THE INVESTIGATION OF PRIMARY PHYSICOCHEMICAL AND PHARMACO-
BIOLOGICAL PROPERTIES OF
POLYNUCLEAR IRON(III) COMPLEXES
WITH DEXTRAN AND ITS DERIVATIVES

The results of the investigations of primary physicochemical and
drug–biological properties of polyatomic iron(III) complexes with low
molecular dextran (LMD), hydrogenated low molecular dextran (H-LMD) and
dextran carboxylic acid (DCA) are presented. The investigations included
the complex resistance to hydrolytic decomposition in highly acidic medium, the
(TFH-A)-value, and neutral medium at 120°C, the (TFH-120)-value, the
viscosity of the parenteral solutions, iron(III) absorption dynamics to serum after
the i.m. and i.v. application of the preparation to rabbits, the acute toxicity
(LD50) in mice, and the residual iron(III) quantity at the i.m. application site.
Iron(III) complexes with dextran carboxylic acid (DCA) appeared to be the most
suitable for use in veterinary and human medicine.

Key words: Polyatomic ion complexes, Low molecular dextran,
Hydrogenated low molecular dextran, Dextran carboxylic acid.

It is considered that about 20–30% of the world
population suffer from hemoconcentration (lack of iron and
sideropenic anemia), so that the prevention and therapy of
such conditions are a permanently existing problem in
human medicine. This problem is also present in
veterinary medicine, especially in the intensive
production of swine.

To overcome this problem, a great number of
pharmaceutical preparations on the basis of ferrous or
ferric iron are used. For parenteral treatment (i.m. and
i.v.), aqueous solutions of polyatomic iron(III)
complexes with carbohydrates are used, such as
dextran, hydrogenated dextran, carboxymethyl dextran,
dextran carboxylic acid, dextran heptanolic acid, dextrin,
dextrin heptanolic acid, polygalactose, levan, inulin,
xylose hydro carboxylic acid [1] and pululan [2]. Although
up to date no exact correlation has been established
between the physicochemical and pharmacological
properties of these complexes, first of all with respect to
the type and characteristics of the ligand used to
produce the complex, numerous works published on the
topic indicate that, from the pharmacological aspect, the best solutions for parenteral use are polyatomic iron(III)
complex solutions with low
molecular dextran (LMD), hydrogenated low molecular
dextran (H-LMD), and dextran carboxylic acid (DCA)
[3–7].

The results of the investigation of the basic
physicochemical and pharmacological properties of
these complexes and their standardised solutions for
parenteral application in both human and veterinary
medicine are presented in this study. The ligands and
the corresponding iron(III) complexes were synthesized
in the laboratory according to usual procedures and
standardized as parenteral solutions with iron contents
of 50, 75, or 100 mg Fe(III)/cm³, respectively.

The parameters used for the assessment of the
physicochemical and pharmaco–biological properties of
the preparations were: resistance to the hydrolytic
decomposition of the complex in very acidic medium,
expressed as the total hydrolysis time (TFH-A) at
ambient temperature, resistance to the hydrolytic
decomposition of the complex in an extremely diluted
solution at 120°C, in neutral medium, expressed as the
total hydrolysis time (TFH-120), the parenteral solution
viscosity, the dynamics of iron(III) absorption to serum after
the i.m. and i.v. application to rabbits, the acute toxicity
(LD50) in mice, and the residual iron(III) quantity at the
application site 10 days after the i.m. application.

EXPERIMENTAL
Complex synthesis

The investigated iron(III) complexes with LMD,
H–LMD and DCA were obtained by a unique synthesis
procedure at increased temperatures ranging from 80 to
130°C with iron(III)–oxy–hydroxide gel precipitated from
11.7% FeO₃ solution (1242 g) by adding 5.09% Na₂CO₃
solution (2176 g) at room temperature. The complexes
were synthesized from an initial Fe(III) to ligand mass
reaction ratio from 1:1 to 1:4, in the presence of 10%
NaOH (8.5 cm³). With the reaction ratio given, the
synthesis duration was determined by the moment when
the total quantity of iron(III)–oxy–hydroxide gel was
transformed into the solute form. After deposition on
ion exchange columns (very acid Lewatit S–100 and
very alkaline Amberlite IRA 410), all the complexes were
standardized by evaporation as parenteral solutions with
a Fe(III) content of 50, 75, and 100 mg/cm³, respectively
[8].
Ligand preparation

Low molecular dextrans (LMD) with intrinsic viscosity values $[\eta]_d^{20}$ at 37°C ranging from 0.03 to 0.06 dL/g were obtained by the depolymerization of commercial dextran $M_w = 70000$ g/mol by aqueous solutions of hydrochloric acid of the concentration 0.056 M dm$^{-3}$, according to the customary depolymerization procedure of-by-fraction dextrans from commercial dextran production [9], choosing hydrolysis duration between 100 and 200 minutes.

