ELECTRON AND MOMENTUM TRANSFER PHENOMENA AT DEVELOPED DEFORMABLE AND RIGID LIQUID–LIQUID INTERFACES

A new idea was applied for the elucidation of the electron and momentum transfer phenomena at both rigid and deformable interfaces in finely (micro, nano, atto) dispersed systems. The electroscoelastico behavior of e.g., liquid/liquid interfaces (emulsions and double emulsions) is based on three forms of "instabilities": these are rigid, elstic, and plastic. The events are understood as interactions between internal (immanent) and external (incident) periodical physical fields. Since the events at the interfaces of finely dispersed systems must be considered at the molecular, atomic, and/or entities level, it is inevitable to introduce the electron transfer phenomena beside the classical heat, mass and momentum transfer phenomena commonly used in chemical engineering. Three possible mathematical formalisms have been derived related to this physical formalism, i.e. to the developed theory of electroviscoelasticity. The first is tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless to their origin (mechanical and/or electrical). The second is van der Pol derivative model. Finally, the third model comprise an effort to generalize the previous van der Pol differential equations, both, linear and nonlinear; the ordinary time derivatives and integrals are now replaced by corresponding fractional-order time derivatives and integrals of order $p < 1$. Both, the presented model and theory can facilitate the understanding of entrapment problems in solvent extraction, developed interfaces in colloidal and interface science, chemical and biological sensors, electro analytical methods, biology/biomedicine (hematology, genetics and electroenceuro-physiology).

Key words: Electron transfer phenomena, Electrified liquid–liquid interfaces, Finely dispersed systems, Electrorviscoelasticity, Emulsions.

Over the last decade the biggest advances in physics, physical chemistry and bio-chemistry have come from thinking smaller. This research takes an interdisciplinary approach to the elucidation of the momentum transfer phenomenon, as well as the electron transfer phenomenon, at well-characterized liquid–liquid interfaces. The considered scales are micro, nano and atto, using various theoretical approaches. Micro scales may cover more or less classical chemical engineering insight, while nano and atto scales focus on modern molecular and atomic engineering. In this context, "atomic engineering" recalls the ancient idea of the interplay of particles that are small, indivisible and integer [Greek (ατομίκα)] [1]. In the recent scientific literature, terms such as nano-science and nanotechnology, functional artificial nano-architectures, nano-systems and molecular machinery, once considered merely futuristic, have become focuses of attention [1].

This paper presents a brief overview of the topic divided into two main parts: general, developing a new classification of finely dispersed systems based on entities, and particular discussing electron and momentum transfer phenomena at liquid–liquid interfaces.

GENERAL – CLASSIFICATION OF FINELY DISPERSED SYSTEMS

Classification based on scales [1] – Macro and micro scale

Classical chemical engineering was developed intensively during the last century. Theoretical backgrounds of momentum, mass, energy balances and equilibrium states are commonly used as well as chemical thermodynamics and kinetics. Physical and mathematical formalisms are related to heat, mass, and momentum transfer phenomena, as well as to homogeneous and heterogeneous catalysis. Entire object models, continuum models and constrained continuum models are frequently used for the description of events and for equipment design. Reactors, tanks and columns are the usual principal equipment. The output is, generally, demonstrated as conventional products, precision products, chemistry (solutions) and biochemistry.

Nano scale

Molecular engineering nowadays is still undergoing substantial development. Beside heat, mass and momentum transfer phenomena, commonly used in classical chemical engineering, it is necessary to
introduce the electron transfer phenomenon. The
description of events is based on molecular mechanics,
molecular orbits and electrodynamics. The principal
tools and equipment are micro-reactors, membrane
systems, micro analytical sensors and micro-electronic
device. The output is, generally, demonstrated as
molecules, chemistry (solutions) and biochemistry.

