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Abstract
A technique for predicting steady and oscillatory aerodynamic
loads on general configuration has been developed. The predic-
tion is based on the Doublet-Lattice Method, Slender Body The-
ory and Method of Images. The chord and span wise loading on
lifting surfaces and longitudinal bodies (in horizontal and verti-
cal plane) load distributions are determined. The configuration
may be composed of an assemblage of lifting surfaces (with con-
trol surfaces) and bodies (with circular cross sections and a lon-
gitudinal variation of radius). Loadings predicted by this method
are used to calculate (estimate) steady and unsteady (dynamic)
lateral-directional stability derivatives. The short outline of the
used methods is given in [1], [2], [3], [4] and [5]. Applying the
described methodology software DERIV is developed. The ob-
tained results from DERIV are compared to NASTRAN examples
HA21B and HA21D from [4]. In the first example (HA21B), the
jet transport wing (BAH wing) is steady rolling and lateral stabil-
ity derivatives are determined. In the second example (HA21D),
lateral-directional stability derivatives are calculated for forward-
swept-wing (FSW) airplane in antisymmetric quasi-steady maneu-
vers. Acceptable agreement is achieved comparing the results from
[4] and DERIV.
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stability derivatives
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1 Introduction

The idea to make use of the lifting surfaces’ theories for estimation of
aerodynamic derivatives was proposed [1], as the computer aerodynamics
was just starting to develop. All the theories assume the linear-small
amplitude, sinusoidal motion.

To the present day, especially for aircrafts’ flutter calculations, numer-
ous methods have been developed for accuracy unsteady aerodynamic
loads determination. In this paper, the doublet-lattice finite element
method is described and used. The chord wise and span wise load dis-
tribution on lifting surfaces and longitudinal z-vertical and y-lateral load
distribution on bodies can be calculated for general configurations, us-
ing this method. The general configuration consists of an assemblage of
lifting surfaces (with arbitrary plan form and dihedral, with or without
control surfaces) and bodies (with variable circular cross sections).

In the flutter calculation for already known normal modes of the air-
craft’s structure, the unsteady load distributions on general configuration
can be calculated. This possibility can be used to calculate (estimate)
steady and unsteady stability aircraft’s aerodynamic derivations. In this
case, input data comprise a few of special rigid body motions of air-
craft structure. A selection of these rigid body motions depends whether
longitudinal or lateral-directional aircraft’s aerodynamic derivatives are
observed.

The software package UNAD had been developed for the calculation
of unsteady aerodynamic forces of the general configuration for flutter
calculation. The named package was modified and package DERIV has
been developed for steady and unsteady longitudinal, lateral and direc-
tional aerodynamic derivative calculation of general configuration. The
developed software DERIV was tested in [3] for longitudinal aerodynamic
derivatives. Lateral-directional derivatives’ test results from DERIV com-
pared to the NASTRAN examples HA21B and HA21D are given in this
paper.

According to the author‘s knowledge, software DERIV has been the
first domastic package that can predict steady and unsteady derivatives
based on the integration of unsteady aerodynamic loads over the whole
aicraft’s configuration.
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2 Unsteady, subsonic aerodynamic loads

Aerodynamic finite element methods are based on matrix equation:

{w} = [A] {∆Cp} ; ∆Cp =
plower − pupper

ρU2/2
(1)

In (1) {w} is column matrix of downwashes (positive down), [A] is
square matrix of aerodynamic influence coefficients, and {∆Cp} is col-
umn matrix of dimensionless lifting surface coefficient . The main flow is
defined by density ρ and speed U of free stream. Aerodynamic elements
are defined by general configuration geometry in the Cartesian coordinate
system. The motion of general configuration is defined by degrees of free-
dom at aerodynamic grid points. Aerodynamic elements are trapezoidal
boxes representing the lifting surfaces, ring slender bodies elements, and
ring image elements representing slender body and interference influence.

The DLM is used for interfering lifting surfaces in subsonic flow. As
DLM is based on the small-disturbance, linear aerodynamics, all lifting
surfaces are assumed to lie nearly parallel to the main flow. Each interfer-
ing surface is divided into boxes. Boxes are small thick less (flat palate)
trapezoidal lifting elements. The boxes are arranged to form strips. Strips
lay parallel to free stream and the surface edges. Fold and hinge lines lie
on the box boundaries. In order to reduce problem size, symmetry option
is used. Unknown pressure ∆Cp on each box is represented by a line of
pressure doublet at quarter chord of the box. Known downwash w collo-
cation (control) point lies at the mid span of the box three quarter chord.
DLM aerodynamic elements are represented in Fig. 1.

