ON SOME MEAN SQUARE ESTIMATES IN
THE RANKIN-SELBERG PROBLEM

Aleksandar Ivić

An overview of the classical Rankin-Selberg problem involving the asymptotic formula for sums of coefficients of holomorphic cusp forms is given. We also study the function \(\Delta(x; \xi) \) \((0 \leq \xi \leq 1)\), the error term in the Rankin-Selberg problem weighted by \(\xi \)-th power of the logarithm. Mean square estimates for \(\Delta(x; \xi) \) are proved.

1. THE RANKIN-SELBERG PROBLEM

The classical Rankin-Selberg problem consists of the estimation of the error term function

\[
\Delta(x) := \sum_{n \leq x} c_n - Cx,
\]

where the notation is as follows. Let \(\varphi(z) \) be a holomorphic cusp form of weight \(\kappa \) with respect to the full modular group \(SL(2, \mathbb{Z}) \), and denote by \(a(n) \) the \(n \)-th Fourier coefficient of \(\varphi(z) \) (see e.g., R. A. Rankin [15] for a comprehensive account). We suppose that \(\varphi(z) \) is a normalized eigenfunction for the Hecke operators \(T(n) \), that is, \(a(1) = 1 \) and \(T(n)\varphi = a(n)\varphi \) for every \(n \in \mathbb{N} \). In (1.1) \(C > 0 \) is a suitable constant (see e.g., [9] for its explicit expression), and \(c_n \) is the convolution function defined by

\[
c_n = n^{1-\kappa} \sum_{m \mid n} m^{2(\kappa-1)} \left| a\left(\frac{n}{m^2} \right) \right|^2.
\]

The classical Rankin-Selberg bound of 1939 is

\[
\Delta(x) = O(x^{3/5}),
\]

2000 Mathematics Subject Classification. 11N37, 11M06, 44A15, 26A12.

Key Words and Phrases. The Rankin-Selberg problem, logarithmic means, Voronoï type formula, functional equation, Selberg class.
hitherto unimproved. In their works, done independently, R. A. Rankin [14] derives (1.2) from a general result of E. Landau [11], while A. Selberg [17] states the result with no proof. Although the exponent $3/5$ in (1.2) represents one of the longest standing records in analytic number theory, recently there have been some developments in some other aspects of the Rankin-Selberg problem. In this paper we shall present an overview of some of these new results. In addition, we shall consider the weighted sum (the so-called Riesz logarithmic means of order ξ), namely

$$\sum_{n \leq x} c_n \log^\xi \left(\frac{x}{n} \right) := Cx + \Delta(x; \xi) \quad (\xi \geq 0),$$

where C is as in (1.1), so that $\Delta(x) \equiv \Delta(x; 0)$. The effect of introducing weights such as the logarithmic weight in (1.3) is that the ensuing error term (in our case this is $\Delta(x; \xi)$) can be estimated better than the original error term (i.e., in our case $\Delta(x; 0)$). This was shown by Matsumoto, Tanigawa and the author in [9], where it was proved that

$$\Delta(x; \xi) \ll x^{(3-2\xi)/5+\varepsilon} \quad (0 \leq \xi \leq 3/2).$$

Here and later ε denotes arbitrarily small constants, not necessarily the same ones at each occurrence, while $a \ll \varepsilon b$ means that the constant implied by the \ll-symbol depends on ε. When $\xi = 0$ we recover (1.2) from (1.4), only with the extra ' ε' factor present. In this work we shall pursue the investigations concerning $\Delta(x; \xi)$, and deal with mean square bounds for this function.

2. THE FUNCTIONAL EQUATIONS

In view of (1.1) and (1.2) it follows that the generating Dirichlet series

$$Z(s) := \sum_{n=1}^{\infty} c_n n^{-s} \quad (s = \sigma + it)$$

converges absolutely for $\sigma > 1$. The arithmetic function c_n is multiplicative and satisfies $c_n \ll \varepsilon n^\varepsilon$. Moreover, it is well known (see e.g., R. A. Rankin [14], [15]) that $Z(s)$ satisfies for all s the functional equation

$$\Gamma(s + \kappa - 1)\Gamma(s)Z(s) = (2\pi)^{s-2}\Gamma(\kappa - s)\Gamma(1 - s)Z(1 - s),$$