Atto scale

Atto-engineering is in permanent and almost
infinite development for already more than a whole
century. The theoretical background is related to surface
physics and chemistry, quantum and wave mechanics,
and quantum electrodynamics. Discrete models and
constrained discrete models are convenient for the
description of related events. The tools and equipment
are nano and atto dispersions and beams (ions,
photon, ions, photons and electrons), ultra-thin
films and membranes, fullerene and bucky-tubules,
Langmuir–Blodgett systems, molecular machines,
nano-electronic devices, various beam generators. The
output is, generally, demonstrated as finely dispersed
particles (plasma, fluosol–fog, fluosol–smoke, foam,
emulsion, suspension, metal, vesicle, dispersed).

Further possible classifications

Examples given, related to geometry: surface
continuums, line continuums and point discontinuums.
Related to forces of interaction: electrostatic, van der
Waals, solution and static. Related to physical –
chemical processes: diffusion, sorption, catalysis,
membrane. Finally, the classification presented here is
based on entities and may be considered as the first
philosophical breakpoint!

Entities

An entity can be defined as the smallest indivisible
element of matter that is related to the particular transfer
phenomena. Hence, the entity can be either a differential
element of mass/demon, or an ion, or a photon as a
quantum of acoustic energy, or an ion as a quantum of
information, or a photon or an electron [1,2].

A possible approach is proposed to the general
formulation of the links between the basic
characteristics, the levels of approximation and the
levels of abstraction related to the existence of finely
dispersed systems/DS [3]. At first for the reason of
simpler and easier physical and mathematical modeling,
it is convenient to introduce the terms: homo-aggregate
(phases in the same state of aggregation/HOA) and
hetero-aggregate (phases in more than one state of
aggregation/HEA). Now the matrix presentation of finely
dispersed systems is given by

\[([DS]^i = (HOA)^i + (HEA)^i] \]

where i and j refer to the particular finely disperse
system position, i.e. when i = j then the diagonal positions
and aggregates that correspond to homo-aggregate finely dispersed sys-
tems (plasmas, emulsions and dispersions) and when i| not j then the tangential positions correspond to hetero-
aggregate systems (fluosol/fog, fluosol/smoke, foam,
suspension, metal, and vesicle). Furthermore, the inter-
faces may be deformable D and rigid R, which is pre-
seated in Table 1.

Table 1. A new classification of finely dispersed systems

<table>
<thead>
<tr>
<th>DM*</th>
<th>Gas</th>
<th>Liquid</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>PLASMA D</td>
<td>FOAM D</td>
<td>METAL R</td>
</tr>
<tr>
<td>Liquid</td>
<td>FLUOSOL/fog D</td>
<td>EMULSION D</td>
<td>VESICLE D</td>
</tr>
<tr>
<td>Solid</td>
<td>FLUOSOL/smoke R</td>
<td>SUS PENSION R</td>
<td>DISPERSOILD R</td>
</tr>
</tbody>
</table>

Hierarchy of entities

Figure 1.a shows a stereographic projection from a Riemann sphere. Fig. 1.b. shows a
"hierarchy" of entities, which must be understood as a
im and value of the ratio u0\|Z/ [withdrawn from magnetic
Reynolds criteria (\(Re_m = \frac{4\pi G u_0 c^2}{Z}\)] where the
conductivity G is expressed as a reciprocal of the viscosity/impedance Z (G = 1/Z), l is the path length that an
entity "overrides", u0 is the characteristic velocity, and
c is the velocity of light).

In general S corresponds to the slow system/super
fluid and F corresponds to the fast system/super-
conductor. It is now possible to propose that all real
dynamic systems are situated between these limits.
Also, it seems sensible to think about the further
structure of entities, the second philosophical breakpoint e.g., the basic entity can be understood as an energetic ellipsoid shown in Figure 1.c. (based on the model of electron following Maxwell-Dirac Isomorphism/MDI: an electron is an entity at the same time quantum-mechanical/microscopic N=−2 and electro-dynamic/macroscopic N=3). Now, a spatio-temporal, five dimensional existence of an entity e.g., electron may be presented by the equation: \[(x^2 + y^2 + z^2) - (x^2 + y^2 + z^2)^2 = 0\], where \(\omega_n\) is the factor of spatio-temporal synergy (cm s), and \(\omega_n\) is the isotropic angle rotation \((s^2)\) \[17\].

