FACTORS AFFECTING THE LEVEL OF CONJUGATED LINOLEIC ACID (CLA) IN MILK FROM DIFFERENT COW’S BREEDS

T. Grega, M. Sady, Dorota Naigebrauer, J. Domagala, H. Pastkowiak, B. Faber

Abstract: The investigations were carried out on the milk samples obtained from the cows of different breeds i.e.: Black and White (BW), Red and White (RW), Polish Red (PR) and Simental (100 cows of each breed) during a whole year. It was revealed that the cow’s breed and nutritional season had a substantial influence on the level of CLA in milk. The percentage of the CLA in the total fatty acids content was the highest in milk of PR cows - 0.92% and Simental - 0.69% when compared to the BW- 0.39 and RW cows-0.31%. The level of CLA in milk of each cow’s breed increased with increasing percentage of green forages in the diet starting from May to June (0.74 ± 0.16%) and then it decreased in July and August (0.65 ± 0.17%). Its lowest level for each cow’s breed was noticed during the period from December to January (0.38 ± 0.06%).

Keywords: conjugated linoleic acid (CLA), cow’s breed, nutrition

Introduction and Literature Review

Conjugated linoleic acid (9-cis; 11-trans) is considered as a bioactive milk fat component and in its natural state it occurs mainly in the milk of ruminants. Therefore milk and its products are considered as functional food. Preventive effect of CLA was proved against the wide range of the civilization diseases, such as: cancers, heart diseases, osteoporosis and obesity (Pisulewski et al. 2002). Fat level and its composition including CLA content are affected by many factors (genetic, physiological and environmental).

Many authors reported that the most influencing effect on CLA level in milk has feeding. Parodi (1999) in his investigations noted the highest value of polyunsaturated fatty acids and CLA content during pasture period in opposite to winter period. The similar tendency showed Pisulewski et al. (2002). A reason of this fact authors connected with high contents of unsaturated fatty acids in oils of grass seeds. Milk fat is the richest natural source of CLA with reported values ranging from 2,4 to 28,1 mg/g (Parodi 1999). Seasonal variations are very substantial with values during the summer period often up to 2 or 3 times higher than in the winter (Fogerty et al. 1988). Reported CLA values for Australian and New Zeland milk, are often somewhat 2 to 3 times higher than values reported for equivalent US products. This phenomenon presumably reflects the greater access to lush pasture, rich in polyunsaturated fatty acids, throughout the year by Australasian cattle and sheep (Parodi 1997).

Kelly et al. (1998) reported that feeding high amounts of linoleic acid oil (sunflower) increased CLA concentration to 24,4 mg/g of milk fat compared with lower values obtained for cows fed diet of lower amounts of that fatty acid. Dhiman et al. (1996) found that cows grazing on pasture could attain a CLA concentration of 22,7 mg/g of fat, which is much more higher than values for cows fed conserved forages.

Grzesklewicz et al. (2000) showed strict correlation between kind of forage and the level of CLA as well as trans-isomer of linoleic acid (particularly during the pasture period).

Another factor affecting CLA level in cows’ milk is breed. According to data cited by Lowless et al. (1998) CLA level in milk of Holstein-Friesian, Mouthingi and Normand cows was ranged between 14,5-18,3 mg/g of fat, respectively. Reklevska and Bornatowicz (2002). CLA content in milk of Black and White, Polish Red and Simental cows evaluated as (mg/g of fat): 7,1 – 11,7; 7,0-10,8; 7,0-9,4, respectively.

The level of CLA in milk is also affected by the animal species. Reklevska and Bornatowicz (2002) its level evaluated at (%): 0,1-0,7 (horses); 0,3-1,4 (cattle); 0,5-2,0 (sheeps); 0,3-1,0 (goats); 0,1-0,3 (pigs).

Grega et al. (1999) estimated that composition of cows’ milk showed higher value of polyunsaturated fatty acids at the end of lactation (3,01-3,92%) in relation to it onset (2,02-3,81%). It was probably affected by milk yield.

A positive relation between CLA levels in milk fat and increasing age of the animals has been reported by Lal and Narayanan (1984). In this study cows in 4-6 lactation showed a reduction in milk fat

1 Original scientific paper – Originální název rad
2 Prof. dr hab. Tadeusz Grega, Dr inż. Marek Sady, Dr inż. Dorota Naigebrauer, Dr inż. Jacek Domagala, Mgr inż. Baromiej Faber: Department of Animal Products Technology, Agricultural University of Kraków, Kraków, Poland; Mgr inż. Henryk Pastkowiak: Department of Cattle Breeding, Agricultural University of Kraków, Kraków, Poland
CLA compared to cows in 1-3 lactation and older cows (above 7 lactation) which yielded higher milk fat
CLA levels than younger cows.
Kelly et al. (1998) found substantial individual variations (9.9-51.7 mg CLA/g of fat) in cows at the
same stage of lactation that consumed the same diet and were subjected to the same management regimen.
The aim of the study was an evaluation of relationship between the level of CLA in milk and such
factors as: cow’s breed, feeding period and lactation stage.

Material and Methods

Investigations were carried out on the milk fat from 100 cows being in second lactation. The milk
samples from whole udder have been collected during the summer and winter feeding period. Milk fat was
extracted according to Anderson and Kjaergaardas (1962). In extracted fat the polyunsaturated fatty acids
and CLA levels were estimated according to Chautard et al. (1991) by chromatographic method.

