A PROPOSAL FOR A NEW U-D₂O CRITICALITY BENCHMARK: RB REACTOR CORE 39/1978

by

Milan P. PEŠIĆ

Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia;
Faculty of Natural Sciences, University of Novi Sad, Novi Sad, Serbia

Scientific paper
DOI: 10.2298/NTRP1201075P

In 1958, the experimental RB reactor was designed as a heavy water critical assembly with natural uranium metal rods. It was the first nuclear fission critical facility at the Boris Kidrič Institute of Nuclear Sciences in the former Yugoslavia. The first non-reflected, unshielded core was assembled in an aluminium tank, at a distance of around 4 m from all adjacent surfaces, so as to achieve as low as possible neutron back reflection to the core. The 2% enriched uranium metal and 80% enriched uranium dioxide (dispersed in aluminium) fuel elements (known as slugs) were obtained from the USSR in 1960 and 1976, respectively. The so-called “clean” cores of the RB reactor were assembled from a single type of fuel elements. The “mixed” cores of the RB reactor, assembled from two or three types of different fuel elements, were also positioned in heavy water. Both types of cores can be composed as square lattices with different pitches, covering a range of 7 cm to 24 cm. A radial heavy water reflector of various thicknesses usually surrounds the cores.

Up to 2006, four sets of clean cores (44 core configurations) have been accepted as criticality benchmarks and included into the OECD ICSBEP Handbook. The RB mixed core 39/1978 was made of 31 natural uranium metal rods positioned in heavy water, in a lattice with a pitch of 8\1/2 cm and 789 low enriched uranium metal slugs placed in heavy water in lattice pitches of 8 cm and 8\1/2 cm. This RB multipart core has now been proposed to the ICSBEP as a possible new U-D₂O criticality benchmark, due to its complex irregular lattice which is almost impossible to simulate by computer codes that require axial symmetry or a regular lattice.

Criticality results presented in this paper were obtained in calculations carried out by using recent versions of the MCNP5 and KENO Va computer codes and various libraries of the neutron cross-sections data. Our results confirm that the proposed RB reactor complex core, RB 39/1978, may well prove to be a new U-D₂O benchmark criticality system for validating reactor design computer codes and data libraries recommended by the ICSBEP.

Key words: RB critical assembly, heavy water, criticality benchmark

INTRODUCTION

Benchmarks are standard problems for which either analytical or accurate experimental data exist. Many valuable benchmark criticality experiments are compiled in well-known reports issued by the ANL (1968, [1]), BNL (1974, [2]), PNNL (1978, [3]), LLNL (1983, [4]) and have recently been systematically evaluated by the OECD/NEA (1997-2011, [5]). Only a few (about 2% from the total number of around 4500) benchmark experiments regarding uranium-heavy water criticality systems were evaluated in these evaluations. Numbered RB reactor cores [6, 7] offer a fertile and valuable database for general research and evaluation of reactor physics data and criticality benchmark studies. Various analyses of the RB reactor database show that is possible to choose, carefully selected and well recorded, a few sets of these cores and to propose them as uranium-heavy water criticality benchmarks. Four sets of the RB reactor clean cores, a total of 44 core configurations, have been evaluated, accepted as benchmarks and included into the ICSBEP Handbook [5, 8, 9] up to 2006. These RB reactor cores could be used for the validation of computer codes and neutron data libraries used for reactor design and criticality safety of uranium fissile materials placed in regular square lattices filled with heavy water.

