UTICAJ OVIPORIZICIJE I VREMENA DODAVANJA MERMERA U HRANU NA KVALITET KONZUMNIH JAJA

Zlatica Pavlovski, D. Vitorović, Zdenka Škrbić, M. Lukić

Sadržaj: Ispitivanje uticaja ovipozicije i vremena dodavanja mermera obavljeno je na 360 Shaver nosilja podeljenih u tri grupe. U toku šestonedelnog oglednog perioda (od 72. do 78. nedelje uzrasta) kokoši su dobijale standardnu smešu prema preparukama za Shaver genotip u kojoj je osnovni izvor kalcijuma bila stočna kresa. Prva grupa kokoši nosilja bila je kontrolna i hranjene su sa osnovnom smešom, druga grupa dobijala je dodatno svakog dana ujutro po 2g krupno mlevenog mermera posipanjem po hrani, a treća grupa kokoši nosilja dobijala je 2g krupno mlevenog mermera podeljeno na dva dela i to 1g ujutro (8,00 sati) i 1g popodne (13,00 sati). Na kraju svakog nedeljnog perioda ispitivan je kvalitet svih sveštenih jaja. Od osobina kvaliteta jaja mereni su: masa jaja (g), masa luske (g), debljina luske (μm), deformacija luske (μm), sila loma luske (kg) i izračunavane su Haugh jedinice. Dobijeni rezultati su pokazali da ovipozicija nije značajno uticala na ispitivane osobine. Dodavanje mermera krupnijih čestica imalo je pozitivan uticaj na čvrstoću luske jaja. U odnosu na kontrolnu grupu, jutarnje dodavanje 2 g mermera po nosilji ili dodavanje 1g mermera ujutro i 1g mermera popodne, dovodi do statistički visoko značajnog povećanja čvrstoće luske, izraženog kroz veću silu loma i manju vrednost deformacije luske i veću vrednost mase i debljine luske. U odnosu na kontrolnu grupu i oglednu I, kvalitet belanca izražen Haugh-ovim jedinicama značajno je bio lošiji u oglednoj grupi III.

Ključne reči: kokoš nosilja, ovipozicija, mermer, kvalitet jaja

1 Originalan naučni rad – Original scientific paper
2 Dr Zlatica Pavlovski, naučni savetnik, mr Zdenka Škrbić, istraživač saradnik, mr Miloš Lukić, istraživač saradnik, Institut za stočarstvo, Beograd-Zemun, dr Duško Vitorović, redovni profesor, Poljoprivredni fakultet, Zemun
Rad je finansiran sredstvima Projekta TR 6865B
Uvod

Kvalitet jaja, a posebno kvalitet ljske je predmet interesovanja mnogih učesnika u lancu živinarske proizvodnje, što znači kako proizvođača konzumnih jaja, tako i proizvođača priplodnih jaja. Uspešno razvijanje embriona piletina zavisi od kvaliteta ljske jajeta, odnosno od njene strukture i čvrstoće. Ljuska je mehanička zaštita jajeta od raznih infekcija i ujedno sprečava isparavanje vode iz sadržaja jajeta i najvažnije, ona je izvor kalcijuma pri formiranju skeleta embriona (Lavellin i sar., 2000). S druge strane, u komercijalnoj proizvodnji i marketingu mnogobrojni faktori utiču na kvalitet jaja, npr. genotip, sistem držanja, gustina naseljenosti, ovipozicija, ambijentalni uslovi (visoke temperature) i sl. (Mašić i Pavlovska, 1994; Pavlovska i sar., 2000; Pavlovska i sar., 2002; Silverside i Scut, 2001; Daghir, 2004).

U novije vreme kao mera poboljšanja kvaliteta ljuske preporučuje se noćna ishrana, koja se sastoji od kratkotrajnih prekida mraka radi stimulisanja konzumiranja hrane (Vitorović i sar., 2004).

Imajući sve navedeno u vidu, cilj našeg istraživanja je bio da se ispita uticaj ovipozicije i dodatne ishrane kokoši mererom krupnijih čestica, kao izvoru Ca, na važnije osobine kvaliteta jaja.

