RECALCULATED ORBITS OF 8 DOUBLE STARS

D. Olević, G. Popović and P. Jovanović

Astronomical Observatory, Volgina 7, 11160 Belgrade-74, Yugoslavia

(Received: November 7, 2000)

SUMMARY: The authors present new orbital elements for the following pairs: ADS 1227, ADS 3317, ADS 8128, ADS 8239, ADS 8242, ADS 8539, ADS 8949 and McA 61. Individual masses for these pairs are also calculated. For the pairs ADS 8128, ADS 8239, ADS 8539 and ADS 8949 calculated parallaxes are in accordance with the corresponding parallaxes of the Hipparcos Program.

1. INTRODUCTION

The latest observations of the pairs ADS 1227, ADS 3317, ADS 8128, ADS 8239, ADS 8242, ADS 8539, ADS 8949 and McA 61 show that the residuals (O - C) calculated from the previous elements are significant. For this reason we performed calculation of new orbital elements for the above pairs.

2. RESULTS

In Table 1, are given:

a) Basic information about the pairs,
b) Classical and vectorial orbital elements and
c) Absolute magnitudes.

Masses and parallaxes are given for the pairs located on the main sequence of H-R diagram. The calculation is performed using the equation from Angelov (1993) and Angelov (1996). The ephemeris are given in Table 2 and graphical presentation of the calculated orbits and used observations is given in Figs. 1 - 8. The above results are also published in the IAU Circ. No. 141.

3. CONCLUSION

The obtained dynamical parallaxes (π_{dyn}) are in good accordance with Hipparcos results.