PARTICULAR – LIQUID/LIQUID INTERFACES

Physical formalism – structure – mechanism – dynamics

If a liquid–liquid interface, e.g. emulsion or double emulsion, is taken as a central and representative \((i=2)\) finely dispersed system, it is possible to propose a theory of electroscoelasticty \[1-4, 18-23\] based on a new constitutive model of liquids. Thus, hydrodynamic and electrodynamic motions are considered in the presence of both potential (elastic forces) and non-potential (resistance forces) fields. The elastic forces are gravitational, buoyancy, and electrostatic electrodynamic (Lorentz) and the resistance forces are continuum resistance/viscosity and electrical resistance/impedance. The principles of conservation of momentum, energy, mass and charge are used to define the state of a real fluid system quantitatively. In addition to the conservation equations, which are insufficient to define the system uniquely, statements on the material behavior are also required. These statements are termed constitutive relations, e.g. Newton’s law, Fourier’s law, Fick’s law and Ohm’s law.

The droplet or droplet-film structure is now considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. At first, during the droplet formation and/or destruction period, it may be assumed that the electrical analogue consists of a number of serial equivalent circuits. After rearrangement or coupling at the resonant/characteristic frequency a probable equivalent circuit is shown in Fig. 2.a and b. The electrical analogue, Fig. 2.a, consists of passive elements (R, L, and C) and an active element (emitter-coupled oscillator W). The emitter-coupled oscillator is represented by an equivalent circuit as shown in Fig. 2.b. Figure 2.c shows the electrical (oscillators) and/or mechanical (structural volumes \(V_i)\) analogues when they are coupled to each other, e.g. in the droplet. Hence, the droplet consists of a finite number of structural volumes or spaces electro-mechanical oscillators (clusters) \(V_i)\, a finite number of
excluded surface volumes or interspaces V_s, and of a finite number of excluded bulk volumes or interspaces V_b. Furthermore, the interoscillator/cluster distance or internal separation S_i represents the equilibrium of all the forces involved (electrostatic solvation, van der Waals and steric) [1–4]. The external separation S_e is introduced as a permitted distance when the droplet is in interaction with any external periodical physical field.

The rigid droplet boundary R presents a form of droplet instability when all the forces involved are in equilibrium. Nevertheless, the two-way disturbance spreading (propagation or transfer) of entities occurs, either by the tunneling mechanism (low energy dissipation and occurrence probability) or by the induction mechanism (medium or high energy dissipation and occurrence probability). The elastic droplet boundary E represents a form of droplet instability when the equilibrium of all the forces involved is disturbed by the action of any external periodical physical field, but the droplet still exists as a dispersed phase. In the region between the rigid and elastic droplet boundaries, reversible disturbance spreading occurs with or without hysteresis. After the elastic droplet boundary, the plastic form of droplet instability takes place, then electro-mechanical oscillators/clusters do not exist any more and beams of entities or atto-clusters appear. Atto-clusters are the entities that appear in atto-dispersed systems. In this region the one-way propagation of entities occurs.

Mathematical formalisms – Tension Tensor Model

Using the presented propositions and electro-mechanical analogies, an approach to non-Newtonian behaviors and to electroviscoelasticity is now introduced. When equation (2) is applied to the droplet when it is stopped, e.g., as a result of an interaction with some periodical physical field, the term on the left-hand side becomes equal to zero.

\[
\frac{D\mathbf{u}}{Dt} = \sum F_i (dx dy dz) + D\mathbf{F}_s
\]