The SBT is used to represent lifting characteristics for isolated bod-
ies. SBT assumes that the flow near body is quasi-steady and two-
dimensional. Bodies can have z-vertical, y-lateral or both degrees of free-
dom. Slender bodies of general configuration are divided slender body
elements (axial velocity doublets) as shown in Fig. 2. Slender body ele-
ments are used to account aerodynamic loading due to the motion of the
body.

The subsonic wing-body interference is based on the superposition of
singularities and their images described in the method of images (MI).
Each slender body is substituted by cylindrical interference body, which
circumscribes the slender body. The interference body is divided in inter-
ference elements, as shown in Fig. 3. The interference element is used to
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Figure 1: Lifting surface elements

include in calculation influence of other bodies and lifting surfaces on the
body, to which element belongs. Each interference element is substituted
by z-vertical and y-lateral modified acceleration potential pressure dou-
blets. The primary wing-body interference is accounted for by a system
of images of DLM vortices and a system of doublets within each inter-
ference element. There is no influence between two interference elements
which belong to the same interference body.

Based on the above described, matrix relation (1) can be written in
form:





w̄w

0
w̄s



 =





Aw,w Aw,i Aw,s

Ai,w Ai,j Ai,s

0 0 As,s









∆Cp

µi

µs



 (2)

In (2):

• Ar,s is aerodynamic influence matrix element, which includes part
of normal wash of unit strength r-the singularity on s-the finite
element. Indices for the singularities and the aerodynamic finite
elements are: w-lifting surface, i-image and s-slender body.
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Figure 2: Slender body elements

Figure 3: Interference elements
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• w̄w is column of the known downwashes on lifting surface elements
in the collocation (control) points normalized by free stream speed
U .

• w̄i = {0} is column of zero downwashes on the image elements.

• w̄s is column of the known downwashes on the slender body elements
in axis mid points normalized by free stream speed U .

• ∆Cp is unknown column of the strengths of lifting surface singular-
ities (acceleration potential pressure doublets).

• µi is unknown column of the strengths of images singularities (mod-
ified acceleration potential pressure doublets).

• µs is known column of the strengths of slender body singularities
(velocity potential doublets).

The strength of slender body velocity potential doublet of unit length
is known from two-dimensional theory. For j - the slender body element,
described by midpoint (ξ, η, ζ) and radius Rj, follows:

µs,j(ξ, η, ζ, ω) = 2πR2
jUw̄s,j(ξ, η, ζ, ω)

In the above relation ω is the angular frequency of the harmonically
motion of slender body. As each slender body has z-vertical, y-lateral
or both degrees of freedom, generally each j-the element of the body
is substituted by the two velocity potential doublets, acting on the real
element’s axial length ∆ξj:

µ
(y)
s,j = 2πR2

jUw̄
(y)
s,j ∆ξj; µ

(z)
s,j = 2πR2

jUw̄
(z)
s,j ∆ξj (3)

If boundary values on slender bodies are known, using (3) the strength
of the slender bodies’ singularities can be calculated. Substituting these
obtained strengths in (2), it follows:

{
w̄w −∆w̄w

−∆w̄i

}
=

[
Aw,w Aw,i

Ai,w Ai,i

]{
∆Cp
µi

}
(4)

In (4), w̄w − ∆w̄w and −∆w̄i are modification of normalized down
washes on lifting surface elements and images caused by the known slender
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body singularities. Relation (4) represents a system of linear equations
with complex coefficients. The system can be solved in terms of the
known boundary conditions for the unknowns ∆Cp, µ

(y)
i and µ

(z)
i .

Lifting surface pressure distribution ∆Cp can be integrated to give
the lifting surface contributions to the aerodynamic parameters of interest
(aerodynamic coefficients, generalized forces, etc.).

The forces on the bodies are determined in more complicated manner.
Every lifting surface box ∆Cp, every image µ

(y)
i and µ

(z)
i , every slender

body axis doublet µ
(y)
s and µ

(z)
s affects the force distribution on bodies.

It is known from unsteady computational aerodynamics that every sin-
gularity can be obtained from the point pressure doublet whose normal
wash flow field is obtained from the standard lifting surfaces kernel K.
Pressure coefficient Cp(x, y, z) at point (x, y, z) on the body surface due
to the point pressure doublet of the strength ∆Cp(ξ, η, ζ)∆A in point
(ξ, η, ζ) can be obtained by relation:

Cp(x, y, z) =
∆Cp(ξ, η, ζ)∆A

4π
eιλMa(x−ξ) ∂

∂N

(
e−ιλR

R

)
(5)

In the above equation:

• Ma is free stream Mach number,

• R2 = (x− ξ)2 + (1−Ma2) [(y − η)2 + (z − ζ)2] ,

• λ = ωMa
U(1−Ma2)

,

• ~N is unit vector in the direction of the doublet.