The RB experimental nuclear reactor was designed as a bare critical assembly with natural uranium metal rods (2.5 cm diameter, 210 cm height) and heavy water. It was commissioned at the Boris Kidrič Institute of Nuclear Sciences, Yugoslavia (now Serbia), in
late April 1958 [10]. The fuel rods cladding was made in 1961 of “low purity” aluminium, 1 mm thick. The RB reactor’s core was designed as a bare aluminium cylindrical tank (ID/OD 2.00/2.02 m, height 2.30 m) mounted on an aluminum support platform, 3.75 m high. The entire RB reactor assembly, along with the supporting platform, was placed in the centre of a dry, box shaped pool (dimensions 8 m × 8 m × 1.5 m) in the large hall of the reactor. This type of construction provides as low as possible (less than 0.4%) reflection back to the core of neutrons escaping the bare reactor core (fig. 1). Later, in 1960 and 1976, the 2% enriched uranium metal fuel elements and 80% uranium dioxide (dispersed in aluminum) fuel elements of the TVR-S shape were obtained from the USSR, respectively. These LEU and HEU fuel elements have the same geometric shape (known as the “slug” shape, fig. 2) and a similar content of mass of the nuclide 235U: 7.25 g per LEU slug and 7.67 g per HEU slug. The aluminum alloy used in the fuel slug design is known as the “high purity” SAV-1 alloy with low contents of neutron absorbing impurities (like boron and cadmium). The volume of the TVR-S fuel slug is about 60 cm3, while the volume of the fuel layer (10 cm height and 2 mm thick) is about 20 cm3.

Several fuel slugs (from 7 to 18) can be placed, one above the other, at the bottom of the fuel assembly aluminum tube (ID/OD = 41/43 mm, 210 cm long) to build an RB enriched uranium fuel assembly. Fuel rods and fuel assemblies can be placed in square lattices with basic pitches $a = 7$ cm, 8 cm, 9 cm, 12 cm, and 13 cm. Lattices with pitch values na, $na^{1/2}$, or $a(n + 1)^{1/2}$, where n is a whole number (1, 2, ...), can be created, too.

RB cores with fuel assemblies positioned in irregular lattices can be created, as well. These enriched uranium fuel slugs offer a possibility to design radial (usually in experiments) or axial (rarely in experiments) heavy water reflected cores, as well. Heavy water is, thus, used as a moderator, coolant and reflector in the RB reactor.

During the operation of the RB research reactor, no control or neutron monitoring devices were present.
in the core. Criticality and power changes were acquired and maintained by running a pump to achieve a fine adjustment of the heavy water level. The D$_2$O current height in the reactor tank was continuously measured by a platinum needle of an automatic probe with the maximum error of ±0.2 mm. By manually operating another (precisely calibrated) probe, this absolute error in the determination of the D$_2$O level in the reactor tank can be twice reduced, to ±0.1 mm.

The RB research reactor still operates as a critical system with a fission power range of 10 mW to 50 W. It rarely operates at higher power levels of up to 10 kW, and then only briefly. The total generated fission energy in fuel elements (for all three types of uranium fuel) over the reactor’s 50 years history, including the energy released in the reactivity accident in October 1958 [11], is estimated at approximately 18 kWh, i.e., the fuel burn-up deemed as insignificant and, consequently, not included in our calculations.

The isotopic “purity” of the RB reactor’s heavy water is measured at the Chemical Laboratory of the Vinča Institute at least once a year. The major “impurity” in the heavy water is ordinary water (H$_2$O, absorbed from air humidity). Other impurities are negligible, which was confirmed by gamma-ray spectroscopy analyses [12] done for several samples of the heavy water taken over the years of operation of the RB reactor.

The temperature of the heavy water in the reactor’s core is measured by using a platinum resistance probe connected to a direct current bridge calibrated in degrees of Celsius, with the maximum absolute error of ±0.1°C. Because the RB reactor operates at low power, the temperatures of the fuel layer and cladding are equal to the temperature of the heavy water.

A few vertical experimental channels and/or horizontal experimental channels, made from low-purity aluminum of various diameters and length, could be placed at several, predeterminded by the lattice grid construction, positions in the core. The reactor tank, aluminum cladding of natural uranium metal fuel rods and the fuel support plates of the lattice grid, were made of low purity aluminum made in former Yugoslavia (known as the YuAl or LpAl).

Clean or mixed cores could be arranged in (usually, square) heavy water lattices with different pitches. During the 50 years of operation of the RB nuclear reactor at the Vinča Institute, over 600 different RB reactor cores were designed, using all three types of fuel assemblies, including very complex and non-homogeneous RB reactor cores with coupled fast-thermal regions.