which provides then the analytic continuation of $Z(s)$. In modern terminology $Z(s)$ belongs to the Selberg class S of L-functions of degree four (see A. Selberg [18] and the survey paper of Kaczorowski–Perelli [10]). An important feature, proved by G. Shimura [19] (see also A. Sankaranarayanan [16]) is

$$Z(s) = \zeta(s) \sum_{n=1}^{\infty} b_n n^{-s} = \zeta(s)B(s),$$
where $B(s)$ is holomorphic for $\sigma > 0$, $b_n \ll n^\varepsilon$ (in fact $\sum_{n \leq x} b_n^2 \leq x \log^A x$ holds, too). It also satisfies the functional equation

\[B(s)\Delta_1(s) = B(1-s)\Delta_1(1-s), \]

\[\Delta_1(s) = \pi^{-3s/2} \Gamma\left(\frac{1}{2}(s+\kappa-1)\right)\Gamma\left(\frac{1}{2}(s+\kappa)\right)\Gamma\left(\frac{1}{2}(s+\kappa+1)\right), \]

and actually $B(s) \in S$ with degree three. The decomposition (2.3) (the so-called ‘Shimura lift’) allows one to use, at least to some extent, results from the theory of $\zeta(s)$ in connection with $Z(s)$, and hence to derive results on $\Delta(x)$.

3. THE COMPLEX INTEGRATION APPROACH

A natural approach to the estimation of $\Delta(x)$, used by the author in [8], is to apply the classical complex integration technique. We shall briefly present this approach now. On using Perron’s inversion formula (see e.g., the Appendix of [3]), the residue theorem and the convexity bound $Z(s) \ll |t|^{2-2\sigma+\varepsilon}$ ($0 \leq \sigma \leq 1$, $|t| \geq 1$), it follows that

\[\Delta(x) = \frac{1}{2\pi i} \int_{\frac{1}{2}+iT}^{\frac{1}{2}+iT} Z(s) \frac{x^s}{s} \, ds + O\varepsilon \left(x^{1/2 + \frac{T}{T \theta/2 + 1}} \right) \quad (1 \ll T \ll x). \]

If we suppose that

\[\int_X^{2X} \left| B\left(\frac{1}{2} + it\right) \right|^2 \, dt \ll \varepsilon X^{\theta + \varepsilon} \quad (\theta \geq 1), \]

and use the elementary fact (see [3] for the results on the moments of $\left| \zeta\left(\frac{1}{2} + it\right) \right|$) that

\[\int_X^{2X} \left| \zeta\left(\frac{1}{2} + it\right) \right|^2 \, dt \ll X \log X, \]

then from (2.3), (3.2), (3.3) and the Cauchy-Schwarz inequality for integrals we obtain

\[\int_X^{2X} \left| Z\left(\frac{1}{2} + it\right) \right| \, dt \ll \varepsilon X^{(1+\theta)/2+\varepsilon}. \]

Therefore (3.1) gives

\[\Delta(x) \ll \varepsilon x^{\varepsilon} x^{1/2} x^{\theta/2 - 1/2 + xT^{-1}} \ll x^{\frac{\theta}{\theta + 1} + \varepsilon} \]

with $T = x^{1/(\theta+1)}$. This was formulated in [8] as

Theorem A. If θ is given by (3.2), then

\[\Delta(x) \ll x^{\frac{\theta}{\theta + 1} + \varepsilon}. \]
To obtain a value for θ, note that $B(s)$ belongs to the Selberg class of degree three, hence $B(\frac{1}{2} + it)$ in (3.2) can be written as a sum of two Dirichlet polynomials (e.g., by the reflection principle discussed in [3, Chapter 4]), each of length $\ll X^{3/2}$. Thus by the mean value theorem for Dirichlet polynomials (op. cit.) we have $\theta \leq 3/2$ in (3.2). Hence (3.5) gives (with unimportant ε) the Rankin-Selberg bound $\Delta(x) \ll \varepsilon x^{3/5+\varepsilon}$. Clearly improvement will come from better values of θ. Note that the best possible value of θ in (3.2) is $\theta = 1$, which follows from general results on Dirichlet series (see e.g., [3, Chapter 9]). It gives $1/2 + \varepsilon$ as the exponent in the Rankin-Selberg problem, which is the limit of the method (the conjectural exponent $3/8 + \varepsilon$, which is best possible, is out of reach; see the author’s work [4]). To attain this improvement one faces essentially the same problem as in proving the sixth moment for $\left| \zeta\left(\frac{1}{2} + it\right) \right|^6$, namely

