POSTHODIPLOSTOMATOSIS IN A FISHPOND IN SERBIA

MARKOVIĆ MAJA*, ĆIRKOVIĆ M**, ALEKSIĆ NEVENKA*, MILOŠEVIĆ NIKOLINA**, OLIVERA BJELIĆ-CABRILIO***, DRAGANA LJUJOJEVİĆ**, AKSENTIJEVIĆ KSENİJA* and RADOJIČIĆ MARINA*

*University of Belgrade, Faculty of Veterinary Medicine, Serbia
**University of Novi Sad, Faculty of Agriculture, Serbia
***University of Novi Sad, Faculty of Sciences, Serbia

(Received 22nd August 2011)

Posthodiplostomatosis (black spot disease) is a disease of young freshwater fish species of families Cyprinidae and Cobitidae, resulting from infection with metacercaria, which is the penultimate developmental stage of Posthodiplostomum cuticola. Metacercaria give rise to black cysts located primarily in the skin, muscles and on the fins. The disease caused by P. cuticola in certain fish species is first detected in a fishpond in Serbia, as presented in the current work, whilst in natural waters it has been existing for many years. Diagnosis of the infection in the grass carp (Ctenopharyngodon idella) and the bighead carp (Aristichthys nobilis) was based on the occurrence of dark discolorations and cysts of the parasite on the fins. Cysts measured approximately 1 mm in diameter, were confirmed by histopathological means.

Posthodiplostomatosis occurred in fishponds in which preventive measures were not implemented, i.e. where the nurseries were not dried up and mechanically cleaned.

Key words: black spots, metacercariae, posthodiplostomatosis, Posthodiplostomum cuticola

INTRODUCTION

Posthodiplostomatosis is a disease occurring primarily in fish species of the Cyprinidae and Cobitidae families living in fresh waters (Sonin, 1986). It has been most frequently described in the freshwater bream (Abramis brama), rudd (Scardinius erythrophthalmus), common roach (Rutilus rutilus) (Rakauskas and Blazevicius, 2005), ide (Leuciscus idus), the white bream (Blicca bjoerkna) (Soły, 2006), Prussian carp, Carassius gibelio, (Shukerova, 2005).

The infection is known worldwide, in Euroasia: Croatia (Zrncic et al., 2009), Czech Republic (Ondrackova et al., 2002; 2004; 2006; Faltykova, 2005), Poland (Dzika, 2002; Popiolek and Kotusz, 2003; Mierzerjewska 2004; Rolbiecki, 2004; 2006; Dzika et al., 2008), Germany (Schuster, 2001), Lithuania (Rakauskas and...
Blazevicius, 2009), Russia (Kurochkin and Biserova, 1996), Finland (Koie, 1999), Bulgaria (Shukerova, 2005), FYRM (Baker et al., 2004), Turkey (Ozturk, 2005; Soylu, 2006), and has also been described in fish species in subtropical streams in Uruguay (Teixeira-de Mello and Eguren, 2008).

Being an allogenic species, *Posthodiplostomum spathaceum* (Digenese: Diplostomatidae, Nordmann, 1832), the causative agent of this trematode infection requires two intermediate hosts, a snail of *Planorbis* genus and cyprinide fish, whilst the definitive host is one of the numerous wading bird species, for example the grey heron (*Ardea cinerea*) or other species of the genus (Donges, 1964; Moravec et al., 1991). Following feeding on infected fishes, in the birds’ digestive systems reproduction of adult flukes takes place. The eggs are passed via excreta into the water where the released miracidia penetrate the snails and begin a new life cycle (Olsen, 1974; de Kinkelin et al., 1985; Schaperclaus, 1990). Infection of fish leads to circumscript dark spots the average size of the head of a sewing pin, occurring on the skin, fins and muscles (Lucky, 1970; Schaperclaus, 1990; Kurochkin and Biserova, 1996). *P. cuticola* has been reported as pathogenic for the fish host, being capable of producing lethality, especially during the first months of fish life (Lucky, 1970; Ondrackova et al., 2004).

Infection of fishes occurs when furcocercaria penetrate the skin, and consequently transforming into metacercaria, invade predominantly the skin of the fins, abdomen and sometimes the gills. Infection is usually asymptomatic, but in fingerlins, or in cases of severe infection, may be deleterious.

The grass carp (*Ctenopharyngodon idella*) and bighead carp (*Aristichthys nobilis*) are herbivorous freshwater fishes. Given their delicious taste and high growth rate, they are cultured worldwide, as well as in Serbia. Infection of the species caused by *Posthodiplostomum cuticola* has not been noticed in fishponds in Serbia until now, being first described in the present work. However, it was described in freshwaters (Markovic and Krsmanovic, 2008).

MATERIAL AND METHODS

The investigation was carried out throughout 2008 and 2009 on a fish farm in Susek in Northern Serbia.