The term ∆Cp(ξ, η, ζ)∆A is the total pressure doublet strength of
lifting surface box of area ∆A in which lifting pressure coefficient is
∆Cp(ξ, η, ζ). An equivalent point pressure doublet is assumed to act
in 1

4
-mid chord box’s point of lifting surface element. The finite length

of body doublet ∆ξ is obtained by two point pressure doublets per each
body element. The first is located at the leading edge of the element

and has the strength µe
ιω∆ξ
2U , and the second at the trailing edge of the

strength −µe−
ιω∆ξ
2U .

Equation (5) should be integrated over the whole body surface to
obtain forces acting on the body due to point doublet located at (ξ, η, ζ).
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The total force on the body should be sum of the all point pressure
doublets effects. The detail integration of body force is given in [2].

At the end of analysis of unsteady, subsonic aerodynamic loads it is
interesting to point out that unsteady aerodynamic loads of axis symmet-
ric isolated slender body can be determined in elementary way, without
using slender body velocity potential doublets. The element of axis sym-
metric slender body represents truncated cone of length dx and radius
R(x). From the momentum law, per example, in vertical direction the
elementary lift force is:

dFz(x) =
D

Dt
[ρπR2(x)w(x)dx] (6)

In (6) w(x) is small perturbation vertical upwash velocity and the
operator D(· · · )/Dt is total derivative. The R(x) is continual function
up to the second derivative of the variable x. The operator D(· · · )/Dt
for harmonical motion of slender body is defined by relation:

D(· · · )
Dt

= [U
∂

∂x
+ ιω](· · · ) (7)

Subsituting (7) into (6) it follows:

dFz(x)

dx
= −ρU2

(
∂

∂x
+ ι

k

l

)(
πR2(x)

wz(x)

U

)
(8)

In relation (8) k = ωl/U is reduced frequency, l reference length and
wz(x) = −w(x) is vertical downwash velocity.

Let ∆Cpz be pressure coefficient acting in vertical direction on the
element of slender body. Surface 2R(x)dx, on which ∆Cpz acts is rectan-
gle obtained as cross section of the slender body element and horizontal
plane, containing axis of the element. In this case, lift (vertical) force on
unit length of the slender body element is determined by relation:

dFz(x) =
ρU2

2
∆Cpz2R(x)dx ⇒ dFz(x)

dx
= ρU∆CpzR(x) (9)

Equalizing (8) and (9) it can be obtained:

∆Cpz = −π

[
2w̄z

dR(x)

dx
+ R(x)

dw̄z

dx
+ ι

k

l
R(x)w̄z

]
(10)
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In (10) w̄z = wz/U is normalised downwash velocity.
If isolated slender body harmonically oscillates in vertical plane, its

motion is described by relation:

hz(x, y, z, t) = <e[hz0(x, y, z)eιωt] (11)

If down motion hz(x, y, z, t) is positive, then normalised downwash
velocity on slender body is determined by relation:

w̄z =
dhz0

dx
+ ι

k

l
hz0 (12)

Substituting (12) into (10) it follows:

∆Cpz = −π

[(
dR

dx

dhz0

dx
+

R

2

d2hz0

d2x
− h2

z0

2l2
Rhz0

)

+ι

(
R

dhz0

dx
+ hz0

dR

dx

)]
(13)

Based on (13) the distribution of unsteady vertical pressure coeficient
on any isolated slender body can be determined.

Using the same procedure distribution of unsteady horizontal pressure
coefficient ∆Cpy on isolated slender body generated by lateral (in hori-
zontal plane) harmonic motion hy(x, y, z, t) = <e[hy0(x, y, z)eιωt] can be
obtained:

∆Cpy = −π

[(
dR

dx

dhy0

dx
+

R

2

d2hy0

d2x
− h2

y0

2l2
Rhy0

)

+ι

(
R

dhy0

dx
+ hy0

dR

dx

)]
(14)

Vertical and lateral aerodynamic force on j - the isolated slender body
element of length ∆ξj and radius Rj(xj, y

,
jz

)
j in its midpoint is:

Fzj
= ρU2∆Cpzj

Rj∆ξj ; Fyj
= ρU2∆Cpyj

Rj∆ξj (15)

New developed relations (6) to (15) for calculation of unsteady, sub-
sonic aerodynamic loads on axis symmetric isolated slender body can be
used to control the same loads obtained from concept of velocity potential
doublets.
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3 Short theoretical aproach

Dynamic lateral-directional aerodinamic derivateves of an aircraft are:

• lateral force derivatives:

Cyβ, Cyp, Cyr, Cyδa , Cyδr , Cyβ̇, Cyṗ, Cyṙ,

• roll moment derivatives:

Clβ, Clp, Clr, Clδa , Clδr , Clβ̇, Clṗ, Clṙ, (16)

• jaw moment derivatives:

Cnβ, Cnp, Cnr, Cnδa , Cnδr , Cnβ̇, Cnṗ, Cnṙ.

