ASCA AND XMM-NEWTON OBSERVATIONS OF THE
GALACTIC SUPERNOVA REMNANT G311.5−0.3

T. G. Pannuti1, M. D. Filipović2, K. Luken2, G. F. Wong2,3, P. Manojlović2, N. Maxted1,2 and Q. Roper2

1Department of Earth and Space Sciences, Morehead State University,
235 Martindale Drive, Morehead, KY 40351, USA
E-mail: t.pannuti@moreheadstate.edu

2Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
E-mail: m.filipovic@westernsydney.edu.au

3School of Physics, The University of New South Wales, Sydney, 2052, Australia

(Received: July 24, 2017; Accepted: September 5, 2017)

SUMMARY: We present an analysis of X-ray observations made with ASCA and XMM-Newton of the Galactic supernova remnant (SNR) G311.5−0.3. Prior infrared and radio observations of this SNR have revealed a shell-like morphology at both wavelengths. The spectral index of the radio emission is consistent with synchrotron emission, while the infrared colors are consistent with emission from shocked molecular hydrogen. Also previous CO observations have indicated an interaction between G311.5−0.3 and an adjacent molecular cloud. Our previous analysis of the pointed ASCA observation made of this SNR detected X-ray emission from the source for the first time but lacked the sensitivity and the angular resolution to rigorously investigate its X-ray properties. We have analyzed an archival XMM-Newton observation that included G311.5−0.3 in the field of view: this is the first time that XMM-Newton data has been used to probe the X-ray properties of this SNR. The XMM-Newton observation confirms that the X-ray emission from G311.5−0.3 is centrally concentrated and supports the classification of this source as a mixed-morphology SNR. In addition, our joint fitting of extracted ASCA and XMM-Newton spectra favor a thermal origin for the X-ray emission over a non-thermal origin. The spectral fitting parameters for our TBABS×APEC fit to the extracted spectra are $N_H = 4.63_{-0.85}^{+1.87} \times 10^{22}$ cm$^{-2}$ and $kT = 0.68_{-0.24}^{+0.20}$ keV. From these fit parameters, we derive the following values for physical parameters of the SNR: $n_e = 0.20$ cm$^{-3}$, $n_p = 0.17$ cm$^{-3}$, $M_X = 21.4$ M_\odot and $P/k = 3.18 \times 10^6$ K cm$^{-3}$.

Key words. ISM: individual objects: G311.5−0.3 – ISM: supernova remnants – X-rays: individuals: G311.5−0.3 – X-rays: ISM

1. INTRODUCTION

Supernova remnants (SNRs) originate from the violent deaths of stars (either massive stars or degenerate stars in binary systems) in supernova (SN) explosions. Studies of SNRs yield insights into a variety of associated physical phenomena such as the endpoints of stellar evolution, the chemical and tem-
poral evolution of the interstellar medium (ISM) in galaxies and the acceleration of cosmic-ray particles. SNRs manifest themselves across the entire electromagnetic spectrum through a variety of emission mechanisms and therefore observations made at multiple wavelength domains are often considered simultaneously in the study of particular SNRs of interest. Nearly 300 Galactic SNRs are known to exist (Green 2014, 2017) but only a small minority of these sources have been the subjects of extensive study at multiple wavelength domains. Such studies are absolutely vital for developing a coherent understanding of SNRs and related physical phenomena.

In this paper we present an analysis of X-ray observations made of the Galactic SNR G311.5−0.3 with the Advanced Satellite for Cosmology and Astrophysics (ASCA) and XMM-Newton. This source was first detected by radio observations, which revealed a shell-like morphology for the SNR with an angular diameter of approximately 5′, an integrated flux density ∼3 Jy at 1 GHz and a spectral index α ∼−0.51 (Shaver and Goss 1970, Caswell and Barnes 1985, Whiteoak and Green 1996). Recent infrared imaging and spectroscopic observations made with the Spitzer Space Telescope have yielded dramatic new insights into the properties of G311.5−0.3. Imaging observations made with Spitzer reveal a shell-like morphology for the SNR at all four IRAC channels (Reach et al. 2006) and at both MIPS channels (Pinheiro Gonçalves et al. 2011). Reach et al. (2006) also measured IRAC colors for G311.5−0.3 at the four IRAC channels and argued that the IRAC-detected emission from the SNR was produced by shocked molecules, suggesting that G311.5−0.3 is interacting with adjacent molecular clouds. Complementary spectroscopic observations with the IRS clearly detected both H$_2$ lines (again suggesting interaction with adjacent molecular clouds) and ionic lines (such as [NeII] and [NeIII]): the latter set of lines suggested the presence of a rather fast shock with a velocity 40-90 km s$^{-1}$ propagating into a medium with an initial density of 104 cm$^{-3}$ (Andersen et al. 2011).2