Furthermore, if the droplet is in the state of "forced" levitation, and the volume forces balance each other, then the volume force term is also equal to zero [1–3,24,25]. It is assumed that the surface forces are, for the general case that includes electroviscoelastic fluids, composed of interaction terms expressed by

\[
\mathbf{F}_s = \mathbf{T} \cdot \mathbf{c} \cdot \mathbf{A}
\]

where the tensor \mathbf{T} is given by

\[
\mathbf{T} = -c_0 \delta^i + c_1 \delta^i + c_2 \delta^i + c_3 \delta^i
\]

where \mathbf{T} is composed of four tensors, δ^i is the Kroncecker symbol, and δ^i is the tension tensor, and δ^i is the tension coupling tensor. In the first isotropic tensor the potentialistic pressure $c_0 = c_0(\rho, U)$ is dominant and the contribution of the other elements is neglected. Here U represents the hydrostatic or electrostatic potential. In the second isotropic tensor, the resistance $c_1 = c_1(\rho, U)$ is dominant and the contribution of the other elements is neglected. In the third tension tensor, its normal elements $c_2 = c_2$ are due to interfacial tensions and the tangential elements c_3 are presumed to be of the same origin as the dominant physical field involved. In the fourth tension coupling tensor, there are normal, c_3, and tangential c_3 and c_3 elements and tangential c_3 and c_3 elements that are attributed to the first two dominant periodical physical fields involved.

The general equilibrium condition for the dispersed system with two periodical physical fields involved may be derived from Eq. (4) and expressed by

\[
\tau_d = \frac{-c_0 + c_1 + c_2 \left(\frac{\alpha}{d} \right) + c_3 \left(\frac{\alpha}{d} \right)}{2 (c_2 + c_3)}
\]

where τ_d are the tangential elements of the same origin as those of the dominant periodical physical field involved. Figure 3 shows the schematic equilibrium of the surface forces at any point of a stopped droplet-film structure while in interaction with some periodical physical field [25]. Note that for dispersed systems consisting of, or behaving as Newtonian fluids, $c_3 = c_3 (\rho, U)$ is equal to zero.

The processes of formation/destruction of the droplet or droplet-film structure are non-linear. Furthermore, the viscosity coefficients μ ($i=0.12$), where each consists of bulk, shear, and tensile components, when correlated to the tangential tensions of mechanical origin τ_d can be written as

\[
\mu = \frac{1}{\tau_d}
\]

Figure 3. Balance of surface forces at any point of a stopped droplet-film structure while in interaction with a periodical physical field (a two dimensional projection). F represents the projection of the resultant surface forces vector in three N dimensional configuration space, τ stands for the tangential and α for the normal components. Reprinted from ref 25, p. 438, with permission from Academic Press.
\[\tau_u = \mu_0 \frac{du}{dx} + \mu_1 \frac{d^2 u}{dx^2} + \mu_2 \left(\frac{du}{dx} \right)^2 \]

(6)

where \(u \) is the velocity and \(x \) is one of the space coordinates.

Using the electrical analog, the impedance coefficients \(Z_i (i = 0, 1, 2) \), where each consists of ohmic, capacitive, and inductive components, will be correlated with the tangential tensions of electrical origin \(\tau_e \), as follows:

\[\tau_e = Z_0 \frac{d\psi_e}{dt} + Z_1 \frac{d^2 \psi_e}{dt^2} + Z_2 \left(\frac{d\psi_e}{dt} \right)^2 \]

(7)

where \(\psi_e \) is the electron flux density and \(t \) is the time coordinate.

A more detailed description about the derivation of these equations can be found in Refs. [5,9,13,16,25-30].

van der Pol integer order derivative model

The postulated assumptions for an electrical analogue are the following:

1. The droplet is a macro system (a collective of particles) consisting of structural elements that may be considered as electro-mechanical oscillators.

2. Droplets as micro collectives undergo tuning or coupling processes and so build the droplet as a macro collective.

3. External physical fields (temperature, ultrasonic, electromagnetic or any other periodic) cause the excitation of a macro system through the excitation of micro-systems at the resonant characteristic frequency, where elastic and/or plastic deformations may occur.

Hence, the study of electro-mechanical oscillators is based on electromechanical and electrodynamic principles. At first, during droplet formation it is possible that the serial analog circuits are more probable, but later, as a consequence of tuning and coupling processes, parallel circuits become dominant. Also, since the transfer of entities by tunneling (although with low energy dissipation) is much less probable, it is sensible to consider the transfer of entities by induction (medium or high energy dissipation). Figure 4 presents the resultant equivalent electrical circuit, rearranged under the influence of an applied physical field, such as an antenna output circuit [12,25].