Materijal i metod rada

Ispitivanje je obavljeno na 360 Shaver kokoši nosilja u završnoj fazi nošenja, koje su podeljene u tri grupe. U toku oglednog perioda koji je trajao šest nedelja (od 72.do 78. nedelje uzrasta kokoši) kokoši su hranjene standardnom smešom, u kojoj je osnovni izvor kalcijuma bila stočna kreda. Kokoši su hranjene i pojene po volji. Prva grupa kokoši
nosilja (kontrolna) hranjena je samo osnovnom smešom. Druga grupa kokoši nosilja pored osnovnog obroka dobijala je, svakog dana ujutro (8,00 sati), dodatno 2g po kokoši krupno mlevenog mermera, posipanjem po hrani. Kokoši nosilje treće grupe su pored osnovne smeše, svakog dana hranjene dodatno sa 2g krupno mlevenog mermera koji je davan dva puta dnevno. Jedan gram su dobijale ujutro (8,00 sati), a 1g popodne (13,00 sati). Čestice mermera su bile veličine 1,1 – 1,4 mm, a sadržaj kalciijuma u mermeru je bio 36%

U toku oglednog perioda, jaja su skupljana na kraju svakog nedeljnog perioda, dva puta dnevno (8,00 i 13,00 sati). Ukupno je ispitano 1290 jaja i to 72 jaja grupa/nedeljno. Ispitivane su sledeće važnije osobine kvaliteta jaja: masa jaja (g); deformacija luske (μm), instrumentom Marius pod opterećenjem od 500g; sila loma (kg) na ekvatoru jajeta instrumentom "IS-96" sa brzinom od 2 mm/s; masa luske (g); debljina luske (μm), mikrometrom na komadići luske sa ekvatora bez opne i visina belanca (0,01mm), mikrometrom AMES. Haugh-ove jedinice izračunavane su na osnovu mase jaja i visine gustog belanca.

Dobijeni podaci po nedeljama i za ceo ogledni period statistički su obrađeni analizom varijanse u programu Statistica, a statistička značajnost razlika između srednjih vrednosti ispitana je Tukey testom.

Rezultati istraživanja i diskusija

Dobijeni rezultati za ispitivane osobine kvaliteta (masa jaja; deformacija, masa i debljina luske; sila loma i Haugh-ove jedinice) prikazani su u tabelama 1., 2., 3., 4., 5., 6.,7. i 8. Na osnovu prikazanih podataka može se uočiti da se uticaj ovipozicije nije značajno ispoljio na vrednosti ispitivanih osobina.

Iz podataka prikazanih u tabeli 7. sumiranih za ceo ogledni period, veća masa jaja kod svih ispitivanih grupa bila je kod jutarnjih jaja (63,2g, 63,8g, 64,1g) nego kod popodnevnih (61,8g, 63,0g, 63,3g), mada razlika nije bila statistički značajna. Jutarna jaja u odnosu na popodnevna imala su deblju lusku, manju deformaciju luske i silu loma, ali razlike nisu bile statistički značajne.

Kvalitet belanca izražen Haugh-ovim jedinicama nije bio pod uticajem ovipozicije. Rezultate ovih istraživanja nisu potvrdila...
istraživanja Pavlović i sar. (2000b), koji su ustanovili da se broj Haugh-
ovidnih jedinica smanjuje za 0,112 svakog sata ovipozicije.

Dobijeni rezultati prikazani u tabeli 7 pokazali su da dodavanje
mermera krupnijih čestica ima pozitivan efekat na čvrstoći ljuske jaja
(grupe II i III). U odnosu na kontrolnu grupu, jutarnje dodavanje 2g mer-
mera po nosilji (grupa II) ili dodavanje 1g mermera ujutro i 1g mermera
popodne (grupa III), dovodi do povećanja čvrstoće ljuske, izraženog kroz
veću silu loma i manju vrednost deformacije ljuske kao i povećanje
vrednosti mase jaja, mase i debljine ljuske u oba vremena ovipozicije.
Kvalitet belanca izražen Haugh-ovim jedinicama statistički značajno je
bio manji kod jutarnjih jaja ogledne grupe III. Sva ispitivana jaja ogledne
grupe III imala su 74,02 HJ, što se statistički značajno razlikovalo od
ogledne grupe I (76,46 HJ) i ogledne grupe II (77,99 HJ), što je
verovatno rezultat negativnog uticaja popodnevnog dodavanja krupnijih
čestica mermera posipanjem po hrani na kvalitet belanca (tabela 8).