Following recent, worldwide, security demands for HEU to LEU fuel conversion in research nuclear reactors and the plan for the decommissioning of the Vinča RA research reactor, all fresh HEU TVR-S fuel elements have been shipped from the Vinča Institute back to their country of origin (the Russian Federation) in 2002 [13, 14].

DESCRIPTION OF THE RB CORE 39/1978 AND 3-D MODEL

The mixed RB 39/1978 core was designed of 31 natural uranium metal rods positioned in a lattice with a square pitch of 8×2 cm and 78*9 low enriched uranium metal TVR-S fuel slugs placed in square pitches of 8 cm and 8×2 cm. Such a complex composition and shape of the RB reactor core 39/1978 were chosen and conceived as a core that would supply a maximum thermal neutron current to the external neutron converter (ENC). The ENC itself was constructed within an aluminum box (size 112.0 cm × 111.6 cm × 7.8 cm), outside the RB core. The ENC box contains 561 HEU fuel elements (arranged in air) in two horizontal rows (shifted for the fuel slug radius) and 9 or 10 vertical rows (shifted for a half of the fuel slug height). Details of the ENC are described elsewhere [15, 16].

The ENC is designed to convert the thermal neutron flux escaping the RB reactor core to a fast one, with an almost fission spectrum at the ENC output, after transmitting a screen designed as a sheet of cadmium, 1 mm thick. A part of the ENC construction is shown in fig. 3, with a single line representing the 3 mm thick back aluminum plate (facing the RB reactor 39/1978 core at the shortest distance, that of 10 cm) used for assembling the ENC box. This is a strong neutron-coupled thermal (RB core) – fast (ENC) spectra system. The ENC itself, due to its construction and composition, is a deeply sub-critical system. Fast fissions in HEU fuel elements of the ENC have no significant influence on the criticality of the RB reactor core. They mainly influence the precise (manually) maintained critical level of heavy water, with the weak ex-
ternal neutron source. Fission processes, produced by the RB core’s leaking neutrons in HEU fuel elements in the ENC box, create an isotropic volume fast fission neutron source. Some newborn neutrons in the ENC may interact, or not, with the ENC material (aluminum and HEU fuel) and may go to the RB reactor core, as well.

The RB 39/1978 core was designed with a thin (2.4 cm thick) top axial heavy water reflector to the enriched uranium fuel assemblies in the RB reactor’s core and without experimental channels.

The molar concentration of heavy water, at the time of the core’s design (in 1977 and 1978), was determined at 99.40 ± 0.02% of D2O, the remainder to 100%, is H2O. The critical height of the heavy water in the RB reactor’s core 39/1978 was experimentally determined as 103.65 ± 0.01 cm at a temperature of heavy water at 21.0 ± 0.2 °C. The horizontal cross-section of the 3-D (simplified) model of the RB reactor core 39/1978, surrounded by air, used, e.g., in the MCNP code [17], is shown in fig. 3.

This RB mixed core is being proposed to the ICSBEP as a possible U-D2O criticality benchmark, due its complex irregular lattice, almost impossible to simulate with computer codes that require axial symmetry or regular lattice. Geometric data and the composition of materials, including all known material impurities and evaluated uncertainties, determined in [5], have been used. These data were then applied in the development of the new, 3-D simplified model of the RB reactor core 39/1978, based on the TVR-S fuel slug model, taken from [5], and shown in fig. 4. Parts of uranium fuel elements, suspended in air above the critical level of heavy water in the reactor’s tank, have been neglected in this 3-D simplified model of the RB reactor core.