$$\int_0^T \left| \zeta\left(\frac{1}{2} + it\right) \right|^6 \, dt \ll \varepsilon T^{1+\varepsilon},$$

only this problem is even more difficult, because the arithmetic properties of the coefficients b_n are even less known than the properties of the divisor coefficients $d_4(n) = \sum_{abc=n, a,b,c \in \mathbb{N}} 1,$

generated by $\zeta^3(s)$. If we knew the analogue of the strongest sixth moment bound

$$\int_0^T \left| \zeta\left(\frac{1}{2} + it\right) \right|^6 \, dt \ll T^{5/4} \log^C T \quad (C > 0),$$

namely the bound (3.2) with $\theta = 5/4$, then (3.1) would yield $\Delta(x) \ll \varepsilon x^{5/9+\varepsilon}$, improving substantially (1.2).

The essential difficulty in this problem may be seen indirectly by comparing it with the estimation of $\Delta_4(x)$, the error term in the asymptotic formula for the summatory function of $d_4(n) = \sum_{abcd=n, a,b,c,d \in \mathbb{N}} 1$. The generating function in this case is $\zeta^4(s)$. The problem analogous to the estimation of $\Delta(x)$ is to estimate $\Delta_4(x)$, given the product representation

$$\sum_{n=1}^{\infty} d_4(n)n^{-s} = \zeta(s)G(s) = \zeta(s) \sum_{n=1}^{\infty} g(n)n^{-s} \quad (s > 1)$$

with $g(n) \ll \varepsilon n^{\varepsilon}$ and $G(s)$ of degree three in the Selberg class (with a pole of order three at $s = 1$). By the complex integration method one gets $\Delta_4(x) \ll \varepsilon x^{1/2+\varepsilon}$ (here ε may be replaced by a log-factor) using the classical elementary bound

$$\int_0^T \left| \zeta\left(\frac{1}{2} + it\right) \right|^4 \, dt \ll T \log^4 T.$$

Curiously, this bound for $\Delta_4(x)$ has never been improved; exponential sum techniques seem to give a poor result here. However, if one knows only (3.6), then the situation is quite analogous to the Rankin–Selberg problem, and nothing better than the exponent $3/5$ seems obtainable. The bound $\Delta(x) \ll \varepsilon x^{1/2+\varepsilon}$ follows also directly from (3.1) if the Lindelöf hypothesis for $Z(s)$ (that $Z\left(\frac{1}{2} + it\right) \ll \varepsilon \left| t \right|^\sigma$) is assumed.
4. MEAN SQUARE OF THE RANKIN–SELBERG ZETA–FUNCTION

Let, for a given $\sigma \in \mathbb{R}$,
\begin{equation}
\mu(\sigma) = \limsup_{t \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log t}
\end{equation}

denote the Lindelöf function (the famous, hitherto unproved, Lindelöf conjecture for $\zeta(s)$ is that $\mu(\sigma) = 0$ for $\sigma \geq \frac{1}{2}$, or equivalently that $\zeta\left(\frac{1}{2} + it\right) \ll_{\epsilon} |t|^{\epsilon}$). In [8] the author proved the following

Theorem B. If $\beta = \frac{2}{5 - \mu\left(\frac{1}{2}\right)}$, then for fixed σ satisfying $\frac{1}{2} < \sigma \leq 1$ we have
\begin{equation}
\int_{1}^{T} |Z(\sigma + it)|^2 \, dt = T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2\sigma} + O_{\epsilon}(T^{(2-2\sigma)/(1-\beta)+\epsilon}).
\end{equation}

This result is the sharpest one yet when σ is close to 1. For σ close to $\frac{1}{2}$ one cannot obtain an asymptotic formula, but only the upper bound (this is [7, eq. (9.27)])
\begin{equation}
\int_{T}^{2T} |Z(\sigma + it)|^2 \, dt \ll_{\epsilon} T^{2\mu(1/2)(1-\sigma)+\epsilon}(T + T^{3(1-\sigma)}) \quad \left(\frac{1}{2} \leq \sigma \leq 1\right).
\end{equation}