Zaključak

Rezultati dobijeni u našim ispitivanjima pokazuju da se uticaj
ovipozicije po nedeljama ispitivanog perioda, nije značajno ispoljio na
masu jaja, deformaciju, masu i debljinu ljuske, silu loma i Haugh-ove
ejdinice.

Jutarnja jaja (prosek za ceo ogledni period) u odnosu na
popodnevna, kod svih oglednih grupa, imala su veću masu jaja, debljinu
ljuske, manju deformaciju ljuske i silu loma

Krupnije čestice mermera imale su pozitivan uticaj na čvrstoću
ljuske (deformacija ljuske i sila loma) i na masu jaja, masu i debljinu
ljuske.
THE EFFECT OF OVIPOSITION AND TIME OF MARBLE ADDITION TO FEED ON QUALITY OF TABLE EGGS

Zlatica Pavlovski, D. Vitorović, Zdenka Škrbić, M. Lukić

Summary

Investigation of the effect of oviposition and time of addition of marble was carried out on 360 Shaver layer hens divided into three groups. During six week trial (from age of 72 to 78 weeks) hens were fed standard diet according to recommendations for Shaver genotype where main source of Calcium was limestone. First group of hens was control and they were fed standard mixture, second group of hens received additionally each morning 2g of ground marble distributed over the feed, and third group of hens received 2 g of ground marble twice a day – 1g in the morning (8 a.m.) and 1g in the afternoon (1 p.m.). At the end of each week period quality of fresh laid eggs was investigated. Following egg quality characteristics were measured: egg mass (g), shell mass (g), shell thickness (μm), shell deformation (μm), shell breaking force (kg) and Haugh units were calculated. Obtained results have shown that oviposition had no significant effect on investigated traits. Addition of large particles of marble had positive effect on strength of egg shell. Compared to control group, morning addition of 2g of marble per hen or addition of 1g in the morning and 1g in the afternoon caused statistically highly significant increase of egg shell strength expressed through greater breaking force and lower value of shell deformation as well as higher values of shell mass and thickness. Compared to control and trial group I, quality of egg white expressed through Haugh units was significantly lower in trial group III.

Key words: layer hen, oviposition, marble, egg quality

Literatura

Tabela 1. Karakteristike kvaliteta jaja: masa jajeta, g

<table>
<thead>
<tr>
<th>Starost nosilja, nedelja/ Age of hens, week</th>
<th>Grupa I (kontrola)/ Group I (control)</th>
<th>Grupa II (mermer 1)/ Group II (marble 1)</th>
<th>Grupa III (mermer 2)/ Group III (marble 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,00</td>
<td>13,00</td>
<td>8,00</td>
</tr>
<tr>
<td>72</td>
<td>62.7 ± 6.25</td>
<td>60.8 ± 3.99</td>
<td>64.9 ± 5.85</td>
</tr>
<tr>
<td>73</td>
<td>61.8 ± 5.80</td>
<td>60.4 ± 5.27</td>
<td>61.8 ± 6.44</td>
</tr>
<tr>
<td>74</td>
<td>63.2 ± 5.97</td>
<td>60.7 ± 4.46</td>
<td>64.7 ± 5.61</td>
</tr>
<tr>
<td>75</td>
<td>63.2 ± 5.10</td>
<td>62.8 ± 4.41</td>
<td>63.9 ± 6.78</td>
</tr>
<tr>
<td>76</td>
<td>65.2 ± 6.25</td>
<td>63.5 ± 5.47</td>
<td>63.5 ± 5.52</td>
</tr>
<tr>
<td>77</td>
<td>63.6 ± 10.7</td>
<td>62.7 ± 5.35</td>
<td>65.1 ± 6.51</td>
</tr>
</tbody>
</table>
Tabela 4. Karakteristike kvaliteta jaja: debljina ljuke, (μm)