CALCULATION, RESULTS AND DISCUSSION

Initial calculations

Initial calculations of the RB 39/1978 core were done using the diffusion 20GRAND reactor lattice computer code in a few neutron energy groups and two dimensions: X-Y or R-Z, in 1977. These calculations were done under the 48-bit SCOPE operating system (OS), on the Control Data Co. CDC 3600 mainframe computer. The two neutron energy group data for the RB reactor cells were generated at Vinča (then known as the “Boris Kidrić” Institute of Nuclear Sciences). The well known K7-THERMOS computer code [18] was used in the thermal energy range of neutrons in order to obtain neutron cross-sections and the diffusion constant for the condensed, single, thermal energy neutron group. Computer code MULTI [19], developed in the “Boris Kidrić” Institute for RB reactor cell calculations in epithermal, intermediate, and fast energy range of neutrons, using the Soviet/Russian ABBN/BNAB 28-group neutron cross-section data library [20] was applied, too. This computer code is used to create cross-sections and the diffusion constant for the single fast neutron group, condensing obtained neutron interaction data for 24 highest neutron energy groups. These calculations are done for RB reactor fuel cells with natural uranium metal rods and enriched uranium assemblies in heavy water and heavy water cells.

In spite of the cylindrical geometry of the RB core, computer code 20GRAND is applied in the R-Z geometry mode with the requirement for core volume conservation. In order to find a critical level of heavy water in the RB 39/1958 complex core and satisfy the requirement for a regular lattice pitch of the computer code, two independent runs of the computer code are done. First, the 20GRAND computer code is run for the RB reactor core with LEU fuel assemblies arranged in a lattice pitch of 8\sqrt{2} cm in the central part of the core only. From the code run for several assumed levels of heavy water, the critical heavy water is determined. In the second run, the computer code is run with the same fuel assemblies in the central part of the core, while the rest of the fuel assemblies and fuel rods (of the real core) are arranged in symmetrical rings around this central part of the core in the same lattice pitch. The 20GRAND computer code is also run for this artificial core for several assumed levels of heavy water and the critical heavy water is determined. In this manner, a rough estimation of the critical level of heavy water in the RB 39/1978 core has been obtained from two virtual RB simplified cores. It is determined as an average value, between two critical levels of heavy water, determined from both runs of the com-
First MCNP calculations with a 3-D simplified model in 1998

The MCNP4B computer code [21] became available at the Vinča Institute after more than 20 years. This computer code was run for the RB 39/1978 3-D simplified model, using continuous neutron cross-sections data library based on the ENDF/B-VI.2 for the main isotopes. The data from older versions of the ENDF/B libraries, RMCCS (based on ENDF/B-V) and BMCCS (based on ENDF/B-IV) for isotopes (not available in ENDF/B-VI.2) for some impurities (Cu, Fe, Ni, Cr, Cd, and Ar) in materials, were used. Our calculations were done under a 16-bit Windows 98 OS on a PC 80386 processor machine. Neutron scattering at hydrogen atoms bounded in H₂O molecules and at deuterium atoms bounded in D₂O molecules in the neutron thermal energy range at temperature of 300 K is described by using corresponding $S(\alpha, \beta)$ laws given in the TMCCS library, available with the MCNP4B computer code.

In the representation of the 3-D simplified model of the RB 39/1978 core, the geometry of the system was modelled as close as possible to the real one. In the 3-D model, only minor approximations of the enriched uranium TVR-S fuel slug are introduced. The high purity aluminum “stars” and top parts of the fuel cladding and the “expeller” (known as the “ejector”) are, separately, homogenised (using their volume fractions) with the surrounding parts of the heavy water or air (fig. 4). Corresponding volume fractions for the homogenisations of materials are determined by independent material-geometry measurements [5]. Neutron interactions with the RB reactor’s supporting platform (low purity aluminum), concrete walls, floor and ceiling of the RB reactor hall are neglected in the calculations, based on information data on neutron reflection [10]. Parts of the fuel assemblies surrounded by air (i.e., that lie above the critical level of the heavy water in the RB reactor tank) are also neglected in this 3-D geometry simplified model. The aluminum grid structure of the bottom of the RB reactor tank and the supporting plate for fuel elements is modelled as a low purity aluminum plate with thickness equivalent to 4.0 cm [5].