The upper bound in (4.3) follows easily from (2.3) and the fact that, as already mentioned, $B(s) \in S$ with degree three, so that $B\left(\frac{1}{2} + it\right)$ can be approximated by Dirichlet polynomials of length $\ll t^{3/2}$, and the mean value theorem for Dirichlet polynomials yields
\begin{equation}
\int_{T}^{2T} |B(\sigma + it)|^2 \, dt \ll_{\epsilon} T^{2\epsilon}(T + T^{3(1-\sigma)}) \quad \left(\frac{1}{2} \leq \sigma \leq 1\right).
\end{equation}

Note that with the sharpest known result (see M. N. Huxley [2]) $\mu(1/2) \leq 32/205$ we obtain $\beta = 410/961 = 0.426638917 \ldots$. The limit is the value $\beta = 2/5$ if the Lindelöf hypothesis (that $\mu\left(\frac{1}{2}\right) = 0$) is true. Thus (4.2) provides a true asymptotic formula for
\begin{equation}
\sigma > \frac{1 + \beta}{2} = \frac{1371}{1922} = 0.7133194 \ldots.
\end{equation}

The proof of (4.2), given in [8], is based on the general method of the author’s paper [6], which contains a historic discussion on the formulas for the left-hand side of (4.2) (see also K. Matsumoto [12]).

We are able to improve (4.2) in the case when $\sigma = 1$. The result is contained in

Theorem 1. We have
\begin{equation}
\int_{1}^{T} |Z(1 + it)|^2 \, dt = T \sum_{n=1}^{\infty} c_{n}^{2} n^{-2} + O_{\epsilon}((\log T)^{2+\epsilon}).
\end{equation}
Proof. For \(\sigma = \Re s > 1 \) and \(X \geq 2 \) we have

\[
Z(s) = \sum_{n \leq X} c_n n^{-s} + \int_{X}^{\infty} x^{-s} d\left(\sum_{n \leq x} c_n \right)
\]

\[
= \sum_{n \leq X} c_n n^{-s} + \frac{CX^{1-s}}{s-1} - \Delta(x) X^{-s} - s \int_{X}^{\infty} \Delta(x) x^{-s-1} \, dx.
\]

By using (1.2) it is seen that the last integral converges absolutely for \(\sigma = \Re s > 3/5 \), so that (4.5) provides the analytic continuation of \(Z(s) \) to this region.

Taking \(s = 1 + it, 1 \leq t \leq T, X = T^{10} \), it follows that

\[
\int_{1}^{T} \left| Z(1+it) \right|^2 dt = \int_{1}^{T} \left\{ \left| \sum_{n \leq X} c_n n^{-1-it} \right|^2 - 2 \Im \left(\sum_{n \leq X} \frac{c_n}{n} \left(\frac{X}{n} \right)^it \right) \right\} dt + O(1).
\]

By the mean value theorem for Dirichlet polynomials we have

\[
\int_{1}^{T} \left| \sum_{n \leq X} c_n n^{-1-it} \right|^2 dt = T \sum_{n \leq X} c_n^2 + O \left(\sum_{n \leq X} c_n^2 n^{-1} \right) = T \sum_{n=1}^{\infty} c_n^2 + O \left(\log T \right)^{2\varepsilon},
\]

where we used the bound (see K. Matsumoto [12])

\[
\sum_{n \leq x} c_n^2 \ll x (\log x)^{1+\varepsilon}
\]

and partial summation. Finally we have

\[
\sum_{n \leq X} \frac{c_n}{n} \int_{1}^{T} \left(\frac{X}{n} \right)^it \, dt \ll \log \log T.
\]

To see that (4.8) holds, note first that for \(X - X/\log T \leq n \leq X \) the integral over \(t \) is trivially estimated as \(\ll \log T \), and the total contribution of such \(n \) is

\[
\ll \log T \sum_{X - X/\log T \leq n \leq X} \frac{c_n}{n} \, dx \ll 1
\]

on using (1.1)–(1.2). For the remaining \(n \) we note that the integral over \(t \) equals

\[
\frac{\left(\frac{X}{n} \right)^it}{it \log(X/n)} \bigg|_{1}^{T} + \frac{1}{i \log(X/n)} \int_{1}^{T} \left(\frac{X}{n} \right)^it \, dt / T^2.
\]