<table>
<thead>
<tr>
<th>Starost nosilja, nedelja/ Age of hens, week</th>
<th>Grupa I (kontrola)/ Group I (control)</th>
<th>Grupa II (mermer 1)/ Group II (marble 1)</th>
<th>Grupa III (mermer 2)/ Group III (marble 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
</tr>
<tr>
<td>72</td>
<td>358 ± 34,7 355 ± 31,9</td>
<td>399 ± 60,0 36,1 ± 5,49</td>
<td>373 ± 36,7 381 ± 26,7</td>
</tr>
<tr>
<td>73</td>
<td>345 ± 28,4 330 ± 30,8</td>
<td>361 ± 39,4 336 ± 36,8</td>
<td>354 ± 32,9 357 ± 33,1</td>
</tr>
<tr>
<td>74</td>
<td>330 ± 17,6 351 ± 24,5</td>
<td>337 ± 27,9 364 ± 33,5</td>
<td>356 ± 28,1 368 ± 24,4</td>
</tr>
<tr>
<td>75</td>
<td>366 ± 28,2 360 ± 28,5</td>
<td>370 ± 56,7 377 ± 33,3</td>
<td>381 ± 34,9 363 ± 27,5</td>
</tr>
<tr>
<td>76</td>
<td>409 ± 32,7 365 ± 25,6</td>
<td>385 ± 27,1 389 ± 31,1</td>
<td>380 ± 37,8 381 ± 33,6</td>
</tr>
<tr>
<td>77</td>
<td>372 ± 29,3 365 ± 31,6</td>
<td>378 ± 27,6 392 ± 32,3</td>
<td>391 ± 93,4 372 ± 41,5</td>
</tr>
</tbody>
</table>

Tabela 5. Karakteristike kvaliteta jaja: sila loma, kg

<table>
<thead>
<tr>
<th>Starost nosilja, nedelja/ Age of hens, week</th>
<th>Grupa I (kontrola)/ Group I (control)</th>
<th>Grupa II (mermer 1)/ Group II (marble 1)</th>
<th>Grupa III (mermer 2)/ Group III (marble 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
</tr>
<tr>
<td>72</td>
<td>3,4 ± 0,62 3,4 ± 0,62</td>
<td>3,4 ± 0,71 3,4 ± 0,70</td>
<td>3,4 ± 0,76 3,5 ± 0,64</td>
</tr>
<tr>
<td>73</td>
<td>3,2 ± 0,61 3,3 ± 0,63</td>
<td>3,4 ± 0,65 3,2 ± 0,59</td>
<td>3,3 ± 0,62 3,4 ± 0,57</td>
</tr>
<tr>
<td>74</td>
<td>2,8 ± 0,64 3,2 ± 0,42</td>
<td>3,1 ± 0,61 3,4 ± 0,62</td>
<td>3,2 ± 0,68 3,4 ± 0,62</td>
</tr>
<tr>
<td>75</td>
<td>3,4 ± 0,77 3,4 ± 0,64</td>
<td>3,4 ± 0,57 3,8 ± 0,62</td>
<td>3,5 ± 0,58 3,5 ± 0,47</td>
</tr>
<tr>
<td>76</td>
<td>3,3 ± 0,82 3,1 ± 0,62</td>
<td>3,6 ± 0,54 3,6 ± 0,70</td>
<td>3,4 ± 0,58 3,7 ± 0,65</td>
</tr>
<tr>
<td>77</td>
<td>3,3 ± 0,67 3,3 ± 0,59</td>
<td>3,6 ± 0,64 3,7 ± 0,66</td>
<td>3,7 ± 0,68 3,7 ± 0,62</td>
</tr>
</tbody>
</table>