The dynamic viscosity of the complex solutions was measured at 25°C by a Hölpeper viscosimeter. Determination of the intrinsic viscosity was based on the calculated values of the relative viscosities for solutions containing different ligand concentrations, by using an Ostwald viscosimeter.

Hydrogenated low molecular dextran (H-LMD) was obtained by hydrolysis of the corresponding LMD with NaBH$_4$ to a reductive group content less than 0.25% [10]. Dextran carbonylic acid (DCA) was obtained by the electro-chemical oxidation of LMD in KJ or NaOJ aqueous solutions till the reductive groups were reduced to less than 0.25% [8].

Standardization, physicochemical and pharmacobiological investigations of the complex parenteral solutions

In the standardized complex solutions for parenteral application the iron(III) ligands and sodium chloride contents were determined using methods prescribed by the British Pharmacopoeia 1999 [11].

The parenteral solutions of all the complexes were sterilized at 120°C for 20 minutes and the samples were left for observation of possible organoleptic changes under the usual storage conditions.

To the complex parenteral solutions for veterinary use 0.5% of phenol was added before sterilization as a preservative additive, which enables multiple doses to be used from the same unit packing. Phenol was determined by titration with a bromide-bromate indicator [14] after qualitative isolation from the parenteral solution by steam distillation. The TFH-A value indicates the time required for complete Fe(III) transformation from the complex to FeCl$_3$. The parenteral solution (1 cm3) was diluted by distilled water (20 cm3) and from the moment the conc. HCl (15 cm3) was added by slowly stirring, the time was recorded until the solution colour changed completely from ruby (complex) to light yellow (FeCl$_3$). The TFH-120 value is the time required for complete decomposition of the complex to iron(III)-oxy-hydroxide at 120°C. The parenteral solution (3 cm3) was diluted by distilled water (500 cm3) and treated at 120°C until iron(III)-oxy-hydroxide gel particles appeared. The change of the iron level in serum in rabbits after i.m. and i.v. application was monitored spectrophotometrically, using a method that enables the determination of the total iron in the serum including the unchanged form of the resorbed complex at the i.m. and i.v. application site [12].

Dynamics of the total iron(III) variations in the serum were observed until a level of approx. 1 mg/100 cm3 Fe(III) was reached. The quantity of residual iron at the i.m. application site was also determined in rabbits [11]. The acute toxicity as the average lethal dose (LD$_{50}$) was determined on white mice [15].

RESULTS AND DISCUSSION

The results of the primary physicochemical and pharmacobiological properties of polynuclear the iron(III) complexes synthesized with low molecular dextran (LMD), hydrogenated low molecular dextran (H-LMD), and dextran carbonylic acid (DCA) under the determined conditions, are given in Tables 1 and 2. The results shown are average values from the values obtained from four parallel experiments. In Table 1 the basic parameters of the synthesis of some complexes are given, such as the initial reaction ratio of iron(III) as iron(III)-oxy-hydroxide and ligand, the extreme viscosity number of the ligand used, the reaction temperature and synthesis time necessary for complete dissolution of the iron(III)-oxy-hydroxide solid phase in the reaction mixture, denoting at the same time the end of the reaction.

Table 2 shows the basic physicochemical and pharmacobiological properties of the standardized parenteral solutions from Table 1 with an iron(III) content of 50, 75 or 100 mg of Fe(III)/cm3, respectively, applicable parenterally (i.m. or i.v.) in human and veterinary medicine. The solutions for veterinary use must be preserved with 0.5% phenol, which enables multiple applications from the same unit packing. The viscosity of the solution, for easier parenteral application, predetermines the concentration of iron per unit of solution volume. The parenteral solution viscosity for a given iron(III) concentration depends on the type of