In relations (16) β is sideslip angle of aircraft flying with speed U ,
defined in Fig. 4.

Figure 4: Sideslip angle

If v is lateral component of U , then based on Fig. 4. slip angle is:

sin β =
v

U
Differenting upper relation with respect to v gives:

cos β
∂β

∂v
=

1

U
− v2

U3
=

1

U
cos2 β
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For small perturbation from nominal flight, it follows:

∂β

∂v
≈ 1

U

Thus, β and v are directly proportional when operating near nominal
flight condition.

Value p is the rate of aircraft’s roll (Fig. 5.) in body fixed coordinate
system XbYbZb. If θ is bank angle p = dθ/dt.

Figure 5: Roll rate

Value r is the rate of aircraft’s jaw (Fig. 6.) in body fixed coordinate
system XbYbZb and if ψ is jaw angle, it follows r = dψ/dt.

In calculation of the dynamic lateral-directional derivatives reference
length l is usually wing semispan b/2. The total reference sideslip angle
βm can be obtained as a linear combination of all involved kinematic
effects:

βm = βmββ + βmδaδa + βmδrδr + βmp
pb

2U
+ βmr

rb

2U
+
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Figure 6: Jaw rate

+βmÿ
ÿ

g
+ βmṗ

ṗb

2U
+ βmṙ

ṙb

2U
+ · · · (17)

In (16) and (17) influences of antisymmetric aileron deflection δa =
(|δright

a | + |δleft
a |)/2 and antisymmetric rudder deflections δr = (|δright

r |
+|δleft

r |)/2 (if two rudders are located on fins out of aircraft symmetry
plane) are involved in calculation of steady lateral-directional derivatives.
. It should be mentioned that the aerodynamic forces on control surfaces
strongly depend on their boundary layers. As in the used methods vis-
cosity effects are neglected, derivatives with respect to δ will give only
trends to accurate values.

Generally speaking, aerodynamic stability derivatives are determined
in body fixed axis (stability) system XbYbZb, while aerodynamic forces
and moments are calculated aerodynamic axis system XaYaZa. The aero-
dynamic system is colinear with velocity coordinate system XvYvZv. The
axis of aerodynamic system are opposite to the axis of velocity system
(xa = −xv; ya = −yv; za = −zv), when the motion of aircraft is in a
straight line. All of the three systems have the same origin in the center of
gravity Ccg of aircraft structure. Used coordinate systems are represented
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in Fig. 7. In connection with relation (16), it is necessary to outline that
Cyv = −Cya .

Figure 7: Coordinate systems used

In the reference condition the Ya- axis is normal to airspeed U , but
departs from it, Yb- axis is moving with the airplane during a disturbance.
That means that the sideslip angleβs, defined as the angle between the
Xb- axis and the direction normal to U , is not necessarily identical to
the absolute value of the sideslip angle βa = β, used in aerodynamic
calculations. The axis Ya is in direction normal to the undisturbed flight
path, while - axis is oscillating with rigid airplane. Clearly, βs represents
the disturbance from an aerodynamic state β. As small disturbances
have been assumed, simple conversion rules between the stability and the
aerodynamic axis systems for antisymmetric motions are:
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XbYbZb ⇒ β = ι
ω

U
hy − ψ ⇐ XaYaZa

XbYbZb ⇒ p = ιωθ ⇐ XaYaZa

XbYbZb ⇒ r = ιωψ ⇐ XaYaZa

In the above relations hy is lateral translation, θ is roll angle, ψ is jaw
angle and ω is angular frequency of harmonic motion of an aircraft.

In the stability axis system βs - variation is equivalent to a variation
of lateral wash of the airplane. So, it is equivalent to the sideslip angle to
be prescribed in the methods used in this paper, where the aerodynamic
axis system is used. The roll rate p, as defined in the stability axis system
in Fig. 5., is felt by the airplane as linearly, span wise varying normal
wash around the mass center of aircraft in YbCcgZb system. In the same
way the jaw rate r is defined in Fig. 6. in XbCcgYb system.