Tabela 6. Karakteristike kvaliteta jaja: Haugh-ove jedinice

<table>
<thead>
<tr>
<th>Starost nosilja, nedelja/ Age of hens, week</th>
<th>Grupa I (kontrola)/ Group I (control)</th>
<th>Grupa II (mermer 1)/ Group II (marble 1)</th>
<th>Grupa III (mermer 2)/ Group III (marble 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
<td>8,00 13,00</td>
</tr>
<tr>
<td>72</td>
<td>75,0±10,071 81,0±11,951</td>
<td>77,5±12,661 81,5±13,071</td>
<td>70,9±10,851 80,2±9,641</td>
</tr>
<tr>
<td>73</td>
<td>82,8±12,491 84,1±9,491</td>
<td>80,0±8,731 87,3±8,661</td>
<td>75,9±12,921 81,0±13,271</td>
</tr>
<tr>
<td>74</td>
<td>83,5±12,71 75,7±13,551</td>
<td>88,3±8,531 76,4±13,461</td>
<td>83,7±10,391 82,2±12,421</td>
</tr>
<tr>
<td>75</td>
<td>73,7±11,231 76,6±9,641</td>
<td>79,6±8,411 75,9±12,411</td>
<td>69,3±12,691 73,1±12,531</td>
</tr>
<tr>
<td>76</td>
<td>69,1±13,571 68,8±12,211</td>
<td>68,8±10,671 72,8±9,751</td>
<td>69,5±11,591 73,3±13,221</td>
</tr>
<tr>
<td>77</td>
<td>74,1±12,731 74,6±10,681</td>
<td>71,9±13,511 74,6±12,451</td>
<td>68,1±11,381 73,6±12,491</td>
</tr>
</tbody>
</table>

* a-b prošćene vrednosti u svakom redu unutar posmatanih tretmana, bez zajedničkih oznaka su značajno različiti na nivou od 1%
* a-b average values in each row within observed treatments, without common marks, are different significantly at level of 1%
Tabela 7. Srednja vrednost parametara kvaliteta jaja za ceo ogledni period, pod uticajem vremena ovipozicije i dodatka Ca u ishrani nosilja

<table>
<thead>
<tr>
<th>Osobina/Trait</th>
<th>Grupa I (kontrola)/Grupa II (mermer 1)/Grupa III (mermer 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grupa I (kontrol) /</td>
</tr>
<tr>
<td></td>
<td>Group I (control) /</td>
</tr>
<tr>
<td></td>
<td>8,00 / 13,00</td>
</tr>
<tr>
<td>Masa jaja/ Egg mass, g</td>
<td>63,2 ± 6,95 / 61,8 ± 4,96</td>
</tr>
<tr>
<td>Masa ljuške/ Shell mass, g</td>
<td>8,4 ± 1,08 / 8,3 ± 1,05</td>
</tr>
<tr>
<td>Debljina ljuške/ Shell thickness, µm</td>
<td>365 ± 99,7 / 355 ± 31,2</td>
</tr>
<tr>
<td>Deformacija/ Deformation, µm</td>
<td>24,7 ± 6,23 / 24,9 ± 5,16</td>
</tr>
<tr>
<td>Sila loma/ Breaking force, kg</td>
<td>3,3 ± 0,70 / 3,3 ± 0,60</td>
</tr>
<tr>
<td>Haugh-ove jedinice/ Haugh units</td>
<td>76,9 ± 12,13 / 76,2 ± 12,72</td>
</tr>
</tbody>
</table>

Tabela 8. Srednja vrednost parametara kvaliteta jaja za ceo ogledni period, pod uticajem dodatka Ca u ishrani nosilja

<table>
<thead>
<tr>
<th>Parametri/Parameters</th>
<th>Group of hens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>masa jaja/ masa ljuške (g)</td>
<td>62,6 ± 6,27</td>
</tr>
<tr>
<td>masa ljuške/ masa ljuške (g)</td>
<td>8,4 ± 1,07</td>
</tr>
<tr>
<td>debljina ljuške/ debljina ljuške (µm)</td>
<td>361 ± 92,3</td>
</tr>
<tr>
<td>deformacija ljuške/ deformacija ljuške (µm)</td>
<td>24,8 ± 5,82</td>
</tr>
<tr>
<td>sila loma/ sila loma (kg)</td>
<td>3,3 ± 0,66</td>
</tr>
<tr>
<td>haugh-ove jedinice/ haugh unit</td>
<td>76,46 ± 12,49</td>
</tr>
</tbody>
</table>

Srednje vrednosti I standardna devijacija/ Means and standard deviation
Signifikantne razlike/ Significant differences: * p < 0.05; ** p < 0.01