove the medium and non-adhered cells. The coupons were then fixed overnight in the refrigerator in 4% formaldehyde, double-washed in sterile distilled water and dehydrated in serial dilutions of 30, 50, 60, 70, 90% ethanol for 5 min each, followed by three 10-min rinses in aetanolum concentratum (95-96 vol %). Air-dried preparations were immediately sputter-coated with gold (Sputter Coater SCD 005, BALTEC SCAN, WD = 50 mm, 90s, 30 mA) and examined using scanning electron microscope (JMS SEM 6460 LV).

RESULTS AND DISCUSSION

S. aureus is one of the most prevalent mastitis agents in dairy herds. It is believed that slime-producing *S. aureus* strains have a higher capacity of colonizing the mammary gland than its non-slime-producing variants (Baseloglu et al., 1993; Cucarella et al., 2004). Adhesion to mucosal surfaces may be a significant step in establishing persistent infections (Fox et al., 2005). In this study, slime production was examined qualitatively, from the colony morphology of 70 bovine mastitis isolates of *S. aureus* produced on Congo red agar. Originally, CRA was established as a method for slime detection in coagulase-negative staphylococci (Freeman et al., 1989). However, it has also been applied for investigating the slime production in human and animal *S. aureus* isolates (Knobloch et al., 2002; Citak et al., 2003; Oliveira et al., 2006; Arslan and Ozkardes, 2007; Krukowski et al., 2008; Jain and Agarwal, 2009).

The examined *S. aureus* isolates produced four different colony phenotypes on CRA: 1. black colonies of dry consistency and with rough surface and edges (Fig. 1); 2. black colonies with a smooth, round and shiny surface (Fig. 2, left); 3. red colonies of dry consistency and with rough edges and surface (Fig. 3) and 4. red colonies with a smooth surface, round and shiny (Fig. 4).
According to Freeman et al. (1989), slime producing strains produce black colonies with a dry crystalline consistency on Congo red agar. An indeterminate result was indicated by a darkening of the colonies, but with the absence of a dry crystalline colonial morphology. In this study, isolates that formed black/rough colonies were characterized as slime producing, whereas isolates forming red/smooth colonies were described as non-slime producers. The remaining two types were considered indeterminate result. The results are displayed in Table 1.

Out of 70 bovine mastitis S. aureus isolates examined in CRA test, slime production was established in eight (11.42%) isolates, which produced characteristic black colonies of dry crystalline consistency. Similar results were obtained by Baselga et al. (1993) who detected 12% positive strains out of 92 bovine strains tested. Citak et al. (2003) established slime production in 5.1% S.
Staphylococcus aureus isolated from raw milk samples. Higher percentage of slime producing S. aureus mastitis isolates was reported by Oliveira et al. (2006) (37.5%) and Krukowski et al. (2008) (42.37%). Results of Vasudevan et al. (2003) revealed that out of 35 S. aureus mastitis isolates, 32 produced typical black colonies within 24-48h.

Table 1. Slime production by Staphylococcus aureus in CRA method

<table>
<thead>
<tr>
<th>No. of strains tested</th>
<th>Negative result</th>
<th>Indeterminate result</th>
<th>Positive result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red-smooth colonies</td>
<td>black-smooth colonies</td>
<td>red colonies with a dry crystalline consistency</td>
</tr>
<tr>
<td>70</td>
<td>39</td>
<td>15</td>
<td>8</td>
</tr>
</tbody>
</table>

Some differences between researches were apparent with respect to interpretation of CRA test results. In that respect, both bright black colonies (Citak et al., 2003) and black colonies (Oliveira et al., 2006; Arslan and Özkardes, 2007; Jain and Agarwal, 2009) were considered as a positive result. In our research 15 isolates (21.43%) produced black colonies of smooth and shiny surface, which was characterized as indeterminate result. Furthermore, in our study, red colonies with rough surface were described as indeterminate result. However, Cucarella et al. (2004) describe dry crystalline surface (rough colony phenotype) as a positive result, disregarding the color (black or pink). Finally, Knobloch et al. (2002) reported that 128 human isolates of S. aureus tested in CRA with brain heart infusion (BHI) base produced only red (ranging from pink to orange) colonies, as well as that particular strains formed black colonies on CRA using a TSB base. A dry crystalline morphology of these red colonies was observed after 24h for the five S. aureus strains which were described as slime producing. Such discrepancy when interpreting the results may possibly be due to the fact that the test itself was not originally designed for investigating Staphylococcus aureus isolates.

The ability of biofilm formation of S. aureus isolates was examined in the microtiter plate test. The results are presented in Table 2.

Table 2. Results of microtiter-plate test

<table>
<thead>
<tr>
<th>No. of strains tested</th>
<th>Non biofilm producer OD ≤ 0.178</th>
<th>Weak biofilm producer 0.178 < OD ≤ 0.356</th>
<th>Moderate biofilm producer 0.356 < OD ≤ 0.712</th>
<th>Strong biofilm producer 0.712 < OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>–</td>
<td>40</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>

According to measured extinctions, nine S. aureus isolates (12.85%) were identified as strong biofilm producers. In a microtiter plate test Oliveira et al. (2006)
also obtained a lower percentage (18.75%) of biofilm producers among S. aureus mastitis isolates. However, results of Vasudevan et al. (2003) in the tissue culture plate test revealed 24 biofilm producing strains of the total 35 mastitis S. aureus isolates investigated.