The scenario where G311.5−0.3 is interacting with adjacent molecular clouds gained additional support from Pannuti et al. (2014a) who analyzed CO observations made along the line of sight to this SNR and argued for a physical association between G311.5−0.3 and a molecular cloud with a radial velocity v$_{LSR}$ = 39.7 km s$^{-1}$. Andersen et al. (2011) estimated a distance to the SNR of 14.8 kpc based on the radial velocity of the associated molecular cloud: we adopt this distance to G311.5−0.3 for the remainder of this paper.3We also note that G311.5−0.3 has been detected in the γ-ray: in their catalog of SNRs detected by Fermi, Acero et al. (2016) measure a flux of 16.54±1.16−0.82 \times 10$^{-8}$ photons cm$^{-2}$ s$^{-1}$ from G311.5−0.3 and a fitted photon index of $\Gamma = 2.51±0.09±0.10$ to the detected emission over the energy range of 1 to 100 GeV. While the nature of this detected γ-ray emission from G311.5−0.3 has yet to be explored, such high energy emission associated with SNRs is sometimes interpreted as originating from an interaction between the SNR and an adjacent molecular cloud. For example, γ-ray emission has been detected at the site of interaction between the Galactic SNR G347.3−0.5 (RX J1713.7−3946) (Acero et al. 2017) and adjacent molecular clouds and the origin of this high energy emission has been attributed to the decay of pions produced by collisions of cosmic-ray protons accelerated by the SNR with hydrogen nuclei in these molecular clouds (Fukui et al. 2003, Moriguchi et al. 2005), although this scenario is still debated in the literature (Acero et al. 2015).

The X-ray properties of G311.5−0.3 remain poorly explored in the literature: this is due in part to the large estimated distance to the SNR and the corresponding extensive Galactic absorption along the line of sight. The X-ray emission from G311.5−0.3 was detected for the first time by Pannuti et al. (2014a) who conducted an imaging and spectroscopic analysis of an archival pointed ASCA observation made of the SNR. Those authors extracted GIS2 and GIS3 images and spectra for the SNR: the combined GIS2+GIS3 image revealed a centrally-concentrated X-ray morphology rather than a shell-like morphology typically seen for Galactic SNRs. The two extracted spectra were fit simultaneously using a power law model and a thermal model known as APEC (Astrophysical Plasma Emission Code), which is an optically-thin collisionally-ionized plasma with solar abundances (Foster et al. 2012). Statistically acceptable fits to the spectra were obtained using either model (χ^2=0.79 and 0.57, respectively) and the derived column densities for the two fits were comparable (N$_{H}$=3×1022 cm$^{-2}$). While the derived temperature for the APEC fit (kT=0.98$^{+0.12}_{-0.09}$ keV) is broadly consistent with the fitted temperatures of the X-ray emitting plasmas associated with other SNRs, the derived photon index for the power law fit ($\Gamma=4.82^{+1.78}_{-2.32}$) is more difficult to interpret physically, since it appears to fall between values expected for synchrotron emission and for thermal bremsstrahlung emission, the emission mechanisms typically detected by X-ray observations of Galactic SNRs (Vink 2012).

1We adopt here the convention that α is defined as $S_{\nu} \propto \nu^\alpha$.

2In fact, generally, in the case of G311.5−0.3, the ionic lines suggest a moderately fast shock, while specifically the [NeII]-to-[NeI] ratio points towards either a shock of 100 km s$^{-1}$ or a faster shock of approximately 170 km s$^{-1}$ with different number densities.