A total of 200 specimens of grass carp (*Ctenopharyngodon idella*) and the same number of bighead carp (*Aristichthys nobilis*) aged from eight to ten months were examined for the presence of parasites. The fishes were caught in square nets and kept alive in buckets of fresh water until transported to the laboratory. The specimens were killed humanely with sodium pentobarbital 80 mg/kg of body weight administered intra-abdominally. The skin and, following dissection, the internal organs of the fishes were scanned by stereomicroscope for the presence of encysted metacercaria of *Posthodiplostomum cuticola*.

Histological examination

Pathohistological examination was performed by standard techniques: following fixation with Bouin’s solution, the tissue samples were processed, sliced to 5-µm-thick sections, mounted and stained in haematoxylin and eosine. The
diameters of 50 cysts originating from each fish species were measured in histological sections, with an ocular micrometer (Zeiss) at 40x and 100x magnifications.

Statistics

The condition of the hosts and parasitological indices (prevalence and mean intensity of infection) were observed. The distribution of metacercaria on the fishes was calculated and the existence of differences among body parts was checked with ANOVA. Fish bodies were virtually divided into five parts, similarly to what was done by Rolbiecky (2004): the head, oral cavity including the gills and the eye sockets, dorsal and ventral parts of the body (dorsal and ventral to the line determining the *longitudo caudalis*) and the fins. The data obtained were compared between the grass carp (*Ctenopharyngodon idella*) and bighead carp (*Aristichthys nobilis*).

RESULTS

Posthodiplostomatosis was diagnosed on the fishfarm in Susek, located in the southwest of Vojvodina (45°13′27″N, 19°31′57″E).

*Figure 1. Young grass carp (*Ctenopharyngodon idella*) with *Posthodiplostomum cuticola* infection*

The disease was first diagnosed at the end of June in eight to ten-month old juvenile grass carps (*Ctenopharyngodon idella*) and simultaneously, in the bighead carp (*Aristichthys nobilis*), leading to dark spots on the skin and fins, visible to the naked eye (Figures 1, 2a and 2b). The average size of the spots varied from 900 µm to 980 µm in both species, being 946.5±25.19 µm on average in the grass carp and 944.5±23.50 µm in the bighead carp (Table 1). The size of metacercaria on the two species did not differ significantly (p<0.01).
Table 1. Diameters of the cysts with *Posthodiplostomum spathaceum* metacercaria

<table>
<thead>
<tr>
<th>Cysts</th>
<th>Fish species</th>
<th>Grass carp</th>
<th>Bighead carp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size range</td>
<td>From 900 to 990 µm</td>
<td>From 900 to 980 µm</td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>946.5±25.19</td>
<td>944.5±23.50</td>
<td></td>
</tr>
</tbody>
</table>

The prevalence of the disease reached 100% in both species. The diagnosis was confirmed by microscopic examination of suspected tissue samples identifying *P. cuticula* metacercaria surrounded by melanin deposits (Figures 3 and 4).

Figure 2a and Figure 2b. Metacercaria in the fin of the grass carp (*Ctenopharyngodon idella*) infected with *Posthodiplostomum*

Figure 3. *Ctenopharyngodon idella*: transversal section of the fin infected with *Posthodiplostomum cuticola* metacercaria (HE, x200)

Figure 4. *Ctenopharyngodon idella*: *Posthodiplostomum cuticola* metacercaria with surrounding melanin deposits in the fin (HE, x400)
Following the examination of gross and/or microscopic changes in fishes, the total number and distribution of metacercaria in each specimen was counted and the average calculated (Table 2).

Table 2. Numbers of *Posthodiplostomum cuticola* metacercaria per fish

<table>
<thead>
<tr>
<th>No of metacercariae per fish specimen</th>
<th>Grass carp Ctenopharyngodon idella (No)</th>
<th>Bighead carp Aristichthys nobilis (No)</th>
<th>Correlation coefficient (between 2 and 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>67</td>
<td>0.993259</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total fish number</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

The number of metacercaria per fish ranged from one to sixteen, the latter found only in the grass carp (Table 2). Although the distribution seemed to vary, the correlation coefficient between the arrays describing the number of fishes infected with a certain number of metacercaria correlated highly (correlation coefficient \(r=0.9933 \)). The largest numbers of both species were infected with one to two metacercaria.

The distribution of metacercaria in various fish body parts is on display in Table 3. The largest number was found on the fins, followed by the ventral parts of the body and the head, whilst the least was situated in the oral cavity including the gills and the eye sockets, and, finally, the lowest number was recorded on the dorsal body parts.
Table 3. Distribution of Posthodiplostomum metacercaria found on the grass carp and bighead carp

<table>
<thead>
<tr>
<th>Body part</th>
<th>Grass carp (Ctenopharyngodon idella)</th>
<th>Bighead carp (Aristichthys nobilis)</th>
<th>Correlation coefficient (Pearson's r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>49</td>
<td>58</td>
<td>0.9937</td>
</tr>
<tr>
<td>Oral cavity (including the gills and eye sockets)</td>
<td>54</td>
<td>19</td>
<td>1.559</td>
</tr>
<tr>
<td>Dorsal parts of the body</td>
<td>196</td>
<td>97</td>
<td>7.957</td>
</tr>
<tr>
<td>Ventral parts of the body</td>
<td>302</td>
<td>269</td>
<td>22.067</td>
</tr>
<tr>
<td>Fins</td>
<td>981</td>
<td>776</td>
<td>63.659</td>
</tr>
<tr>
<td>Total</td>
<td>1582</td>
<td>1219</td>
<td>100</td>
</tr>
</tbody>
</table>

DISCUSSION

Posthodiplostomum cuticola is a trematode species introduced to fishponds from rivers by means of wading birds, the definitive host. There have been reports of its presence in free-living fishes in the region, but this is the first time that it is described in a fish farm in Serbia.