<table>
<thead>
<tr>
<th>Table 1. Basic parameters of iron(III) complex synthesis with LMD, H-LMD, DCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
</tr>
<tr>
<td>Initial Fe(III)/ligand mass ratio in the reaction</td>
</tr>
<tr>
<td>Intrinsic viscosity of the ligand, $[\eta]^{20}$, dL/g</td>
</tr>
<tr>
<td>Reaction temperature, [°C]</td>
</tr>
<tr>
<td>Reaction time, [min]</td>
</tr>
</tbody>
</table>
Table 2. Physicochemical and pharmaco-biological properties of the parenteral solutions of iron(III) complex with LMD, H–LMD and DCA

<table>
<thead>
<tr>
<th>Property</th>
<th>LMD</th>
<th>Iron(III) complex with ligands</th>
<th>H–LMD</th>
<th>DCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr, mg/cm³</td>
<td>74.50</td>
<td>74.50</td>
<td>74.20</td>
<td>74.30</td>
</tr>
<tr>
<td>Mg, mg/cm³</td>
<td>98.65</td>
<td>98.65</td>
<td>98.50</td>
<td>98.30</td>
</tr>
<tr>
<td>Mass ratio Fe(III)/ligand</td>
<td>1.256</td>
<td>1.256</td>
<td>1.281</td>
<td>1.411</td>
</tr>
<tr>
<td>NaCl, %</td>
<td>0.85</td>
<td>0.85</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Phenol, %</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>TFH-A, min</td>
<td>5.8</td>
<td>5.8</td>
<td>9.11</td>
<td>9.11</td>
</tr>
<tr>
<td>TFH–120, min</td>
<td>21.2</td>
<td>21.2</td>
<td>24.4</td>
<td>9.7</td>
</tr>
<tr>
<td>Dynamic viscosity of the final complex the solution, ηmP, mP·s⁻¹</td>
<td>31.2</td>
<td>11</td>
<td>13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Fe(III) at the i.m. application site, %</td>
<td>7.5</td>
<td>7.5</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>LD₅₀ acute toxicity, mg Fe(III)/kg</td>
<td>495</td>
<td>495</td>
<td>3000</td>
<td>3000</td>
</tr>
</tbody>
</table>

*Parenteral solutions for veterinary use preserved by adding 0.5% of phenol

The physicochemical properties of the parenteral solutions of iron(III) complex with LMD, H–LMD, and DCA are shown in Table 2. The intrinsic viscosity number, [η]₀, of the iron(III) complex is 0.05 dl/g, which is similar to the value of 0.063 dl/g obtained from the initial reaction mixture ratio 1:3 with a ligand with a lower intrinsic viscosity value. Stable DCA complexes with the intrinsic viscosity value [η]₀ = 0.035 dl/g, can be obtained from very low reaction mixture ratios, 1:1 and 1:2, which can be standardized as low viscosity solutions with a high iron(III) content of 100 mg Fe(III)/cm³.

The parenteral solutions of iron(III) complexes with LMD have an intensive brown colour, while H–LMD and DCA complexes have a ruby colour which they retain after sterilization. In LMD complex solutions precipitation of the red phase is observed after 6 to 9 months storage under conventional conditions. The results given in Table 2 show that the iron(III) complexes with LMD have extremely low resistance to hydrolysis in acidic medium, TFH–A = 0.8–1.8 minutes, and low resistance to hydrolysis in neutral medium at 120°C. TFH–120 < 120 minutes, and the viscosity of their parenteral solutions is considerable, amounting to 31.2 mP·s⁻¹. These parameters are much better in iron(III) complexes with H–LMD and DCA. The increased viscosity, 24.4 mP·s⁻¹, of the iron(III) complex solution with H–LMD obtained from a 1:4 initial ratio, is the result of the increased iron content in the complex. Both complexes are significantly resistant to hydrolytic decomposition in acidic medium, TFH–A = 5–11 minutes, and hydrolytic decomposition at 120°C with extreme dilution, TFH–120 > 30 minutes.

The dynamics of the total iron(III) level variations in rabbit serum after the i.m. and i.v. application of parenteral complex solutions are shown in Figure 1 (iron(III) complexes with LMD), Figure 2 (iron(III) complexes with H–LMD) and Figure 3 (iron(III) complexes with DCA).
complexes with H-LMD) and Figure 3 (iron(III) complexes with DCA). The changes of the total iron(III) level values in the serum after the i.m. and i.v. application of parenteral complex solutions with LMD are shown in Figure 1.

The results given in Figure 1 show that the total iron(III) retention in the serum and after the i.m. and i.v. application was about 100 h and that the maximum concentration (7.5 mg Fe(III)/100 cm3) was reached 36 hours after the i.m. application. High acute toxicity, LD$_{50}$ = 465 mg Fe(III)/kg, is evident from Table 2, as well as a significant quantity, 11%, of non-resorbed iron at the i.m. application site.