3This distance estimate is consistent with distance estimates to G311.5−0.3 that have employed other methods. For example, Pavlović et al. 2014 derived a distance estimate to G311.5−0.3 of 12.8 kpc using the radio surface brightness to diameter relation (also known as the Σ-D relation) for Galactic SNRs.
Uncertainty in the true X-ray properties of G311.5–0.3 motivates the present work, where we conduct a spatial and spectroscopic analysis of archival ASCA and XMM-Newton observations of the SNR. The main goal of the present work is to build on the previous X-ray study conducted of G311.5–0.3 by Pannuti et al. (2014a) and improve our understanding of both the X-ray morphology and the X-ray emission mechanism of this SNR. The organization of this paper may be described as follows: the observations and the accompanying data reduction procedures are presented in Section 2, specifically the ASCA and XMM-Newton observations in Sections 2.1 and 2.2, respectively. The results are presented in Section 3 where we discuss the results of our imaging and spectroscopic analysis in Sections 3.1 and 3.2, respectively. Lastly, the results of this paper are given in Section 4.

2. OBSERVATIONS AND DATA REDUCTION

Below we describe the ASCA and XMM-Newton observations of G311.5–0.3 and the accompanying data reduction processes. Details about the observations are summarized in Tables 1 and 2 and the data reduction steps were performed using standard tools (namely FTOOLS5) in the HEASOFT software package Version 6.19.

2.1. ASCA observations and data reduction

G311.5–0.3 was the subject of a pointed observation made by ASCA on 2nd March 1996 (OB-SID 56047000, PI: John Hughes) with the SIS0, SIS1, GIS2 and the GIS3. The signal-to-noise levels of the data collected by the former two instruments were too low for a detailed analysis and they are not considered in the present paper. During this observation, G311.5–0.3 was located ∼7.9 off-axis.

The dataset was downloaded from the archive located at the High Energy Astrophysics Science Archive Research Center (HEASARC5). The data were reduced in an identical manner to the steps taken by Pannuti et al. (2014a) where xselect applied standard screening to the GIS datasets: after applying this screening, the effective exposure times of the observations were 17558 seconds and 17870 seconds, respectively. GIS2 and GIS3 source spectra were extracted from a circular source region centered on the coordinates RA(J2000.0)=14°05’35”03, Dec(J2000.0)=−61°58’18”72 and with a radius of 150”.

Background spectra were extracted from an annular region extending 60” beyond the source region: in this way, the data reduction differed from the reduction performed by Pannuti et al. (2014a) where the FTOOL mgisbgd was used to generate spectra for background subtraction. A different approach was taken here in extracting a background spectrum to be consistent with the spectral analysis of the XMM-Newton observation of G311.5–0.3 (see Section 2.2). Specifically, in the analysis of the XMM-Newton data, background spectra were extracted from this annular region and we thus took the same approach when choosing the method for extraction of background spectra. For spectral fitting, canned redistribution matrix files (RMFs) were used and the FTOOL ascaarf was implemented to create ancillary response files (ARFs). The GIS2 and GIS3 source spectra were both grouped to a minimum of 25 counts per bin using the FTOOL grppha. Lastly, we used the FTOOL addacaspec to merge the two source spectra (along with the background spectra and the ARFs).

<table>
<thead>
<tr>
<th>Table 1. Summary of ASCA GIS2+GIS3 Observations of G311.5–0.3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence Number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>56047000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Summary of XMM-Newton MOS1+MOS2+PN Observations of G311.5–0.3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence Number</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0007421601</td>
</tr>
</tbody>
</table>

5HEASARC is a service of the Laboratory for High Energy Astrophysics at the National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC) and High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. For more information on HEASARC, please see http://heasarc.gsfc.nasa.gov.
2.2. XMM-NEWTON observations and data reduction

G311.5−0.3 was serendipitously observed by XMM-Newton on 20th February 2002 (OBSID 0007421601, PI: Arvind Parmar) with the MOS1, MOS2 and the PN cameras in Medium Filter Imaging mode. During this observation, G311.5−0.3 was located ∼7′′.4 off-axis.