As said in the introduction of this paper, the concept of integration
of unsteady aerodynamic loads is used, so obtained side force C̄y, roll
moment C̄l and jaw moment C̄n coefficients are complex numbers

In order to calculate lateral-directional derivatives, five cases of motion
of general configuration {hj(x, y, z, t) = h0j

(x, y, z)<e(eιωt),j = 1, (1), 5},
are of interest.

The first two cases are connected to steady lateral-directional deriva-
tives caused by aileron and rudder deflections {hj(x, y, z, t) = h0j

(x, y, z),
j = 1, (1), 2}. The last three of them are related to quasi-steady lateral-
directional harmonic motions {hj(x, y, z, t) = h0j

(x, y, z) <e(eιωt),j =
3, (1), 5}: lateral translation, roll and jaw of the general configuration.
From boundary conditions of these five rigid body modes one can deter-
mine appropriate aerodynamic load distributions and by integration of
these loads over the whole aircraft outer surface in (16) named deriva-
tives. It is known from the flutter calculation that boundary conditions
can be obtained from aircraft’s structure normal modes’ shapes (deflec-
tions and slopes of mode shape), as normalized downwash on each lifting
surface or body’s element is:
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w̄ij =
wij

U
=

dh0j

dx
+

1

U

dh0j

dt
=

dh0j

dx
+ι

ω

U
h0j

=
dh0j

dx
+ι

k

lref

h0j
; k =

ωlref

U
(18)

In relation (18), the index j is the number of element, the index i is
the normal mode number and lref is in calculation reference length.

Steady lateral-directional derivatives as function of aileron and rudder
deflections can be determined for these two steady cases:

• Mode 1 – Steady ailerons’ deflection

The default antisymmetric aileron deflection is δa = 0.1. Only lift-
ing surface elements on the wing’s ailerons are deflected. In any
aileron control point (xkj, ykj, zkj) it follows:

h01 = δa(xkj − xarm
k,a ) cos λa ; w̄1 =

∂h01

∂x
= δa cos λa (19)

In (19), xarm
k,a is normal distance from control point to aileron rota-

tion axis and λa is the swept angle of aileron rotation axis. On all
the other elements, meaning all the other lifting surface elements

and image bodies elements h01 = 0 and
∂h01

∂x
= 0.

• Mode 2 – Steady rudders’ deflection

The default antisymmetric rudder deflection is δr = 0.1. Only lifting
surface elements on the fin’s rudder are deflected. In any rudder
control point (xkj, ykj, zkj) it follows:

h02 = δr(xkj − xarm
k,r ) cos λr ; w̄2 =

∂h02

∂x
= δr cos λr (20)

In (20), xarm
k,r is normal distance from control point to rudder rota-

tion axis and λr is the swept angle of rudder rotation axis. On all
other elements, meaning all the other lifting surface elements and

image bodies elements h02 = 0 and
∂h02

∂x
= 0.

Quasi-steady antisymmetric motions of general configuration signif-
icant for lateral-directional derivatives are lateral translation, roll and
jaw:
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• Mode 3 – Quasi-steady lateral translation

Let general configuration harmonically oscillate as hn3 = h03<e(eιωt)
in lateral direction and amplitude of lateral motion is constant and
equal h03 = 0.1 lmac

2
. In this case it follows:

w̄3 =
∂h03

∂x
+ ι

ω

U
h03 = 0.1ι

ωlmac

2U
= 0.1

ιk

2
; k =

ωlmac

U
(21)

In relation (21) lref = lmac is mean aerodynamic chord of general
configuration (usually wing). In any j - the element of general
configuration discretisation with dihedral angle

γj from relation (21) it follows:

h03(xkj, ykj, zkj) = 0.1
lmac

2
sinγj;

∂h03(xkj, ykj, zkj)

∂x
= 0

• Mode 4 – Quasi-steady roll

Slow harmonic roll of general configuration around its longitudinal
body fixed axis is defined over harmonic oscillation of bank angle
θ(t) = θ0<e(eιωt). Roll rate is defined as:

p(t) =
dθ(t)

dt
≡ θ̇ = ιωθ(t) ⇒ p = ιωθ0 (22)

For θ0 = .1 from (22) it follows:

pb

2U
= ι

ωb

2U
θ0 = 0.1ιk ; lref =

b

2
(23)

Using (23) normalised velocity w̄4 in any point on lifting system (dy

normal distance from the selected point to Xb axis) generated by
rigid body, quasi-steady, harminic roll generally can be defined as

w̄4 =
pdy

U
=

pb

2U

2

b
dy = ιk

0.2

b
dy (24)
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In any control point (xkj, ykj, zkj) from relations (18) and (24) it
follows:

h04(xkj, ykj, zkj) =
0.2

b

√
y2

kj + (zkj − zcg)2 cos(ϑj − γj);
∂h04

∂x
= 0

(25)