The dynamics of the total iron(III) level variations for three complex types, complexes with H-LMD, complexes synthesized from a 1:2.5 ratio ([μ]$^{37} = 0.035$ d/lg), and 1:3 and 1:4 ratios ([μ]$^{37} = 0.05$ d/lg), respectively, are shown in Figure 2.

The dynamics of the total iron(III) level variations in serum after the i.m. and i.v. application of complex solutions obtained from the initial reaction ratios of 1:3 and 1:4 are practically identical and are presented by a single curve (Figure 2), characterized by the total iron(III) retention of about 200 h and a high maximum iron(III) level value in the serum of about 18 mg/100 cm3 reached 36 hours after application. It can be seen in Table 2 that these complexes have very low toxicity LD$_{50}$>3000 mg Fe(III)/kg and a small amount of residual iron(III) at the i.m. application site, 3.5-5% mg Fe(III), after 10 days. Complexes synthesized from 1:2.5 ratio with H-LMD with a lower intrinsic viscosity value are inferior in respect to the observed parameters, with a total iron(III) retention time about 100 h, a maximum iron(III) level in the serum about 12 mg/100 cm3 reached after 36 hours, residual iron(III) at the i.m. application site 7.5% and an acute toxicity LD$_{50}$ of about 2500 mg Fe(III)/kg.

The total iron(III) level variations after the i.m. and i.v. application of parenteral solutions of three types of complexes of iron(III) with DCA with a high viscosity value, ([μ]$^{37} = 0.053$ d/lg), synthesized from Fe(III) to a DCA initial reaction ratio of 1:1, 1:2, and 1:3 are shown in Figure 3.

Based on the results shown in Table 2 and Figure 3 it can be concluded that iron(III) complexes with DCA synthesized from Fe(III) to DCA ratios of 1:2 and 1:3 have almost identical pharmaco–biological values: a total iron(III) retention time in the serum after i.m. and i.v. application of about 120 h, a maximum total iron(III) level in the serum of about 19 mg/100 cm3 reached about 30 hours after the i.m. application, low toxicity LD$_{50}$>3000 mg Fe(III)/kg, and a minimal quantity of residual iron(III) at the i.m. application site, 4%. Complexes of this type, obtained from a 1:1 ratio, have similar properties but a slightly lower stability.
Based on the results shown in Tables 1 and 2 and Figure 1, 2 and 3, it is evident that the investigated complexes and their parenteral solutions for i.m. and i.v. application (except to some extent iron(II) complexes with LMD) fulfill the requirements for iron preparations for parenteral application [1], such as: sufficient stability ensuring lack of precipitation, a high iron(II) content per volume unit of parenteral solution, a low viscosity value, low toxicity, quantitative iron(III) resorption at the i.m. application site, high effectiveness, sterility and storage stability. The advantages of complexes obtained with H-LMD and DCA over the complexes with LMD with respect to the parameters investigated, can be connected to the reductive activity of LMD originating from the terminal glucose and complex synthesis procedure applied, i.e. alkaline medium. Namely, LMD with intrinsic viscosity values of 0.04-0.06 dl/g, obtained by the deuterolomerization of clinical dextran MW = 70000 g/mol in aqueous hydrochloric acid solutions, can have 12 to 20% reduction activity (defined as the terminal glucose content) [9]. The sodium hydroxide present in the reaction mixture has multiple functions in the process of complex synthesis. Partially, it transforms terminal glucose units into acid gluco-meth- saccharose residues [15] and such chains have no reductive activity, which is the main cause of alkaline LMD degradation during complex synthesis. This phenomenon is confirmed by the fact that if the LMD solution is treated with sodium hydroxide, without the presence of iron(III)oxy hydroxide gel, under the same conditions as the complex synthesis, in spite of evident casemalization, there is a significant decrease of the initial reduction activity of the LMD treated. Also, the reduction activity of the LMD used for the synthesis was found to be much higher than that of the LMD separated from the synthesized complex by hydrolytic decomposition in neutral medium, heavily diluted and at elevated temperature [10]. Sodium hydroxide also contributes to breaking of the hydrogen bonds between LMD molecules and water partially replacing the hydrogen atoms from the hydroxyl groups by the more electropositive sodium atom, as well as to breaking of hydrogen bonds in the iron(III)-oxy hydroxide gel, thus improving their interaction with LMD molecules [16]. However, the presence of sodium hydroxide in the reaction mixture during the synthesis at the reaction temperature at the same time causes alkaline-thermal and oxidative decomposition of the LMD molecules up to 5% [10] and the partial reduction of iron(III), which might be the cause of the increased toxicity of these complexes and the intensive brown colour of their parenteral solutions. In iron(III) complexes with H-LMD and DCA there are no such occurrences, since their reductive activity was eliminated by hydrogeneration [10] and electro-oxidation [8] of the aldehyde group in the terminal glucose unit of the LMD molecule, respectively.