A non-linear integral–derivative equation of the van der Pol type represents the initial electromagnetic oscillation

\[C \frac{dU}{dt} + \left(\frac{U}{R} - \alpha U \right) + \gamma U^3 + \frac{1}{L} \int U dt = 0 \]

(8)

where \(U \) is the overall potential difference at the junction point of the spherical capacitor \(C \) and the plate, \(L \) is the inductance caused by the potential difference, and \(R \) is the ohmic resistance (resistance of the energy transformation, electromagnetic into the mechanical or damping resistance), \(t \) is time; \(\alpha \) and \(\gamma \) are constants determining the linear and non-linear parts of the characteristic current and potential curves. \(U_0 \), the primary steady-state solution of this equation, is a sinusoid of frequency close to \(\omega_0 = 1/(LC)^{0.5} \) and the amplitude \(A_0 = [(\chi-1)/R(\chi/4)]^{0.5} \).

The noise in this system, due to linear amplification of the source noise (the electromagnetic force assumed to be the incident external force, which initiates the mechanical disturbance), causes oscillations of the "continuum" particle (molecule surrounding the droplet or droplet–film structure), which can be represented by the particular integral

\[C \frac{dU}{dt} + \left(\frac{1}{R} - \alpha \right) U + \gamma U^3 + \frac{1}{L} \int U dt = -2A_0 \cos \omega t \]

(9)

where \(\omega \) is the frequency of the incident oscillations.

Finally, considering the droplet or droplet–film structure formation, "breathing", and/or destruction processes, and taking into account all the noise frequency components, which are included in the driving force, the corresponding equation is given by

\[C \frac{dU}{dt} + \left(\frac{1}{R} - \alpha \right) U + \frac{1}{L} \int U dt \cos \omega t \]

(10)
where \(i(t) \) is the noise current and \(A_0(\omega) \) is the spectral distribution of the noise current as a function of frequency \([1, 2]\).

In the case of non-linear oscillators, however, the problem of determining noise output is complicated by the fact that the output is fed back into the system, thus modifying the effective noise input in a complicated manner \([1, 2]\). The noise output appears as an induced anisotropic effect.

van der Pol fractional order derivative model – linearized

In an effort to generalize the previous equation the ordinary time derivative and integral were now replaced by the corresponding fractional-order time derivative and same as integral of the order \(p < 1 \) \([33-42]\). Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of various materials and processes. This is the main advantage of fractional derivatives in comparison with classical integer-order models, in which such effects are in fact neglected. Here, the capacitive and inductive elements, using fractional-orders \(p \in (0, 1) \), enable the formation of a fractional differential equation, i.e. a more flexible or general model of liquid-liquid interface behaviour. A differ-integral form using the Riemann–Liouville definition is given by

\[
\mathcal{D}_t^p \{ U(t) \} = \frac{1}{\Gamma(1-p)} \int_0^t \frac{U(\tau)}{(t-\tau)^p} \, d\tau ,
\]

\(0 < p < 1 \) \(\rightarrow \) \(\mathcal{D}_t^p \{ U(t) \} = \frac{1}{\Gamma(1-p)} \int_0^t \frac{U(\tau)}{(t-\tau)^p} \, d\tau \) (11)

\[
\mathcal{D}_t^p \{ U(t) \} = \frac{1}{\Gamma(1-p)} \int_0^t \frac{U(\tau)}{(t-\tau)^p} \, d\tau ,
\]

\(p > 0 \)

So, in that way one can obtain a linear fractional differential equation with zero initial conditions as follows:

\[
C_0 \mathcal{D}_t^p \{ U(t) \} + \left(\frac{1}{R} - \alpha \right) U + \frac{1}{L} \mathcal{D}_t^p \{ U(t) \} = i(t)
\] (12)