Out of nine strong biofilm producers confirmed in our microplate test, four proved positive in CRA test, 3 gave indeterminate results (red/dry crystalline consistency), and two were considered negative results. Positive or negative result of the CRA test does not necessarily imply that the isolate will prove as a biofilm producer in the microtiter plate test, which was confirmed by the research of Vasudevan et al. (2003), Oliviera et al. (2006), and Jain and Argawal (2009). Assessment of biofilm formation according to phenotypic expression (slime production on CRA, or biofilm formation on tissue culture plates) is highly susceptible to in vitro conditions (Baselga et al., 1993; Stepanović et al., 2000; Vasudevan et al., 2003). Knobloch et al. (2002) emphasized that supplementation of TSB or BHI media with different sugars (TSBglc/suc, BHI_suc, BHIglc/suc) increased biofilm formation significantly.

It is always recommendable to apply several in vitro methods in such research, but it must be kept in mind that attachment to abiotic surfaces might not be necessarily related to attachment to biotic surfaces (Cucarella et al., 2001). The hypothesis that S. aureus isolates from cow's milk produce a biofilm more frequently (41.4%) than the S. aureus strains obtained from teats (24.7%), as well as from the milking equipment (14.7) was experimentally confirmed by Fox et al. (2005). Vasudevan et al., (2003) believe that screening of biofilm forming ability of S. aureus isolates requires combining of phenotypic and genotypic methods. Though research results of these authors revealed biofilm formation in vitro in 24 out of 35 mastitis isolates of S. aureus, all isolates were found to possess ica gene locus (and icaA and icaD genes), which is considered to play an important role in biofilm formation by S. aureus and S. epidermidis.

Different abilities of selected S. aureus isolates to colonize stainless steel surfaces and form distinctive biofilm structures was confirmed by scanning electron microscopy. Whereas weak biofilm producers formed scant individual microcolonies (Figure 5a), moderate biofilm producers colonized the stainless steel surface to somewhat greater extent (Figure 5b), a strong biofilm producer completely covered the surface, forming massive, robust biofilm composed of densely packed bacterial colonies (Figure 5c and 5d).

Results of numerous studies demonstrated the ability of S. aureus mastitis isolates to produce slime and form a biofilm. This property helps the bacteria to survive hostile environments within the host, and considered to be responsible for chronic or persistent infection. Antimicrobial therapy of mastitis is usually based on the results of susceptibility tests in vitro, applying the disc diffusion or dilution method. However, antibiotics are effective in inhibiting planktonic bacterial population, whereas bacteria in biofilm survive the treatment and provide material for further growth. In vitro research confirmed different antimicrobial susceptibility of the planktonic and biofilm population of S. aureus (Amorena et al., 1999). Thus, bovine mastitis caused by S. aureus still remain an open research field for
investigating the genetic basis of biofilm formation and finding new options of effective prophylaxis and treatment of such infections.

Figure 5. Scanning electron microscopy – biofilms of S. aureus isolates on stainless steel after 5 days incubation in TSB at 37°C

ACKNOWLEDGEMENT:
This investigation was supported by a grant from the Ministry of Science and Technological Development of the Republic of Serbia, Project No. 20115.

Adress for correspondence:
Dr Dubravka Milanov
Scientific Veterinary Institute "Novi Sad"
Rumenački put 20
Novi Sad, Serbia
E-mail: dubravka@niv.ns.ac.rs
REFERENCES

SPOSOBNOST "SLIME" PRODUKCIJE I FORMIRANJA BIOFILMA KOD STAPHYLOCCUS AUREUS IZOLOVANIH IZ MLEKA KRAVA SA MASTITISOM

MILANOV DUBRAVKA, LAŽIĆ S, VIDIĆ BRANKA, PETROVIĆ JELENA, BUGARSKI Đ I ŠEGULJEV ZORICA

SADRŽAJ

Pojedini sojevi Staphylococcus aureus koji su uzročnici mastitisa krava, imaju sposobnost produkcije viskoznog, ekstracelularnog, polisaharidnog sloja ("slime") koji se u novije vreme razmatra kao faktor virulencije, jer olakšava adheziju bakterija na epitelne čeliće mlečne žlezde i štiti ih od opsonizacije i fagocitoze. Takođe se smatra da neki sojevi ove bakterijske vrste egzistiraju u formi biofilma u tkivu vimena, čime se između ostalog, objašnjava čest neuspeh u terapiji i hronični tok infekcije. U ovom radu je ispitana sposobnost "slime" produkcije i formiranja biofilma kod 70 izolata S. aureus poreklom iz mleka krava sa kliničkim i subkliničkim mastitisom. "Slime" produkcija je ispitana na osnovu morfologije kolonija koje su izolati formirali na "Congo red" agaru, a sposobnost formiranja biofilma kvantitativnim testom na mikrotitracionim pločama upotrebom boje kristal-violet i skening elektronskom mikroskopijom na kuponima od neredujućeg čelika (za odabrane sojeve).

Crne kolonije suve konzistencije, karakteristične za "slime" produkujuće sojeve, formiralo je osam izolata S. aureus (11,42%). Prema rezultatima testa na mikrotitracionim pločama, devet izolata (12,86%) je klasifikovano u jake, 21 (30%) u umerenе, a 40 (57,14%) u slabe biofilm producere. Skening elektronskom mikroskopijom potvrđene su razlike među ispitivanim izolatima u njihovoj sposobnosti kolonizacije površine neredajućeg čelika i formiranja trodimenzionale biofilmstrukture.