As a result, the parenteral solutions of the iron(III) complex with LMD have high viscosity (-30 mPa·s), low TPH-A (0.8-1.8 min) and TPH-120 values (< 20 min), noticeable acute toxicity (LD₅₀ = 465 mg Fe(III)/kg), a relatively low maximum Fe(III) level in the serum of 7.5 mg/cm³, and a significant quantity of residual Fe(III) at the i.m. application site of 11%. In H-LMD and DCA, the reduction activity is eliminated by hydrogeneration or electro-oxidation, there are no significant differences between them, and their complexes are very suitable for parenteral application. DCA ([μ]²₇ = 0.053 dl/g) has an advantage as a ligand in the preparatory sense because it gives stable complexes even from the initial iron(III) to ligand mass reaction ratios of 1:1 and 1:2, that can be standardized as parenteral solutions with a Fe(III) content of 100 mg/cm³ without increasing the viscosity of the solution, which is very important from the aspect of parenteral application techniques. To obtain such a complex with H-LMD, the lower intrinsic viscosity of the initial reaction ratio is 1:2.5, lowering at the same time the intrinsic ligand viscosity value to [μ]²₇ = 0.035 dl/g, and that degrades the values of important complex characteristics.

CONCLUSION

The quality of iron(III) polynuclear complexes with carbohydrates depends, in the first place, on the ligands used.

Among the investigated complexes, the best results were obtained with the complex with dextran carboxonic acid (DCA) with the intrinsic viscosity value [μ]²₇ = 0.053 dl/g, synthesized from the initial iron(III) to DCA mass reaction ratio 1:2, standardized as a parenteral solution with a Fe(III) content of 100 mg/cm³, with the following properties: Fe(III) = 98.7 mg Fe(III)/cm³; DCA = 197.2 DCA/cm³; NaCl = 0.93%; dynamic viscosity at 25°C = 13.2 mPa·s; pH = 6.8; TPH-A = 9.7 min; TPH-120 > 45 min; max. Fe(III) level in serum = 19 mg/100 cm³ 36 hours after the i.m. application, maintaining the Fe(III) level >1 mg/100 cm³ for a total of 120 h; residual Fe(III) at the i.m. application site = 4%, and acute toxicity LD₅₀ = 3000 mg Fe(III)/kg.

REFERENCES

IZVOD

Ispitivanje primarnih fizičko-chemskih i farmako-bioških karakteristika polinuklearnih kompleksa gvožđa(III) sa dekstranom i njegovim derivatima

(Naučni rad)

Dragan M. Cvetković, Vesna D. Nikolić, Ljubiša B. Nikolić

Tehnički fakultet, Leskovac, Srbija i Crna Gora

Prikažani su rezultati ispitivanja osnovnih fizičko-chemskih i farmako-bioških svojstava polinuklearnih kompleksa gvožđa(III) sa niskomolekulskim dekstranom (LMD), hidrogenovanim niskomolekulskim dekstranom (H-LMD) i dekstrankarbonskom kiselinom (DCA). Ispitivanja obuhvataju otpornost na hidrolitičko razlago kompleksa u jako kiseloj sredini (pH=1,5) i neutralnoj sredini na 120°C, vrednost viskoziteta parenteralnog rastvora, dinamiku resorpcije gvožđa(III) do seruma posle i.m. i i.v. aplikacije preparata kunićima, akutnu toksičnost (LD50) na miševima i količine zaostalog gvožđa(III) na mestu i.m. aplikacije.

Najbolje rezultate prema ispitanim parametrima pokazali su kompleksi gvožđa(III) sa dekstrankarbonskom kiselinom (DCA).

Ključne reči: Polinuklearni gvožđe kompleks, Nisko molekularni dektran, Hidrogenovani nisko molekularni dektran, Dekstran karbonska kiselina.