Using the Laplace transformation of (12) leads to

\[
G(s) = \frac{U(s)}{i(s)} = \frac{1}{Cs^p + \frac{1}{L} s^p + (1/R - \alpha)} \nonumber = \frac{A_0 s^p}{Cs^p + \frac{1}{L} s^p + (1/R - \alpha)} \nonumber = \frac{1}{A_0 \mathcal{D}_t^p \{ U(t) \}}
\]

\[
G(s) = \frac{1}{a s^{2p} + b s^p + c} + \frac{1}{c s^{2p}}
\]

or

\[
G(s) = \frac{1}{a s^{2p}} + \frac{1}{b s^p} + \frac{1}{c}
\]

\(a = C, \; b = (1/R - \alpha), \; c = 1/L \) (14)

Further, \(G(s) \) has the form

\[
G(s) = \frac{1}{as^{2p} + bs^p + c}
\]

\[
1 \mathcal{D}_t^p \{ G(s) \} = \frac{1}{as^{2p} + bs^p + c}
\]

where \(i(t) \) is the noise current and \(A_0(\omega) \) is the spectral distribution of the noise current as a function of frequency \([1, 2]\).

The term–by–term inversion, based on the general expansion theorem for the Laplace transform \([34]\) and using (appendix A) produces

\[
G_3(t) = \frac{1}{\Gamma(1-p)} \int_0^t \frac{U(\tau)}{(t-\tau)^p} \, d\tau
\]

\(\rightarrow \) \(G_3(t) = \frac{1}{\Gamma(1-p)} \int_0^t \frac{U(\tau)}{(t-\tau)^p} \, d\tau \) (15)

where \(E_{\alpha}(z) \) is the Mittag–Leﬄer function in two parameters (see Appendix A) and its \(k \)-th derivative is given by

\[
E_{\alpha}(z) = \frac{d^k}{dz^k} \frac{E_{\alpha}(z)}{z} = \sum_{j=0}^{k} \frac{j!}{(k-j)! \Gamma(\alpha + j)} \cdot z^j , \; k = 0, 1, 2, \ldots
\] (17)

The inverse Laplace transform of \(G(s) \) is the fractional Green function:

\[
G(t) = a \mathcal{D}_t^p \{ G_3(t) \} = \frac{d^p G_3(t)}{dt^p}
\] (18)

where the fractional derivative of \(G_3(t) \) (18) is evaluated with the help of (11). Finally, this allows an explicit representation (appendix B) of the solution:

\[
U(t) = \int_0^t G(t-\tau) i(\tau) \, d\tau
\] (19)

Again, the initial electromagnetic oscillation is represented by a differential equation, Eq. (6), and when the non-linear terms are omitted and/or canceled, the first step, i.e. a homogeneous solution may be obtained using a numerical calculation derived from the Grunwald definition \([23]\), as shown in Fig. 5.

The calculation was performed for the following parameters:

\[
\alpha = 0.9995, \; U_0 = 15 \text{ mV}, \; p = 0.95, \; T = 0.001 \text{ s}
\]

Further on, considering Eq. (11) i.e. a non-homogeneous solution is obtained and presented in Fig. 6.

The obtained result appears as a band because the input (cos) is of the fractional order; and the output is in a damped oscillatory mode of high frequencies.

The calculation was performed for the parameters [where the derivative of cos (\(\omega_0 t \) is also fractional, of the order \(\alpha \)]:

\[
\alpha = 0.95, \; U_0 = 15 \text{ mV}, \; p = 0.95; \; T = 0.01 \text{ s}; \; A_e = 0.05 \text{ nm}; \; \cos (\omega_0 t) = d^p/dt^p (\sin \omega_0 t)
\]
\(x(t) = x_0 + \frac{1}{\Gamma(\alpha)} \int_0^t f(s, x(s)) (t - s)^{\alpha - 1} ds , \) \(\text{(20)} \)

One may then introduce uniformly distributed grid points \([1]\). The next step is to find an approximation by the predictor-corrector approach. One can use the fractional Euler method for the predictor and for the corrector the product trapezoidal formula \([34]\). Also, it was desired to develop numerical schemes that are convergent, consistent, and stable, but these properties are not treated here.