In relation (25) γj is dihedral angle of j− the element of discretisa-
tion of general configuration and ϑj follows from relation:

ϑj = arctan
zj − zcg

yj

• Mode 5 – Quasi-steady jaw

Slow harmonic jaw of general configuration around its vertical body
fixed axis is defined over harmonic oscillation of jaw angle ψ =
ψ0<e(eιωt). Jaw rate is defined as:

r(t) =
dψ(t)

dt
≡ ψ̇ = ιωψ(t) ⇒ r = ιωψ0 (26)

For rb
2U

= 0.1 from (26) it follows:

rb

2U
=

ψ̇b

2U
= 0.1 ⇒ r

U
=

ψ̇

U
=

0.2

b
(27)

Based on (26) and (27) general configuration jaw angle can be ob-
tained:

dh05(x)

dx
= ψ0(x) ≡ ψ̇

U
(x− xcg) sin γj =

0.2

b
(x− xcg) sin γj

h05 =
0.2

b
sin γj

∫
(x− xcg)dx =

0.2

b
sin γj

(
x2

2
− xcgx + C

)
(28)

Constant C in (28) can be determined using boudary condition in
the centar of gravity of general configuration:

x = xcg and h05(x = xcg) = 0 ⇒ C =
x2

cg

2
(29)
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From (28) and (29) it can be obtained:

h05 =
0.1

b
(x− xcg)

2 sin γj;
dh05

dx
=

0.2

b
(x− xcg) sin γj (30)

In any control point (xkj, ykj, zkj) from relation (30) it follows:

h05(xkj, ykj, zkj) =
0.1

b
(xkj − xcg)

2 sin γj

dh05(xkj, ykj, zkj)

dx
=

0.2

b
(xkj − xcg) sin γj

The previous three quasi-steady motions should be understood as un-
steady harmonic aircraft motions characterising that their reduced fre-
quences converge to zero k = ωl

2U
→ 0.

For analysed five cases of motion appropriate aerodynamic loads dis-
tribution can be obtained. In the first two cases, as steady conditions
are involved, load distributions are real numbers. In the last three cases,
quasi-steady motions are analysed, so load distributions are complex num-
bers.

Generally speaking, aerodynamic coefficients of side force, rolling and
jawing moment can be represented over lateral-directional derivatives
based on the development in the MacLaurent series:

Cy = Cyβ
β + Cyp

pb

2U
+ Cyr

rb

2U
+ Cyδa

δa + Cyδr
δr+

Cyβ̇

β̇b

2U
+ Cyṗ

ṗb

2g
+ Cyṙ

ṙb

2g
+ · · ·

Cl = Clββ + Clp

pb

2U
+ Clr

rb

2U
+ Clδa

δa + Clδr
δr+

Clβ̇

β̇b

2U
+ Clṗ

ṗb

2g
+ Clṙ

ṙb

2g
+ · · ·

Cn = Cnβ
β + Cnp

pb

2U
+ Cnr

rb

2U
+ Cnδa

δa + Cnδr
δr+
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Cnβ̇

β̇b

2U
+ Cnṗ

ṗb

2g
+ Cnṙ

ṙb

2g
+ · · ·

For steady cases, using direct integration od aerodynamic loads and
appropriate normalisation steady lateral-directional derivatives depen-
dent to δa and δr can be obtained.

For unsteady cases, by appropriate summing of known aerodynamic
loads set of side force, moment of roll and jaw coefficients would be cal-
culated for small reduced frequency (k = 0.01÷ 0.1):

{[C̄y(j); C̄l(j); C̄n(j)], j = 3, (1), 5} (31)

Based on (31) lateral-directional derivatives due to sideslip angle β
and rate of sideslip angle β̇ can be determined:

Cyβ
=

1

k
=m[C̄y(3)] = −<e[C̄y(5)]; Cyβ̇

= − 1

k2
<e[C̄y(3)]

Clβ =
1

k
=m[C̄l(3)] = −<e[C̄l(5)]; Clβ̇

= − 1

k2
<e[C̄l(3)]

Cnβ
=

1

k
=m[C̄n(3)] = −<e[C̄n(5)]; Cnβ̇

= − 1

k2
<e[C̄n(3)]

In the same way lateral-directional derivatives of roll can be obtained:

Cyp =
1

k
=m[C̄y(4)]; Cyṗ

= − 1

k2
<e[C̄y(4)]

Clp =
1

k
=m[C̄l(4)]; Clṗ = − 1

k2
<e[C̄l(4)]