Acknowledgements – This work is a part of the project "Astrometrical, Astrodynamical and Astrophysical investigations", supported by Ministry of Science and Technology of Serbia.
<table>
<thead>
<tr>
<th>WDS</th>
<th>ADS</th>
<th>WDS</th>
<th>ADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>m</td>
<td>Name</td>
<td>m</td>
</tr>
<tr>
<td>Sp. Author</td>
<td>G0</td>
<td>A5</td>
<td>F9V</td>
</tr>
<tr>
<td>$P(y)$</td>
<td>144.173</td>
<td>17.248</td>
<td>285.809</td>
</tr>
<tr>
<td>$n(^o/y)$</td>
<td>2.49700</td>
<td>20.87183</td>
<td>1.25958</td>
</tr>
<tr>
<td>T</td>
<td>1983.105</td>
<td>1993.10</td>
<td>2021.56</td>
</tr>
<tr>
<td>a''</td>
<td>0.36</td>
<td>0.2275</td>
<td>2.5032</td>
</tr>
<tr>
<td>e</td>
<td>0.7523</td>
<td>0.0408</td>
<td>0.7818</td>
</tr>
<tr>
<td>$i(^o)$</td>
<td>109.78</td>
<td>68.70</td>
<td>72.92</td>
</tr>
<tr>
<td>$\Omega(^o)$</td>
<td>141.51</td>
<td>146.18</td>
<td>6.22</td>
</tr>
<tr>
<td>$\omega(^o)$</td>
<td>77.45</td>
<td>227.00</td>
<td>207.30</td>
</tr>
<tr>
<td>$A''(n)$</td>
<td>0.013010</td>
<td>0.162503</td>
<td>-1.999998</td>
</tr>
<tr>
<td>$B''(n)$</td>
<td>0.144555</td>
<td>-0.036155</td>
<td>-0.530143</td>
</tr>
<tr>
<td>$F''(n)$</td>
<td>0.297311</td>
<td>-0.106839</td>
<td>1.114757</td>
</tr>
<tr>
<td>$G''(n)$</td>
<td>-0.201899</td>
<td>0.139403</td>
<td>-0.482903</td>
</tr>
<tr>
<td>$C''(n)$</td>
<td>0.337236</td>
<td>-0.154994</td>
<td>-1.009240</td>
</tr>
<tr>
<td>$H''(n)$</td>
<td>0.075074</td>
<td>-0.144533</td>
<td>-1.955436</td>
</tr>
<tr>
<td>M_A</td>
<td>-</td>
<td>-</td>
<td>4.79</td>
</tr>
<tr>
<td>M_B</td>
<td>-</td>
<td>-</td>
<td>5.86</td>
</tr>
<tr>
<td>$M_A\odot$</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
</tr>
<tr>
<td>$M_B\odot$</td>
<td>-</td>
<td>-</td>
<td>0.82</td>
</tr>
<tr>
<td>π_{dyn}^n</td>
<td>-</td>
<td>-</td>
<td>0.0424</td>
</tr>
<tr>
<td>π_H^n</td>
<td>0.00433</td>
<td>0.02168</td>
<td>0.03117</td>
</tr>
<tr>
<td>WDS</td>
<td>11374+4728</td>
<td>12244+2535</td>
<td>13343-0019</td>
</tr>
<tr>
<td>ADS</td>
<td>8242</td>
<td>8539</td>
<td>8949</td>
</tr>
<tr>
<td>Name</td>
<td>Ku 39</td>
<td>STF 1639 AB</td>
<td>STF 1757 AB</td>
</tr>
<tr>
<td>m</td>
<td>10.03-10.30</td>
<td>6.41-7.55</td>
<td>7.37-8.32</td>
</tr>
<tr>
<td>Sp. Author</td>
<td>KIV5</td>
<td>A7V+F4V</td>
<td>K4III</td>
</tr>
<tr>
<td>$P(y)$</td>
<td>293.672</td>
<td>575.435</td>
<td>512.659</td>
</tr>
<tr>
<td>$n(^o/y)$</td>
<td>1.22586</td>
<td>0.62561</td>
<td>0.70222</td>
</tr>
<tr>
<td>T</td>
<td>204.67</td>
<td>1891.747</td>
<td>1941.533</td>
</tr>
<tr>
<td>a''</td>
<td>3.3704</td>
<td>1.2238</td>
<td>2.8616</td>
</tr>
<tr>
<td>e</td>
<td>0.8579</td>
<td>0.9262</td>
<td>0.0609</td>
</tr>
<tr>
<td>$i(^o)$</td>
<td>65.96</td>
<td>150.38</td>
<td>58.48</td>
</tr>
<tr>
<td>$\Omega(^o)$</td>
<td>125.23</td>
<td>140.84</td>
<td>90.68</td>
</tr>
<tr>
<td>$\omega(^o)$</td>
<td>75.93</td>
<td>9.74</td>
<td>8.76</td>
</tr>
<tr>
<td>$A''(n)$</td>
<td>-1.560786</td>
<td>-0.821512</td>
<td>-0.261167</td>
</tr>
<tr>
<td>$B''(n)$</td>
<td>-0.099099</td>
<td>0.901251</td>
<td>2.825357</td>
</tr>
<tr>
<td>$F''(n)$</td>
<td>1.613411</td>
<td>0.822697</td>
<td>-1.473298</td>
</tr>
<tr>
<td>$G''(n)$</td>
<td>-2.862960</td>
<td>0.682203</td>
<td>-0.453162</td>
</tr>
<tr>
<td>$C''(n)$</td>
<td>2.985612</td>
<td>0.102357</td>
<td>0.371453</td>
</tr>
<tr>
<td>$H''(n)$</td>
<td>0.748413</td>
<td>0.596138</td>
<td>2.410988</td>
</tr>
<tr>
<td>M_A</td>
<td>-</td>
<td>-</td>
<td>1.79</td>
</tr>
<tr>
<td>M_B</td>
<td>-</td>
<td>-</td>
<td>2.93</td>
</tr>
<tr>
<td>$M_A\odot$</td>
<td>-</td>
<td>-</td>
<td>1.86</td>
</tr>
<tr>
<td>$M_B\odot$</td>
<td>-</td>
<td>-</td>
<td>1.44</td>
</tr>
<tr>
<td>π_{dyn}^n</td>
<td>-</td>
<td>-</td>
<td>0.0119</td>
</tr>
<tr>
<td>π_H^n</td>
<td>0.02767</td>
<td>0.01023</td>
<td>0.04103</td>
</tr>
</tbody>
</table>
Table 2. Ephemeris