The dataset for the observation was downloaded from the on-line XMM-Newton data archive and processed in a similar manner to the processing of XMM-Newton datasets as described in our previous works (Pannuti et al. 2014a,b) of observations of other Galactic SNRs. In summary, the dataset was processed with Science Analysis Software (SAS) Package Version 15.0.0 (Gabriel et al. 2004): the SAS tools emchain and mos−filter were used to apply standard data reduction steps and perform background flare filtering, respectively, on the MOS1 and MOS2 observations while the SAS tools epchain and pn−filter were used to apply standard data reduction steps and perform background flare filtering on the PN observation.

After processing, the effective exposure times of the MOS1, MOS2 and PN observations were 11970, 6553 and 3961 seconds, respectively. Source spectra of G311.5−0.3 for all three cameras (along with accompanying background spectra) were extracted using the SAS tool evselect and with the same extraction regions that were used for generating the ASCA GIS spectra.

In parallel to our analysis of the ASCA GIS spectra, the extracted source spectra were grouped to a minimum of 25 counts per bin. The SAS tool backscale was then used to determine the proper value for the BACKSCAL keyword in each of the extracted MOS1, MOS2 and PN spectra. Next, the SAS tools arfgen and rmfgen were used to create the ARFs and RMFs respectively for each source spectrum. Finally, to improve the statistics of the spectral analysis, the SAS tool epicspeccombine was run to merge all three of the source spectra as well as merge all three of the background spectra and generate an appropriate response matrix file for the merged source spectrum.

3. RESULTS

3.1. Imaging

In Fig. 1 we present an exposure-corrected and co-added (MOS1+MOS2+PN) XMM-Newton image of G311.5−0.3. This image has also been smoothed with a Gaussian with a radius of 15′. For illustrative purposes, we have also overlaid contours depicting the radio emission as detected at 843 MHz by the Molonglo Observatory Synthesis Telescope (MOST): this radio observation of G311.5−0.3 has been described and analyzed in detail by Whiteoak and Green (1996).

Fig. 1. Combined MOS1+MOS2+PN exposure-corrected image of G311.5−0.3 with contours overlaid depicting emission detected at 843 MHz by the Molonglo Observatory Synthesis Telescope (MOST) (see Whiteoak and Green 1996). The contour levels correspond to 0.08, 0.12, 0.16, 0.2, 0.24, 0.26 and 0.28 Jy/beam. The inner white circle indicates the region of spectral extraction for the source spectrum while the outer white circle indicates the surrounding annular region of spectral extraction for the background spectrum. The regions of spectral extraction are the same for the ASCA and XMM-Newton observations. The X-ray emission has been smoothed by a Gaussian with a radius of 15 arcseconds.

http://xmm.esac.esa.int/xsa/.
Consistent with our analysis of the ASCA GIS2+GIS3 images of this SNR presented in Pannuti et al. (2014a), the X-ray emission from G311.5−0.3 does not match the shell-like radio morphology of the SNR but is instead centrally concentrated. This contrast in morphologies—coupled with the likely thermal origin of the X-ray emission as discussed in Section 3.2—motivates the classification of G311.5−0.3 as a mixed-morphology SNR. These SNRs are characterized by this combination of contrasting morphologies in the X-ray and radio (Rho and Petre 1998, Chen et al. 2008): well-known examples of Galactic mixed-morphology SNRs include W28 (Rho and Borkowski 2002, Pannuti et al. 2017), W44 (Shelton et al. 2004, Uchida et al. 2012), G332.5-5.6 (Stupar et al. 2007) and W49B (Keohane et al. 2007, Lopez et al. 2013).

While the origin of the contrasting morphologies for these particular sources remains unclear, it is noted that as a general trend, mixed-morphology SNRs all appear to be interacting with adjacent molecular clouds (Vink 2012) and therefore this interaction is believed to play a role in fostering the center-filled thermal X-ray emission seen from these sources. In addition to its center-filled X-ray morphology, G311.5−0.3 appears to resemble other mixed-morphology SNRs in other ways, namely in its interaction with an adjacent molecular cloud as evidenced by its infrared morphology and spectral properties as described in Section 1.