The contribution of those \(n \) is, using (1.1)–(1.2) again and making the change of variable \(X/u = v \),
\[\ll \sum_{1 \leq n \leq X - X/\log T} \frac{c_n}{n \log(X/n)} = \int_{1-0}^{X-X/\log T} \frac{1}{u \log(X/u)} d((Cu + \Delta(u))) \]
\[= \int_{1}^{X-X/\log T} \frac{1}{u \log(X/u)} \left(C + \frac{\Delta(u)}{u} + \frac{\Delta(u)}{u \log(X/u)} \right) \, du + O(1) \]
\[\ll \int_{1}^{X-X/\log T} \frac{du}{u \log(X/u)} + 1 = \int_{1}^{X} \frac{dv}{(1-1/\log T)^{-1} v \log v} + 1 \]
\[= \log \log X - \log \log(1 - 1/\log T)^{-1} + 1 \ll \log \log T, \]
and (4.8) follows.

One can improve the error term in (4.4) to \(O(\log^2 T) \), which is the limit of the method. I am very grateful to Prof. Alberto Perelli, who has kindly indicated this to me. The argument is very briefly as follows. Note that the coefficients \(c_n^2 \) are essentially the tensor product of the \(c_n \)'s, and the \(c_n \) are essentially the tensor product of the \(a(n) \)'s; “essentially” means in this case that the corresponding \(L \)-functions differ at most by a “fudge factor”, i.e., a \(\text{DIRICHLET} \) series converging absolutely for \(\sigma > 1/2 \) and non-vanishing at \(s = 1 \). In terms of \(L \)-functions, the tensor product of the \(a(n) \) (the coefficients of the tensor square \(L \)-function) corresponds to the product of \(\zeta(s) \) and the \(L \)-function of \(\text{Sym}^2 \) (Shimura’s lift). Moreover, Gelbart–Jacquet [1] have shown that \(\text{Sym}^2 \) is a cuspidal automorphic representation, so one can apply to the above product the general \text{RANKIN–SELBERG} theory to obtain “good properties” of the corresponding \(L \)-function. Since \(\text{Sym}^2 \) is irreducible, the \(L \)-function corresponding to \(c_n^2 \) has a double pole at \(s = 1 \) and a functional equation of \text{RIEMANN} type. It follows that the sum in (4.7) is asymptotic to \(Dx \log x \) for some \(D > 0 \), and the assertion follows by following the preceding argument.

In concluding this section, let it be mentioned that, using (4.5), it easily follows that \(Z(1 + it) \ll \log |t| \) \((t \geq 2) \).

5. MEAN SQUARE OF \(\Delta(x; \xi) \)

In this section we shall consider mean square estimates for \(\Delta(x; \xi) \), defined by (1.3). Although we could consider the range \(\xi > 1 \) as well, for technical reasons we shall restrict ourselves to the range \(0 \leq \xi \leq 1 \), which is the condition that will be assumed henceforth to hold. Let
\[\beta_{\xi} := \inf \left\{ \beta \geq 0 : \int_{1}^{X} \Delta^2(x; \xi) \, dx \ll X^{1+2\beta} \right\}. \]
The definition of \(\beta_{\xi} \) is the natural analogue of the classical constants in mean square estimates for the generalized \text{DIRICHLET} divisor problem (see [3, Chapter 13]). Our first result in this direction is
\[\frac{3 - 2\xi}{8} \leq \beta_\xi \leq \max\left(\frac{1 - \xi}{2}, \frac{3 - 2\xi}{8} \right) \quad (0 \leq \xi \leq 1). \]