<table>
<thead>
<tr>
<th>t</th>
<th>θ</th>
<th>ρ</th>
<th>θ</th>
<th>ρ</th>
<th>θ</th>
<th>ρ</th>
<th>θ</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDS 01345+3440</td>
<td>WDS 04357+1010</td>
<td>WDS 11191+1416</td>
<td>WDS 11368+1221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000.0</td>
<td>309°.2</td>
<td>0''.295</td>
<td>169°.2</td>
<td>0''.165</td>
<td>68°.7</td>
<td>0''.542</td>
<td>153°.5</td>
<td>0''.895</td>
</tr>
<tr>
<td>2001.0</td>
<td>308.3</td>
<td>0.301</td>
<td>189.2</td>
<td>0.123</td>
<td>73.2</td>
<td>0.508</td>
<td>154.2</td>
<td>0.902</td>
</tr>
<tr>
<td>2002.0</td>
<td>307.5</td>
<td>0.306</td>
<td>226.6</td>
<td>0.093</td>
<td>78.2</td>
<td>0.477</td>
<td>154.8</td>
<td>0.909</td>
</tr>
<tr>
<td>2003.0</td>
<td>306.7</td>
<td>0.310</td>
<td>271.1</td>
<td>0.107</td>
<td>83.9</td>
<td>0.449</td>
<td>155.4</td>
<td>0.916</td>
</tr>
<tr>
<td>2004.0</td>
<td>305.9</td>
<td>0.314</td>
<td>297.0</td>
<td>0.150</td>
<td>90.3</td>
<td>0.426</td>
<td>156.0</td>
<td>0.923</td>
</tr>
<tr>
<td>2005.0</td>
<td>305.2</td>
<td>0.317</td>
<td>311.2</td>
<td>0.191</td>
<td>97.4</td>
<td>0.407</td>
<td>156.6</td>
<td>0.930</td>
</tr>
<tr>
<td>2006.0</td>
<td>304.4</td>
<td>0.320</td>
<td>321.0</td>
<td>0.217</td>
<td>105.0</td>
<td>0.395</td>
<td>157.2</td>
<td>0.937</td>
</tr>
<tr>
<td>2007.0</td>
<td>303.7</td>
<td>0.323</td>
<td>329.5</td>
<td>0.220</td>
<td>113.0</td>
<td>0.389</td>
<td>157.8</td>
<td>0.944</td>
</tr>
<tr>
<td>2008.0</td>
<td>303.0</td>
<td>0.325</td>
<td>338.7</td>
<td>0.197</td>
<td>121.1</td>
<td>0.389</td>
<td>158.4</td>
<td>0.951</td>
</tr>
<tr>
<td>2009.0</td>
<td>302.3</td>
<td>0.327</td>
<td>352.2</td>
<td>0.151</td>
<td>129.1</td>
<td>0.396</td>
<td>158.9</td>
<td>0.957</td>
</tr>
<tr>
<td>2010.0</td>
<td>301.6</td>
<td>0.329</td>
<td>20.7</td>
<td>0.096</td>
<td>136.7</td>
<td>0.408</td>
<td>159.5</td>
<td>0.964</td>
</tr>
</tbody>
</table>

WDS 11374+4728	**WDS 12244+2535**	**WDS 13343-0019**	**WDS 20331+4950**					
2000.0	119.2	0.872	324.6	1.712	127.1	1.965	50.9	0.054
2001.0	123.5	0.775	324.5	1.720	127.9	1.949	56.8	0.058
2002.0	129.2	0.654	324.4	1.728	128.7	1.933	62.5	0.057
2003.0	138.0	0.502	324.3	1.736	129.5	1.916	68.8	0.053
2004.0	155.7	0.326	324.2	1.744	130.3	1.900	76.1	0.049
2005.0	205.6	0.199	324.1	1.751	131.1	1.884	84.9	0.044
2006.0	263.3	0.296	324.0	1.759	132.0	1.868	95.9	0.039
2007.0	283.9	0.483	323.9	1.767	132.9	1.852	109.2	0.036
2008.0	292.9	0.663	323.8	1.774	133.7	1.836	124.4	0.035
2009.0	298.2	0.824	323.7	1.782	134.6	1.821	140.0	0.035
2010.0	301.9	0.966	323.6	1.789	135.5	1.805	154.4	0.038
REFERENCES

*** : 2000, Circulaire IAU, No. 141.
The Hipparcos and Tycho Catalogues (ESA 1997).

нови путањски елементи 8 двојних звезда

Д. Олевић, Г. Поповић и П. Јовановић

Астрономска опсерваторија, Волгина 7, 11160 Београд-74, Југославија

УДК 524.383
Претходно списање

Автори овог рада дају нове путањске елементе за следеће двојне звезде: ADS 1227, ADS 3317, ADS 8128, ADS 8239, ADS 8242, ADS 8539, ADS 8949 и McA 61. За парове ADS 8128, ADS 8239, ADS 8539 и ADS 8949 израчунате су и паралаксе које се добро слажу са резултатима Hipparcos програма, као и појединачне масе система.