Unfortunately, the low signal-to-noise of the dataset for this SNR limits the potential to study its properties in detail (Vink 2012). While the origin of the contrasting morphologies for this SNR remains uncertain, it is known that the presence of a prominent pulsar wind nebula (PWN) in the center of this SNR cannot be completely ruled out with the present datasets. Additional deep X-ray observations with improved sensitivity are necessary to determine if a PWN is seen in the interior of this SNR.

3.2. Spectroscopy

The spectral fitting was performed using the XSPEC software package Version 12.9.0n (Arnaud 1996). The extracted spectra were fit over the energy range of 1.0 keV to 4.0 keV with the same power law and APEC models that were considered by Pannuti et al. (2014a): once again, the elemental abundances of the latter model were fixed to solar. In contrast to our previous work, we convolve these two models with the interstellar absorption model TBABS: also, the interstellar elemental abundances developed by Wilms et al. (2000) were adopted. This particular absorption model—instead of other absorption models, like WABS and PHABS (the latter was implemented in the previous work that we presented in Pannuti et al. (2014a))—was chosen to use the most up-to-date measurements of interstellar elemental abundances. We also note that the low overall signal-to-noise of the datasets motivates the use of only simpler models in the spectral analysis, such as a power law and APEC (this latter model assumes that the X-ray-emitting plasma is in collisional ionization equilibrium). The present datasets lack enough signal to apply more sophisticated models that have been applied to fitting extracted X-ray spectra of other MMSNRs. These models include VNEI (a non-equilibrium ionization collisional plasma model with variable elemental abundances) and VRNEI (a non-equilibrium ionization recombining plasma model with variable elemental abundances). The reader is referred to Borkowski et al. (2001) for more details about these non-equilibrium ionization models.

In Table 3, we present the results of our spectral fitting with these two models: consistent with the results of Pannuti et al. (2014a), we obtain statistically acceptable fits ($\chi^2 \sim 1.0$) to the extracted spectra using the power law and the APEC model. However, in contrast to that previous work—where

<table>
<thead>
<tr>
<th>Model</th>
<th>N_H (10^{22} cm^{-2})</th>
<th>kT (keV)</th>
<th>Γ</th>
<th>K^c</th>
<th>χ^2 (x^2/DOF)</th>
<th>Unabsorbed Fluxd (ergs cm^{-2} s^{-1})</th>
<th>Unabsorbed Luminosityd (ergs s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Law</td>
<td>7.24±0.42</td>
<td>6.90(>4.68)</td>
<td>2.53×10^{-2}</td>
<td>1.01 (662.49/657)</td>
<td>8.29×10^{-12}</td>
<td>2.17×10^{35}</td>
<td></td>
</tr>
<tr>
<td>APECa</td>
<td>4.63±0.85</td>
<td>0.68±0.20</td>
<td>3.07×10^{-3}</td>
<td>0.99 (647.25/657)</td>
<td>1.56×10^{-12}</td>
<td>4.09×10^{34}</td>
<td></td>
</tr>
</tbody>
</table>

aDefined such that the dependence of flux on energy E is proportional to $E^{-\Gamma}$.

bDefined such that $K^c = N_e n_H$, where N_e is the number density of electrons.

cWith K^c in units of photons keV^{-1} cm^{-2} s^{-1} at 1 keV. In the case of the APEC model, K is in units of (cm^{-3}) and defined as $(10^{-14}/4\pi d^2)\int n_e n_H dV$, where d is the distance to the source (in units of cm), n_e and n_H are the number densities of electrons and hydrogen nuclei, respectively (in units of cm^{-3}) and finally $\int dV = V$ is the integral over the entire volume of the X-ray-emitting plasma (in units of cm^{-3}).

dMeasured over the energy range of 1.0 to 4.0 keV. The luminosities are computed assuming a distance to G311.5−0.3 of 14.8 kpc.

eAbundance parameter frozen to solar values.
Fig. 2. (Top Panel) The combined ASCA GIS2+GIS3 spectra and XMM-Newton MOS1+MOS2+PN spectra (shown in black and red respectively) of G311.5−0.3. The source and background spectra have been extracted from the extraction regions shown in Fig. 1 and the spectra are fitted with the parameters of the TBABS×APEC fit listed in Table 3. (Bottom Panel) The residuals of the fits to the extracted spectra by the TBABS×APEC model.