EXPERIMENTAL CONFIRMATION

Presented theoretical predictions including both physical and mathematical formalisms were experimentally corroborated by means of electrical interfacial potential (EIP) measurements and by means of nuclear magnetic resonance spectroscopy (NMR). The obtained experimental results were in fair agreement with the postulated theory \([1, 2]\).

Description of the system

The heavy liquid was 5.6 M phosphoric acid, and the light liquid was the synergistic mixture of 0.5 M di (2-ethylhexyl) phosphoric acid (D2EHPA) and 0.125 M tri-n-octylphosphine oxide (TOPO) in desmazinated kerosene \([1-4, 24]\).

EIP Measurements

A method and apparatus were developed to voltametrically monitor the change of the electrical interfacial potential (EIP) appearing during the formation of the electric double layer (EDL), while two-phase contact occurs \([1, 24]\). Measurements of the EIP were performed during the processes of formation and transition of the electroviscoelastic sphere into a rigid sphere as shown in Figs. 7 and 8 \([1, 2, 24]\).

Fig. 7 shows the measured change in the EIP appearing during the introduction of the heavy-phase.

\[
A_c (mV) = \begin{cases}
20 & \text{for } t < 100 \\
\frac{1}{t} & \text{for } t \geq 100
\end{cases}
\]
droplet into the light-phase continuum [2]. It can be seen in the figure that an interfacial jump potential peak appears during the formation of the EDL. Thereafter, the EIP decreases to a constant value. The lowering of the EIP in absolute value during the flow is due to the participation of cations that form the dense part of the EDL. The anions are the counter-ions in the diffuse part. The redistribution of these anions and cations between the region close to the surface and the surface layers of the heavy-phase define the kinetics of the EIP [2,18].

Figure 8 shows the measured spontaneous oscillations of the EIP during the "breathing" period. After the EIP jump, which is in the millivolt-millisecond scale, the EIP continues to oscillate in the parts of the millivolt-minute range. Its damped oscillatory mode is (probably) due to the hydrodynamic instability of the interfacial surface, as a consequence of the local gradients of the interfacial tension and density in the mutual saturation processes of liquids [2,18]. The other relevant interpretation of the EIP spontaneous oscillations may be expressed as follows: the electroviscoelastic sphere undergoes the transformation into a rigid sphere. This transformation can be understood as a memory storage process.

31P NMR Measurements

In order to determine the resonant (characteristic) frequency, a NMR spectrometer was used as a reactor for the energetic analysis. The impedance Z at the resonant frequency ω_0 is equal to the resistance R. The resonant frequency of the electromechanical oscillator can be considered as a characteristic frequency within the vibro-rotational spectrum of the molecular complex that builds the droplet film structure [2]. Figure 9 shows 31P NMR spectrum of the examined droplet-film structure.

All the experiments were performed and all the spectra were acquired on a Bruker MSL 400 spectrometer with a 9.395 T magnet and at a 31P frequency of 161.924 MHz. The transmitter was set at a resonance frequency with the phosphoric acid standard solution, and a sweep width of 15000 Hz was employed. The swept region corresponded to the range between -10 and 90 ppm.

IMPlications

A theory of electroviscoelasticity using the fractional approach constitutes a new interdisciplinary approach to colloid and interface science. Hence, 1-more degrees of freedom are in the model, 2-memory storage considerations and hereditary properties are included in the model, and 3-history impact to the present and future is in the game! This theory and the models discussed may facilitate the understanding of e.g. entrapment problems in solvent extraction, very developed interfaces in colloid and interface science, chemical and biological sensors, electroanalytical methods, biology/biomedicine (hematology, genetics, electrophysiology). Furthermore, both, the model and theory may be implemented in studies of structure; interface barriers/symmetries – surface (bilipid membrane cells, free bubbles of surfactants, Langmuir Blodgett films), – line (genes, liquid crystals, microtubules), – point (fullerenes, micro-emulsions) and – overall (dry foams, polymer elastic and rigid foams).