Proof. First of all, note that (5.2) implies that \(\beta_\xi = (3 - 2\xi)/8 \) for \(\frac{1}{2} \leq \xi \leq 1 \), so that in this interval the precise value of \(\beta_\xi \) is determined. The main tool in our investigations is the explicit VORONOI type formula for \(\Delta(x; \xi) \). This is

\[\Delta(x; \xi) = V_\xi(x, N) + R_\xi(x, N), \]

where, for \(N \gg 1 \),

\[V_\xi(x, N) = (2\pi)^{-1-\xi} x^{(3-2\xi)/8} \sum_{n \leq N} c_n n^{-(5+2\xi)/8} \cos \left(8\pi (xn)^{1/4} + \frac{1}{2} \left(\frac{\xi}{2} - \xi \right) \pi \right), \]

\[R_\xi(x, N) \ll \varepsilon (xN)^{\varepsilon} \left(1 + x^{(3-\xi)/4} N^{-(1+\xi)/4} + (xN)^{(1-\xi)/4} + x^{(1-2\xi)/8} \right). \]

This follows from the work of U. Vorhauer [20] (for \(\xi = 0 \) this is also proved in [9]), specialized to the case when

\[A = \frac{1}{(2\pi)^2}, B = (2\pi)^4, M = L = 2, b_1 = b_2 = d_1 = d_2 = 1, \beta_1 = \kappa = \frac{1}{2}, b_2 = \frac{1}{2}, \]

\[\delta_1 = \kappa - \frac{3}{8}, \delta_2 = -\frac{1}{4}, \gamma = 1, p = B, q = 4, \lambda = 2, \Lambda = -1, C = (2\pi)^{-5/2}. \]

In (5.3)–(5.4) we take \(N = x \), so that \(R_\xi(x, N) \ll \varepsilon x^{(1-\xi)/2+\varepsilon} \). Since \(\frac{1-\xi}{2} \leq \frac{3-2\xi}{8} \) for \(\xi \geq \frac{1}{2} \), the lower bound in (5.2) follows by the method of [4]. For the upper bound we use \(c_n \ll \varepsilon n^\varepsilon \) and note that \(e(z) = \exp(2\pi iz) \)

\[\int_1^{2X} \left| \sum_{K < k \leq 2K} c_k k^{-(5+2\xi)/8} e(4(\varepsilon k)^{1/4}) \right|^2 \, dx \]

\[\ll X + \sum_{k_1 \neq k_2} c_{k_1} c_{k_2} (k_1 k_2)^{-(5+2\xi)/8} \int_1^{2X} e(4x^{1/4} (k_1^{1/4} - k_2^{1/4})) \, dx \]

\[\ll \varepsilon X + X^{3/4+\varepsilon} K^{-(5+2\xi)/4} \sum_{k_1 \neq k_2} \left| k_1^{1/4} - k_2^{1/4} \right|^{-1} \]

\[\ll \varepsilon X + X^{3/4+\varepsilon} K^{(1-\xi)/2}, \]

where we used the first derivative test (cf. [3, Lemma 2.1]). Since \(K \ll X \) and

\[\int_X^{2X} \Delta^2(x; \xi) \, dx \ll \int_X^{2X} |V_\xi(x, N)|^2 \, dx + \int_X^{2X} |R(x, N)|^2 \, dx, \]

it follows that

\[\int_X^{2X} \Delta^2(x; \xi) \, dx \ll \varepsilon X^{(7-2\xi)/4+\varepsilon} + X^{2-\xi+\varepsilon}, \]
which clearly proves the assertion.

Our last result is a bound for β_{ξ}, which improves on (5.2) when ξ is small. This is

Theorem 3. We have

\[
\beta_{\xi} \leq \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})} \quad \left(0 \leq \xi \leq \frac{1}{6}(1 + 2\mu(\frac{1}{2}))\right).
\]

Proof. We start from

\[
\Delta(x; \xi) = \frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} Z(s) \frac{x^s}{s^{\xi+1}} ds,
\]

where $0 < c = c(\xi) < 1$ is a suitable constant (see K. MATSUMOTO [13] for a detailed derivation of formulas analogous to (5.6)). By the MELLIN inversion formula we have (see e.g., the Appendix of [3])

\[
Z(s)s^{-\xi-1} = \int_{0}^{\infty} \Delta(1/x; \xi)x^{s-1} dx \quad (\Re s = c).
\]

Hence by PARSEVAL’s formula for MELLIN transforms (op. cit.) we obtain, for $\beta_{\xi} < \sigma < 1$,