4. DISCUSSION

We now discuss the results of our analysis for G311.5−0.3 in the context of other MMSNRs. The fitted temperature of the X-ray emission from G311.5−0.3 ($kT=0.68^{+0.20}_{-0.24}$ keV) is comparable to the fitted temperatures derived in the analysis of the X-ray spectra of other MMSNRs. The flat radio spectral index of G311.5−0.3 is also consistent with the flat radio spectral indices measured for other MMSNRs. In addition, like other MMSNRs, there is robust evidence that G311.5−0.3 is interacting strongly with adjacent molecular clouds as revealed by its infrared colors and its infrared spectra. Finally, the X-ray emitting plasma of G311.5−0.3 may also be a recombining plasma dominated by over-
ionization as seen in the spectra of other MMSNRs. However, at present, the available X-ray data for G311.5–0.3 lacks the signal-to-noise needed to confirm the presence of such plasma conditions associated with this SNR (if present). Additional X-ray observations of this SNR (such as an archival observation made with XMM-Newton) with much longer exposure time or a new observation made with the Chandra X-ray Observatory) are needed to probe the X-ray properties of G311.5–0.3 in more detail.

We now compute several salient properties of G311.5–0.3 based on the fitted parameters to the extracted X-ray spectra using the TBABS×APEC model. These are the same properties of the SNR that were examined and quantified previously by Pannuti et al. (2014a): here, we refine these computations based on the new fit parameters to the extracted spectra of G311.5–0.3 and the new adopted distance to the SNR (note that Pannuti et al. 2014a had previously assumed a lower distance to G311.5–0.3 of 12.5 kpc).

The electron number density n_e (and, in turn, the X-ray emitting mass M_X) may be determined from the normalization K of the TBABS×APEC fit to the extracted spectra, which is defined as

$$K = \frac{10^{-14}}{4\pi d^2} \int n_e n_p dV. \quad (1)$$

Here, d is the distance to G311.5–0.3 in cm, n_p is the proton number density in cm$^{-3}$ and $\int dV = V$ in cm3 is the volume occupied by the X-ray emitting plasma. We assume that $n_e = 1.2 n_p$ and that both number densities are uniform throughout the volume of the plasma: we further assume that the volume filling factor of the plasma is unity. Therefore, from this equation and the fitted normalization value of 3.07×10^{-3} cm$^{-5}$, we compute an electron number density $n_e = 0.20$ cm$^{-3}$ and a proton number density $n_p = 0.17$ cm$^{-3}$. At the adopted distance to G311.5–0.3 and assuming a spherical geometry for the source, its volume is $V = 1.54 \times 10^{59}$ cm3 and thus $M_X = n_p m_p V = 21.4 M_\odot$ (where m_p is the mass of a proton). While the values of n_e and n_p are essential identical to the values for these quantities that were computed by Pannuti et al. (2014a), the value of M_X is larger due to the greater assumed distance to the SNR.

Finally, we consider the pressure P expressed in units of cm$^{-3}$ K as $P/k = 2 n_e T$ where k is Boltzmann’s constant. From the computed value of n_e and the fitted value for T in the TBABS×APEC model, we compute $P/k = 2 (0.20 \text{ cm}^{-3})(7.94 \times 10^{6} \text{ K}) = 3.18 \times 10^6 \text{ cm}^{-3} \text{ K}$.