acknowledgements

This study was supported by the Ministry of Science and Environmental Protection of the Republic of Serbia as Fundamental Research Projects 101822 and 142034G. Fruitful consultations, comments, discussions, and suggestions, have been held and received from Professors J. Janic, M. Plavsic, J. Prochazka, H.-J. Bert, A.V. Delgado, H. Oshima, A.T. Hubbard, J.P. Hsu, S. Tseng, A. Saboni!
APPENDIX

Appendix A

A two-parameter function of the Mittag-Leffler type is defined by the series expansion:

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} , \quad (\alpha, \beta > 0).$$

The Mittag-Leffler function is a generalization of the exponential function e^z and the exponential function is a particular case of the Mittag-Leffler function. The relationship is expressed as

$$E_{1,1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z. \quad (21)$$

$$E_{1,1}(z) = \frac{1}{2\pi i} \int_{C} e^{zt} \frac{dz}{z^{\alpha+1}}$$

A one-parameter function of the Mittag-Leffler type is:

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)} \quad (23)$$

The Laplace transform of the Mittag-Leffler function in two parameters is

$$\int_{0}^{\infty} e^{-s E_{\alpha,\beta}(z)} dt = \frac{1}{1-s} , \quad |s| < 1$$

and a pair of the Laplace transforms of the function $t^{\alpha-1} E_{\alpha,\beta}(z)$ is:

$$\int_{0}^{\infty} e^{-s t} \frac{1}{t^{\alpha+1}} dt = \frac{\Gamma(-\alpha)}{\Gamma(-\alpha - 1) s^{\alpha+1}}.$$
IZVOD

FENOMENI PRENOSA ELEKTRONA I KLIČIJE KRETANJA NA RAZVJENIM DEFORMABILNIM I RIGIDnim MEĐUPOVRŠINAMA TEČNO-TEČNO

(Naučni rad)

Aleksandar M. Spasić¹, Mihailo P. Lazarević², Milan V. Mitrović³, Dimitrije N. Ketić³
¹Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Beograd, Srbija
²Mašinski fakultet, Univerzitet u Beogradu, Beograd, Srbija
³Tekhnološko-metalski fakultet, Univerzitet u Beogradu, Beograd, Srbija

Primjerena je nova ideja za rasvjetljanje fenomena prenosa elektrona i klične kretanja na razvijenim deformabilnim i rigidnim, među površinama u finim (mikro, nano, ato) disperznim sistemima. Ponašanje elektroviskoelastičkih fluida, na primjer među površina tečno-čvrsto (emulzije, dvostruke emulzije) se predstavlja u tri stanja: nesustavnosti, rigidno, elastično i plastično. Relevantni događaji na među površinama se pojavljuju kod interakcije unutarnjih (imenitih) i spoljašnjih (incidentnih) periodičnih fizičkih polja. Red fenomena prenosa klične kretanja, toplote i masa, koji se koriste u hemijskom inženjerstvu, za posmatranje na nivou molekula, atoma i/ili entiteta neophodno uskoro i fenomen prenosa elektrona. Za postavljanje fizički formalizam teoriju elektroviskoelastičnosti, izvedena su tri matematički formalizma. U prvom modelu predstavlja se dekovanje normalnih i tangencijskih sila, samo u matematičkom smislu, bez obzira na njihovo poseklo (mehaničko i/ili električno). Drugi model je integralno-diferencijalna je deočina tipa van der Pol. Treći model predstavlja generalizaciju modela van der Pol za oba slučaja, linearni i nelinearni, integralni i diferencijalni reda celih brojeva su zamenjeni integralima i diferencijalima reda izomljenih brojeva. Predstavljeni modeli i teorija omogućavaju dublje razumijevanje problema zahvalnosti u elektrochemiji tečno-čvrsto, događaja na razvijenim površinama, hemijskih i biohemijskih senzora, elektronolitičkim metoda, biologije/biomedicin (hematologije, genetike, elektrotehniku i emulzije).