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|Z(\sigma + it)|^2}{|\sigma + it|^{2\xi+2}} dt = \int_{0}^{\infty} \Delta^2(1/x; \xi)x^{2\sigma-1} dx
\]

\[
= \int_{0}^{\infty} \Delta^2(x; \xi)x^{-2\sigma-1} dx \gg X^{-2\sigma-1} \int_{X}^{2X} \Delta^2(x; \xi) dx.
\]

Therefore if the first integral converges for $\sigma = \sigma_0 + \varepsilon$, then (5.7) gives

\[
\int_{X}^{2X} \Delta^2(x; \xi) dx \ll X^{2\sigma+1},
\]

namely $\beta_{\xi} \leq \sigma_0$. The functional equation (2.2) and STIRLING’s formula in the form

\[
|\Gamma(s)| = \sqrt{2\pi}|t|^{s-1/2}e^{-\pi t/2}(1 + O(|t|^{-1})) \quad (||t| \geq t_0 > 0)
\]

imply that

\[
Z(s) = \mathcal{X}(s)Z(1-s), \quad \mathcal{X}(\sigma + it) \asymp |t|^{2-4\sigma} \quad (s = \sigma + it, \ 0 \leq \sigma \leq 1, \ |t| \geq 2).
\]

Thus it follows on using (4.3) that

\[
\int_{T}^{2T} |Z(\sigma + it)|^2 dt \ll T^{4-8\sigma} \int_{T}^{2T} |Z(1 - \sigma + it)|^2 dt \ll \varepsilon T^{4-8\sigma + 2\mu(\frac{1}{2})\sigma + \max(1,3\sigma) + \varepsilon}.
\]
But we have $4 - 8\sigma + 2\mu(\frac{1}{2})\sigma + \max(1, 3\sigma) = 4 - 5\sigma + 2\mu(\frac{1}{2})\sigma < 2\xi + 2$ for
\[(5.9)\]
$$\sigma > \sigma_0 = \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})},$$
provided that $\sigma_0 \geq 1/3$, which occurs if $0 \leq \xi \leq \frac{1}{6} \left(1 + 2\mu(\frac{1}{2})\right)$. Thus the first integral in (5.7) converges if (5.9) holds, and Theorem 3 is proved. Note that this result is a generalization of Theorem 7 in [8], which says that $\beta_0 \leq \frac{(2 - 2\xi)/\left(5 - 2\mu(\frac{1}{2})\right)}{\sigma_0}$.

In the case when $\beta_0 = (3 - 2\xi)/8$ we could actually derive an asymptotic formula for the integral of the mean square of $\Delta(x; \xi)$, much in the same way that this was done in [9] for the square of $\Delta_1(x) := \int_0^x \Delta(u) du$, where it was shown that
\[(5.10)\]
$$\int_{-1}^{X} \Delta_1^2(x) dx = DX^{13/4} + O_{\varepsilon}(X^{3+\varepsilon})$$
with explicit $D > 0$ (in [12] the error term was improved to $O_{\varepsilon}(X^3(\log X)^{3+\varepsilon})$).

In the case of $\Delta(x; 1)$ the formula (5.10) may be used directly, since
\[(5.11)\]
$$\frac{1}{x} \Delta_1(x) = \frac{1}{x} \int_0^x \Delta(u) du = \Delta(x; 1) + O_{\varepsilon}(x^{\varepsilon}).$$

To see that (5.11) holds, note that with $c = 1 - \varepsilon$ we have
$$\Delta(x; 1) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} Z(s) \frac{x^s}{s^2} ds$$
$$= \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} Z(s) \frac{x^s}{s(s+1)} ds + \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} Z(s) \frac{x^s}{s^2(s+1)} ds$$
$$= \frac{1}{x} \int_0^x \Delta(u) du + \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} Z(s) \frac{x^s}{s^2(s+1)} ds$$
$$= \frac{1}{x} \Delta_1(x) + O_{\varepsilon}(x^{\varepsilon}),$$
on applying (5.8) to the last integral above.

REFERENCES

Mean square estimates in the Rankin-Selberg problem

Katedra Matematike RGF-a,
Univerzitet u Beogradu, Dušina 7,
11000 Beograd, Serbia

E-mail: ivic@rgf.bg.ac.yu, aivic@matf.bg.ac.yu