5. CONCLUSIONS

The conclusions of this paper may be summarized as follows:

- We have conducted a new joint ASCA and XMM-Newton spectral and spatial analysis of the X-ray emission from the Galactic SNR G311.5–0.3. Our work represents the first effort to analyze XMM-Newton data for this source through the use of an archival observation that serendipitously observed the source.
- We fit merged ASCA GIS2+GIS3 and XMM-Newton MOS1+MOS2+PN spectra of the SNR with first a simple power law model and then with a thermal (APEC) model: in both cases, the multiplicative absorption model TBABS was applied. While we find that both fits provide statistically acceptable fits, the extremely steep value for the photon index of the power law fit (specifically $\Gamma = 6.82 > 4.67$) strongly favors a thermal origin for the X-ray emission over a different origin (from synchrotron X-ray emission or a central PWN). Our work therefore resolves that the observed X-ray emission from G311.5–0.3 is thermal in origin with a fitted temperature $kT = 0.68^{+0.24}_{-0.20}$ keV.
- Based on the parameters of the fit with a thermal model to the extracted spectra of G311.5–0.3, we have recomputed several salient physical properties of the SNR. These properties are $n_e = 0.20$ cm$^{-3}$, $n_p = 0.17$ cm$^{-3}$, $M_X = 21.4 M_\odot$ and $P/k = 3.18 \times 10^6$ cm$^{-3} \text{ K}$. These values are all broadly consistent with values for these properties that were previously computed by Pannuti et al. (2014a); minor differences may be attributed to the slightly larger distance assumed to this SNR than the previous work.

Acknowledgements – We thank the referee for multiple comments that have improved the quality of this paper. T.G.P. thanks Kip Kuntz and Steven Snowden for helpful discussions about the reduction and analysis of XMM – Newton data. This research has made use of NASA’s Astrophysics Data System as well as data, software and/or web tools obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), a service of the Astrophysics Science Division at NASA/GSFC and of the Smithsonian Astrophysical Observatory’s High Energy Astrophysics Division.

REFERENCES

ASCA AND XMM-NEWTON OBSERVATIONS OF THE GALACTIC SUPERNOVA REMNANT G311.5−0.3

T. G. Pannuti1, M. D. Filipovič2, K. Luken2, G. F. Wong2,3, P. Manojlović2, N. Maxted2,3 and Q. Roper2

1Department of Earth and Space Sciences, Morehead State University
235 Martindale Drive, Morehead, KY 40351, USA
E–mail: t.pannuti@moreheadstate.edu

2Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
E–mail: m.filipovic@westernsydney.edu.au

3School of Physics, The University of New South Wales, Sydney, 2052, Australia

UDK 524.354–795
Оригинална научна рад

У овој студији представљамо анализу рендгенских посматрања (ASCA и XMM-NEWTON) галактичког остатка супернове – G311.5−0.3. Претходна инфрацрвена и радио- посматрања овог остатка указују на љускасту морфологију. Радио-спектрални индекс остатка је конзистентан са синхротронским зрачењем а инфрацрвена посматрања са емисијом молекуларног водника поремећеног ударним таласом. Тakoђе претходна CO посматрања указују на интеракцију између самом остатка и молекуларног облаца који се налази у близини G311.5−0.3. Наша претходна анализа ASCA рендгенских посматрања је потврдила постојање овог остатка али је лошија резолуција спречила дубају анализу. Анализирали смо и старија (архивирана) рендгенска посматрања са телескопа XMM-NEWTON. Ова посматрања су потврдила да је рендгенска емисија концентрисана ка центру овог остатка што је различито од радио-емисије која је љускастог типа. Ове различите емисије указују да G311.5−0.3 припада групи тзв. мешане морфологије остатака супернових. Наша нова фитовања ASCA и XMM-NEWTON спектра фаворизују термалну емисију рендгенског зрачења. Спектрални параметри фита за наш TBABS×APEC екстрактовани спектар су $N_H = 4.63^{+1.87}_{-0.85} \times 10^{22}$ cm$^{-2}$ и $kT = 0.68^{+0.20}_{-0.24}$ keV. Из ових параметара фита добили смо следеће предности за овај остатак: $n_e = 0.20$ cm$^{-3}$, $n_p = 0.17$ cm$^{-3}$, $M_X = 21.4$ M$_{\odot}$ и $P/k = 3.18 \times 10^{6}$ K cm$^{-3}$.