Cnp =
1

k
=m[C̄n(4)]; Cnṗ

= − 1

k2
<e[C̄n(4)]

Based on kinematics motions of any rigid body in slip, jaw and lateral
translation are connected in horizontal plane over relation:

β(t) + ψ(t) =
1

U

dh3

dt
(32)
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If rigid body oscillates harmonically from (32) it follows:

β0 + ψ0 = ι
ω

U
h30 (33)

It is clear from (33) and (21) that amplitude of quasi-steady jaw angle
ψ0 can be determined using relation:

ψ0 = ι
k

lmac

h30 − β0 (34)

Using relation (34) it follows:

Cyr =
1

k

{
=m[C̄y(5)]− <e[C̄y(3)]

k

}
;

Cyṙ
=

1

k2

{
<e[C̄y(5)] +

=m[C̄y(3)]

k

}
;

Clr =
1

k

{
=m[C̄l(5)]− <e[C̄l(3)]

k

}
;

Clṙ =
1

k2

{
<e[C̄l(5)] +

=m[C̄l(3)]

k

}
;

Cnr =
1

k

{
=m[C̄n(5)]− <e[C̄n(3)]

k

}
;

Cnṙ
=

1

k2

{
<e[C̄n(5)] +

=m[C̄n(3)]

k

}
.

4 Examples

Two examples, HA21B and HA21D, from the well known software NAS-
TRAN [4] are tested. Case HA21B is used for checking steady lateral (roll)
aerodynamic derivatives and case HA21D for testing unsteady lateral-
directional derivatives.
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4.1 Example HA21B

The first example is jet transport wing known as BAH wing. The geome-
try of BAH wing is taken from [6] pp. 45 and shown on Fig. 8. The wing
root chord is cr = 225[in] = 5.715[m], tip chord ct = 100[in] = 2.54[m]
and total span b = 1000[in] = 25.4[m]. The per side wing area is
A = 81250[in2] = 52.41925[m2] and reference chord lmac = 170.5[in] =
4.3310[m]. In [4] reference chord is taken as lmac = 162.5[in] = 4.1275[m]
due to wing tip curvilinear ending.

Figure 8: Idealization of BAH configuration

The BAH wing, idealised as half-span wing/aileron combination, is
divided into three parts with total 42 panels, 6 of which are on the aileron.
The idealisation is shown in Fig. 8. The part between the centerline and
the aileron is divided into 7 span wise strips with 3 unequal stream wise
panels. The width of the first strip is given on Fig. 8. and the next 6 strips
characterize equal width. The part containing the aileron is specified by
3 equal strips and 6 unequal panels. The part between the aileron and
wing tip is divided into 1 strip with 3 unequal panels. The strips’ division
on panels is defined on Fig. 8.

Wing is tested in steady roll, at the sea level and on low Mach number
Ma = 0.01. If wing is restrained rolling moment is defined as:
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Cl = +Clp

pb

2U
+ Clṗ

ṗb

2g

In unrestrained condition inertial derivative Clṗ vanishes and its effect
is included in the other two derivatives.

Parallel results from DERIV and NASTRAN are shown in Table 1.
Notation ldd in Table 1. means lateral-directional derivative.

ldd [4] DERIV
Clδα

−0.5262
Clp −0.5193 −0.5262
Clṗ −0.0002 −0.0003

Table 1: Case HA21B results

Based on Table 1. the results from DERIV and NASTRAN are in
good agreement.

4.2 Example HA21D

The case is taken from [4]. Forward-Swept-Wing (FSW) airplane with
coplanar canard and fin was tested at trimmed sea level steady flight on
Mach number Ma = 0.9. The model is idealized as shown in Fig. 9.

The wing has an aspect ratio 4.0, no taper, twist, camber, or inci-
dence relative to fuselage, and forward sweep angle 300. The canard has
an aspect ratio 1.0, and no taper, twist, camber, incidence, or sweep. The
fin has an aspect ratio 2.0, and no taper, twist, camber or incidence and
backward sweep angle 300. All chords of the wing, the canard and the fin
are constant and equal to 3.05[m]. The reference length of the configura-
tion is equal to the wing mean aerodynamic chord lmac = 3.05[m]. The
half-span model of aircraft is divided into 32 equal panels (8 span-wise,
4 chord-wise) on the wing, 8 equal panels (2 span-wise, 4 chord-wise) on
the canard and 16 equal panels (4 span-wise, 4 chord-wise) on the fin.

Location and idealization of aileron and rudder is shown in Fig. 9.
The chords of aileron and rudder are quarter length of the belonging wing
and fin chord. Aileron is expanding from mid to the tip of the wing, and
rudder is propagating from the whole fin span.
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Figure 9: Idealization of FSW configuration
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The fuselage length is 9.150 [m]. Aerodynamic forces on the fuselage
are neglected.