Results and Discussion

The obtained results are shown in tables 1-3. Data presented in table 1 show on statistically
significant differences in the level of polyunsaturated and CLA fatty acids in milk of different cow’s breeds.
They highest level was found in milk of Polish Red and Simental cows. The similar data were described by
Farot (2001) who showed more beneficial profile of different kind of fatty acids groups and cholesterol in
milk of Polish Red and Simental cows in comparison to milk of Black and White cows.

| Table 1. Polyunsaturated acids and CLA levels in milk of different cow’s breeds. |
|-----------------------------------|---------------------------------|-----------------|-------------|-------------|
| Fatty acids (%) | Black and White | Red and White | Polish Red | Simental |
| Polyunsaturated | 2.15 ± 0.31 A | 2.28 ± 0.28 b | 2.78 ± 0.17 A, b | 2.77 ± 0.15 A, b |
| CLA | 0.31 ± 0.04 A | 0.39 ± 0.08 b | 0.92 ± 0.07 A, b | 0.69 ± 0.05 A, b |

A – p<0.01 b – p<0.05

The highest influence on CLA level was expressed by feeding period (table 2). The highest its level
was noted during the pasture period (April-June) in opposite to lowest level of CLA during the winter period
(January-March). These differences were statistically significant. Stanton et al. (1997) reported that CLA
level in milk arises in relation to grass share in a diet dose and amounts to: 16kg - 3,91; 20 kg – 5,92; 24 kg –
5,52; CLA mg/g of fat, respectively.

| Table 2. Milk polyunsaturated acids and CLA levels in milk in relation to feeding period |
|-----------------------------------|---------------------------------|-----------------|-------------|-------------|
| Fatty acids (%) | January-March | April-June | July-September | Octob-Decem. |
| Polyunsaturated | 1.28 ±0.12 A | 3.27 ±0.17 A, B | 2.89 ±0.15 A, B | 1.42 ±0.10 B |
| CLA | 0.38 ±0.06 A | 0.74 ±0.10 A, B | 0.65 ±0.11 A, B | 0.40 ±0.08 B |

A, B- p<0.01

No effect of lactation stage was shown on the level of polyunsaturated and CLA fatty acids (table 3). These data are in good agreement with results obtained by Stanton et al. (1997).

| Table 3. Milk polyunsaturated fatty acids and CLA levels in relation to lactation stage |
|-----------------------------------|---------------------------------|-------------|-------------|
| Fatty acids (%) | January-May | June-October |
| Polyunsaturated | 2.52 ±0.21 | 2.63 ±0.19 NS |
| CLA | 0.58 ±0.10 | 0.67 ±0.12 NS |

NS – not significant

Data obtained from presented experiment show the same view as Murphy et al. (1995), who concluded
that the main factor of variation in milk fatty acids profile is affected by indoor and outdoor feeding.
Factors Affecting The Level Of Conjugated Linoleic Acid (CLA) In Milk From Different Cow’s Breeds

Conclusions

1. The level of CLA in cow’s milk is affected by breed and feeding period.
2. These environmental and genetic factors can improve a bioactive character of milk.

FAKTORI KOJI UTIČU NA NIVO KONJUGOVANE LINOLNE KISELINE (CLA) U MLEKU KRAVA RAZLIČITIH RASA

T. Grega, M. Sady, Dorota Najgebauer, J. Domagała, H. Pustkowiak, B. Faber

Rezime

Konjugovana linolna kiselina (9-cis; 11-trans) se smatra bioaktivnom komponentom mlečne masti i u svom prirodnom stanju se javlja uglavnom kod mleka preživara. Zbog toga se mleko i mlečni proizvodi smatraju funkcionalnom hranom. Preventivno dejstvo CLA je dokazano protiv velikog broja bolesti ljudske populacije kao što su: rak, srčana bolesnja, osteoporozu i gojaznost.

Cilj ovog istraživanja je bio ispitivati uticaj genetskog faktora (rasa), faktora sredine (ishrana), fizioloških faktora (stanje i broja laktacija) na nivo CLA u kravljem mleku. Ispitivanje je izvedeno na uzorcima mleka dobijenih od krava različitih rasa: crno-bela (BW), crveno-bela (RW), poljska crvena (PR) i simentalska (100 krava od svake rase) tokom cele godine. Utvrđeno je da su rasa i sezone u pogledu ishrane imali značajan uticaj na nivo CLA u mleku. Procenat CLA u ukupnim masnim kiselinama je bio najveći u mleku PR krava – 0,92% i kod simentalskih krava – 0,69% u porodični sa BW – 0,39 kao i RW kravama – 0,31%. Nivo CLA u mleku krava svake ispitivane rase se povećavao sa povećanjem učesnica zelenog krmiva u obroku od maja do juna (0,74 ± 0,16%) da bi se smanjivao u julu i avgustu (0,65 ± 0,17%). Njihov nivo CLA za sve rase je utvrđen u periodu december – januar (0,38 ± 0,06%). Uticaj broja i stanja laktacije nje bio statistički signifikantan za nivo CLA bez obzira na rasu. Rezultati pokazuju da bilo rasa ili ishrana mogu da utiču na porat nivoa bioaktivnih komponenata mleka odn. CLA u kravljem mleku.

References