Sensitivity studies on the neutron effective multiplication factor of the system (k_{eff}) for various RB reactor clean cores of different uncertainties in geometry and material composition are done in evaluations presented in [5]. The values of the total combined uncertainty were shown to lie in the range of 0.51-0.68% k_{eff}. Sensitivity studies, carried out for the RB 39/1978 core, of various uncertainties in geometry and material composition, show that the value of the total combined uncertainty in k_{eff} is 0.44%.

The MCNP4B computer code is run in the KCODE mode, with an initial neutron source chosen for each fuel element in the core (KSRC option), for 4000 neutron histories in each of the 800 active cycles, after the initial 200 cycles. The number of active neutron cycles and neutron histories are selected so as to obtain an average effective neutron multiplication factor, with a statistical standard error of 1% or less than 1%, an acceptable uncertainty for criticality benchmarks. The uncertainty of 1% in the k_{eff} is accepted by ICEBEP [5], since it is assumed that, in case a simplified model of a reactor core is used by a computer code, it should result in a criticality parameter (k_{eff}) that is within 1% of the measured criticality parameter of a real reactor core. This experimental value for k_{eff} is supposed to be corrected for experimental uncertainties, e.g. temperature and other uncertainties, including the bias for physical values like neutron reflections from the walls. For this reason, all Monte Carlo based computer codes are run for a selected number of neu-

<table>
<thead>
<tr>
<th>Year</th>
<th>OS/hardware</th>
<th>Code version/neutron library</th>
<th>Neutron histories/active cycles</th>
<th>$k_{\text{eff}} \pm 1\sigma$ or critical height H_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>48-bit SCOPE/CDC 3600</td>
<td>20 GRAND/Vinča 2 group</td>
<td>–</td>
<td>$H_c = 105 \pm 8 \text{ cm}$ for $k_{\text{eff}} = 1$</td>
</tr>
<tr>
<td>1998</td>
<td>16-bit Windows 98/PC 80386</td>
<td>MCNP4B/endfb60 and tmccs</td>
<td>4000/800</td>
<td>0.99309 ± 0.00042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCNP5.1.2/endfb60 and tmccs</td>
<td>5000/1000</td>
<td>0.99335 ± 0.00032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCNP5.1.2/endfb66 and sab2002</td>
<td>5000/1000</td>
<td>0.99775 ± 0.00032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCNP5.1.2/jeff3.1.1 and jeff3.1 TSL</td>
<td>5000/1000</td>
<td>1.00120 ± 0.00032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KENO V.a/44 group in SCALE 4.4a with ENC</td>
<td>5000/2000</td>
<td>0.98843 ± 0.00022</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KENO V.a/44 group in SCALE 4.4a [5] with ENC</td>
<td>5000/2000</td>
<td>0.99694 ± 0.00023</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KENO V.a/44 group in SCALE 4.4a [5] without ENC</td>
<td>5000/2000</td>
<td>0.99287 ± 0.00022</td>
</tr>
</tbody>
</table>

Experiment $H_c = 103.65 \pm 0.01 \text{ cm at } T = 21 \, ^\circ\text{C}$
The simplified model of the RB 39/1978 core in 3-D geometry, together with the 3-D model of the ENC, is used in additional calculations done by the KENO V.a [23] computer code, based on the Monte Carlo method from the SCALE package, version 4.4a [24]. The horizontal cross-section of the 3-D simplified model for the RB 39/1978 core with the ENC, at a height of 40 cm, generated by the KENO V.a computer code, is shown in fig. 5. These KENO V.a computer code calculations have also been run at four Intel i7-processor Toshiba Satellite laptop A660, with a 64-bit Windows 7 Home Premium OS.

Figure 5. Horizontal cross-section of the 3-D model of RB 39/1978 core with ENC in KENO V.a code

The standard broad-structure 44-group SCALE 4.4a neutron cross-section library [25] for natural occurring materials (based on ENDF/B-V) has been modified. Neutron cross-sections generated by using the multi-region option of the CSAS2 module [26] in the SCALE package ignore lattice geometry effects. Because of this, KENO V.a computer code calculations are based on the VEGAKENO [27] computer module. The VEGAKENO module is used for computing neutron effective cross-sections of a pseudo moderator in equivalent homogeneous media, representing the heterogeneous problem and NITAWL computer code [28] treatment of nuclide cross-section resonance self-shielding in the said homogeneous media. This computation approach was already applied and explained in LEU-MET-TERM-002 [5]. As it is already mentioned, all materials used in the 3-D simplified model are assumed at a temperature of 293 K, except heavy water atom densities that are determined at a temperature of 21 °C.