The trematode is reported to produce metacercaria preferably on the fish body surface. The metacercaria are located in cysts or, more precisely, black spots, approximately 1 mm in diameter. The average size of the cysts in the grass carp was 946.5±25.19 µm, whilst in the bighead carp, being not much different: 944.5±23.50 µm. The possible reason for the seemingly different size obtained in Susek is that a more precise method was used to estimate the diameter (ocular micrometre) and that it was performed on histological slices rather than on the fish body directly with a micrometre.

The metacercaria themselves are known to be smaller, being 0.73-0.92 mm long and 0.29-0.31 mm wide (Shukerova, 2005).

The intensity of infection in the grass carp (Ctenopharyngodon idella) and bighead carp (Aristichthys nobilis) ranged from one to sixteen, most frequently being lower. It was largely in accordance with the findings of Ondrackova (2002), who reported from 1.8 to 13.3 on average, in different fish species. On the other hand, Rakauskas and Blazevicius (2009) described from 6.2 to 12.7 metacercaria per fish, whilst Shukerova (2005) only 0.39. Given that the intensity of infection was described on different fish species and not having been published for the grass carp (Ctenopharyngodon idella) and bighead carp (Aristichthys nobilis), and that it depends on numerous factors, it may be concluded that it is not readily comparable.

One of the factors of utmost importance which facilitates the presence of the disease is that on the fishpond Susek is impossible to dry nursery ponds and expose them to low temperatures. Thus, the overwintering of snail intermediate hosts is enabled. The inevitable measure in the eradication of
posthodiplostomatosis is the breaking of its developmental cycle, which is to be done by diminishing the population of the mollusc intermediate hosts rather than the avian one. In addition, treatment with hydrated lime (approximately 100 kg per 1000 m²) is the most efficient measure against most fish diseases including posthodiplostomatosis.

Another possible reason for the presence of *Posthodiplostomum cuticola* metacercaria in fishes in Susek is the luscious macrophytic vegetation in the surrounding which seems ideal for nesting of herons and other bird species, potential definitive hosts to this digenean fluke.

Posthodiplostomatosis is one of the fish diseases which inflicts serious damage to fishes, mainly fingerlings. Certain investigations revealed that it possibly influences the weight gain in fishes (Marković and Kršmanović, 2008).

It may be concluded that more research should be conducted to cast light on the reason(s) why *Posthodiplostomum cuticola* is abundant in Susek but not in other fish farms in its vicinity. Given that its life cycle involves two intermediates (a fish and a snail) and a definitive host (wading birds), whose presence and abundance depend on various abiotic factors (Ondrackova et al., 2004), it is to be supposed that thorough investigations in the field are justifiable to get a reasonable answer to the question. Furthermore, following the completion of research on the parasites of the birds in the vicinity of the fish farm, it will be possible to implement appropriate measures for the control of parasites in fish.

Address for correspondence:
Dr. Maja Marković, Assistant professor
University of Belgrade
Faculty of Veterinary Medicine
Bulevar oslobođenja 18
11000 Belgrade, Serbia
E-mail: maja.markovic@vet.bg.ac.rs

REFERENCES

POSTODIPLOSTOMATOZA NA RIBNJAKU U SRBIJI

MARKOVIĆ MAJA, ĆIRKOVIC M, ALEKSIĆ NEVENKA, MILOŠEVIĆ NIKOLINA, BJELIĆ-ČABRILO OLIVERA, LJUBOJEVIĆ DRAGANA, AKSENTIJEVIĆ KSENJA I RADOJIĆIĆ MARINA

SADRŽAJ

Postodiplostomatoza je oboljenje mladih kategorija slatkovodnih riba izazvano infektijom metecerkarijama trematode Posthodiplostomum cuticola. Promene se zapažaju u vidu crnih cista lokalizovanih prvenstveno u koži, subepidermalnom tkivu i na perajima. Najčešće se javlja kod vrsta riba familija Cyprinidae i Cobitidae. Iako je infekcija duži niz godina prisutna u otvorenim vodama, u radu je opisan prvi nalaz infekcije kod riba iz ribnjaka u Srbiji. Postodiplostomatoza je dijagnostikovana kod belog amura (Ctenopharyngodon idella) i sivog tolstolobika (Aristichthys nobilis). Promene su bile karakteristične, makroskopski vidljive kao tamnosiva do crna kružna polja diskoloracije najčešće na perajima. Njihova prosečna veličina iznosila je 946.5±25.19 µm kod belog amura i 944.5±23.50 µm kod tolstolobika.