The aerodynamic coordinate system is located in the beginning of the
fuselage in coplanar plane of wing-canard. Center of gravity is 4.575[m]
behind aerodynamic coordinate system origin in midpoint of canard root-
chord.

Geometry and aerodynamic idealization of FSW configuration is given
in Fig. 9. The configuration center of gravity, significant for directional
derivatives, is shown on the same figure.

Comparative results from softwares NASTRAN and DERIV are given
in Table 2. Notation ldd in Table 2. means lateral-directional derivative.
The results in Table 2. marked as (∗) were not available in [4].

Based on the results given in Table 2. unsteady lateral-directional
aerodynamic derivatives from NASTRAN and DERIV are in acceptable
agreement.

5 Conclusions

A concise overview of the developed numerical procedure and test results
of new software DERIV, for calculation of lateral-directional aerodynamic
derivatives for general configurations, is given in the paper. New, useful
relations are developed for calculation of unsteady, subsonic aerodynamic
loads on an axis symmetric isolated slender body. These relations can
be used to verify the same loads obtained from the concept of velocity
potential doublets.

The contributions in the described research can be seen in the detailed
numerical development of the selected method and in development and
testing of the software DERIV.

The developed software DERIV is tested in NASTRAN cases HA21B
and HA21D. The obtained results from DERIV are in acceptable agree-
ment to NASTRAN.

In the future, DERIV software should be tested in cases from the
engineering practice.
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ldd [4] DERIV

Cyβ
−0.7147 −0.7159

Cyβ̇
(*) −0.0781

Cyδa
−0.1082 −0.1127

Cyδr
+0.3491 +0.3672

Cyp +0.0797 +0.0692
Cyṗ

+0.0018 +0.0013
Cyr +0.7233 +0.7315
Cyṙ

−0.0237 −0.0264

ldd [4] DERIV

Clβ −0.0369 −0.0348
Clβ̇

(∗) −0.0120

Clδa
+0.2748 +0.2834

Clδr
+0.0375 +0.0392

Clp −0.4184 −0.4031
Clṗ −0.0002 −0.0004
Clr +0.0430 +0.0464
Clṙ −0.0001

ldd [4] DERIV
Cnβ

+0.2588 +0.2599
Cnβ̇

(∗) +0.0163

Cnδa
+0.0395 +0.0419

Cnδr
−0.1707 −0.1772

Cnp −0.0261 −0.0247
Cnṗ

−0.0003 −0.0002
Cnr −0.2775 −0.2809
Cnṙ

+0.0004 +0.0016

Table 2: Case HA21D results
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Numerička procena nestacionarnih
poprečnosmernih derivativa stabilnosti aviona

UDK 536.7

Nestacionarni poprečnosmerni aerodinamički derivativi subsoničnih aviona
proizvoljne konfiguracije mogu se numerički proceniti korǐsćenjem metoda
konačnih elemenata baziranih na metodi rešetke dipola (Doublet Lat-
tice Method - DLM), teorije vitkih tela (Slender Body Theory - SBT) i
metodi zamene (Method of Images - MI). Primenom navedenih metoda
razvijen je postupak proračuna raspodela stacionarnih i oscilatornih aero-
dinamičkih opterećenja aviona. Raspodele aerodinamičkih opterećenja
po uzgonskim površinama definisane su u pravcu tetiva i razmaha, a
raspodele po telima u vertikalnoj i bočnoj ravni koje sadrže osu simetrije
tela. Konfiguraciju aviona može da sačinjava proizvoljan skup uzgonskih
površina (uključujući komandne površine) i proizvoljan skup tela kružnog
poprečnog preseka promenjivog duž ose simetrije tela. Kratak pregled
korǐsćenih metoda dat je u [1], [2], [3], [4] i [5]. Na bazi navedenih metoda
razvijen je softverski paket DERIV. Rezultati dobijeni programom DE-
RIV testirani su na primerima HA21B i HA21D iz NASTRAN-a datih u
[4]. U prvom primeru (HA21B) za krilo mlaznog transportnog aviona
(BAH krilo), koje stacionarno rotira oko podužne ose aviona, odred-
jeni su derivativi valjanja. U drugom primeru (HA21D) izračunati su
poprečnosmerni derivativi konfiguracije sa kanardom i krilom koje ima
strelu unapred (FSW konfiguracija). Konfiguracija osciluje kvazistacionarno
i antisimetrično. Postignuto je prihvatljivo slaganje uporednih rezultata
iz [4] i programa DERIV.