The KENO V.a computer code is run for 5000 neutrons in each of the 2000 generations. The neutron effective multiplication factor of the system is deter-
The results of our criticality calculations for the RB 39/1978 core are based on our newly developed 3-D model of fuel slugs, fuel assemblies, fuel rods, and the entire RB assembly. In the case of the KENO V.a computer code, verification is also done for additional options that include 3-D geometry model of the ENC. Results confirm that the selected RB 39/1978 core may be chosen as a new U-D$_2$O criticality benchmark, to be used for the validation of reactor design computer codes and nuclear data libraries.

REFERENCES

1. *** Argonne Code Center Benchmark Problem Book, ANL-7416, Argonne National Laboratory, Argonne, Ill, USA (1968 & First Supplement 1974)
2. *** ENDF-202 Cross Section Evaluation Working Group Benchmark Specifications, BNL-16323 (ENDF-202), Brookhaven National Laboratory, Up-town, N. Y., USA, 1974

Received on September 7, 2011
Accepted on March 6, 2012
Експериментални реактор РБ пројектован је 1958. године као критични систем са горивом од природног урана у тешкој води. То је био први нуклеарни фисиони критични систем у Институту за нуклеарне науке “Борис Кидрић” (сада “Винча”) у бившој Југославији. Прво реакцијско језгро, без рефлектора и биолошке заштите зрачења, формирано је у алуминијумском суду, постављеном на растојању од око 4 м од било које површине у хали реактора, да би се постигла шта мања рефлексија умањих неутрона назад у језгро. Гориво од 2% обогаћеног урана уметала и 80% обогаћеног урана диоксида (диспергованог у алуминијуму), у облику познатом као слаг (“slug”), наваљено је у СССР-у 1960-те и 1976-те године, респективно. Такозвана “чиста” језгра реактора РБ, формирана од горивних елемената само истог типа, као и “мешана” језгра, у којима се користи гориво различитих типова, могу се формирати у решеткама квадратног корака, од 7 см до 24 см у тешкој води. Језгра обично имају и радијални рефлектор од тешке воде различите дебелине.

Четири сета чистог језгра (укупно 44 конфигурације) су прихваћени као референтних системи (бенчмарка) на критичност и укључени у OECD пројект за Међународни приручник евалуирања критичних бенчмарка експеримената (ICSBEP) до 2006. године. Мешано језгро реактора РБ 39/1978 пројектовано је и формирано од 31 горивних шипка од природног урана уметла распоређених у решетку корака 8/2 см у тешкој води и од 78 ниско обогаћених горивних елемената од урана уметала (сваки са по 9 слагова) распоређених у решетку корака 8 см и 8/2 см у тешкој води. Овакво језгро реакција РБ, састављено из више делова, предложено је пројекту ICSBEP као могући нови U-D2O референтни систем на критичност. Због своје комплексне конфигурације, која је формирана у нерегулярној решетки, изабрано језгро је скоро немогуће симулирати у рачунарским кодовима који захтевају аксијалну симетрију или регулярну решетку у језгру. Овакво језгро је зато један могући, изазован, референтни систем.

Резултати, добијени прорачунима на критичност урађеним са новим верзијама рачунарских кодова MCNP5 и KEV0 V.a и са различитим библиотекама за неутронске преsekе, потврђују да се предложен сложено језгро РБ 39/1978 реакција РБ може прихватити као нови U-D2O референтни систем на критичност за потврђивање исправности рачунарских програма за дизајн реакција и верификацију библиотека неутронских попречних преsekе.

Кључне речи: РБ критични систем, тешка вода, референтни систем на критичност