SOME FORMULAS FOR APOSTOL-EULER POLYNOMIALS ASSOCIATED WITH HURWITZ ZETA FUNCTION AT RATIONAL ARGUMENTS

Qiu-Ming Luo

We give some explicit relationships between the Apostol-Euler polynomials and generalized Hurwitz-Lerch Zeta function and obtain some series representations of the Apostol-Euler polynomials of higher order in terms of the generalized Hurwitz-Lerch Zeta function. Several interesting special cases are also shown.

1. INTRODUCTION

Throughout this paper, we always make use of the following notation: $\mathbb{N} = \{1, 2, 3, \ldots\}$ denotes the set of natural numbers, $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ denotes the set of nonnegative integers, $\mathbb{Z}_0 = \{0, -1, -2, -3, \ldots\}$ denotes the set of nonpositive integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers.

The generalized Bernoulli polynomials $B_n^{(\alpha)}(x)$ and Euler polynomials $E_n^{(\alpha)}(x)$ of order α (real or complex) are usually defined by means of the following generating functions (see, for details, [1, 5, 13, 15]):

\[\left(\frac{z}{e^z - 1} \right)^\alpha e^{xz} = \sum_{n=0}^{\infty} B_n^{(\alpha)}(x) \frac{z^n}{n!} \quad (|z| < 2\pi) \]

and

\[\left(\frac{2}{e^z + 1} \right)^\alpha e^{xz} = \sum_{n=0}^{\infty} E_n^{(\alpha)}(x) \frac{z^n}{n!} \quad (|z| < \pi) \].

2000 Mathematics Subject Classification. Primary 11M35; Secondary 11B68.

Keywords and Phrases. Apostol-Bernoulli polynomials, Apostol-Euler polynomials, Hurwitz Zeta function, Hurwitz-Lerch Zeta function, Lerch’s functional equation.
Obviously, the classical Bernoulli polynomials $B_n(x)$ and Euler polynomials $E_n(x)$ are defined by
\[(1.3) \quad B_n(x) := B_n^{(1)}(x) \quad \text{and} \quad E_n(x) := E_n^{(1)}(x) \quad (n \in \mathbb{N}_0),\]
respectively. The classical Bernoulli numbers B_n and Euler numbers E_n are defined by
\[(1.4) \quad B_n := B_n(0) \quad \text{and} \quad E_n := 2^n E_n \left(\frac{1}{2} \right) \quad (n \in \mathbb{N}_0),\]
respectively.

Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol \cite{2, p. 165, Eq. (3.1)} and (more recently) by Srivastava \cite{14, p. 83–84}. We begin by recalling Apostol’s definitions as follows:

Definition 1.1 (Apostol \cite{2}; see also Srivastava \cite{14}). The Apostol-Bernoulli polynomials $B_n(x; \lambda)$ in x are defined by means of the generating function:
\[(1.5) \quad \frac{ze^{xz}}{\lambda e^z - 1} = \sum_{n=0}^{\infty} B_n(x; \lambda) \frac{z^n}{n!} \quad (|z| < 2\pi \text{ when } \lambda = 1; \quad |z| < |\log \lambda| \text{ when } \lambda \neq 1)\]
with, of course,
\[(1.6) \quad B_n(x) = B_n(x;1) \quad \text{and} \quad B_n(\lambda) := B_n(0; \lambda),\]
where $B_n(\lambda)$ denotes the so-called Apostol-Bernoulli numbers (in fact, it is a function in λ).

Recently, Luo and Srivastava extended further the Apostol-Bernoulli and Apostol-Euler polynomials and their generalizations as follows:

Definition 1.2 (cf. Luo and Srivastava \cite{10, 12}). The Apostol-Bernoulli polynomials $B_n^{(\alpha)}(x; \lambda)$ of order α are defined by means of the generating function
\[(1.7) \quad \left(\frac{ze^{xz}}{\lambda e^z - 1} \right)^\alpha e^{xz} = \sum_{n=0}^{\infty} B_n^{(\alpha)}(x; \lambda) \frac{z^n}{n!} \quad (|z| < 2\pi \text{ when } \lambda = 1; \quad |z| < |\log \lambda| \text{ when } \lambda \neq 1)\]
with, of course,
\[(1.8) \quad B_n^{(\alpha)}(x) = B_n^{(\alpha)}(x;1) \quad \text{and} \quad B_n^{(\alpha)}(\lambda) := B_n^{(\alpha)}(0; \lambda),\]
\[B_n(x; \lambda) := B_n^{(1)}(x; \lambda) \quad \text{and} \quad B_n(\lambda) := B_n(0; \lambda),\]
where $B_n(\lambda)$, $B_n^{(\alpha)}(\lambda)$ and $B_n(x; \lambda)$ denote the so-called Apostol-Bernoulli numbers, Apostol-Bernoulli numbers of order α and Apostol-Bernoulli polynomials respectively.
Definition 1.3 (cf. Luo [11]). The Apostol-Euler polynomials $E_n^{(\alpha)} (x; \lambda)$ of order α are defined by means of the generating function

$$
(1.9) \quad \left(\frac{2}{\lambda e^z + 1} \right)^{\alpha} e^{xz} = \sum_{n=0}^{\infty} E_n^{(\alpha)} (x; \lambda) \frac{z^n}{n!} \quad (|z| < |\log(-\lambda)|),
$$

with, of course,

$$
(1.10) \quad E_n^{(\alpha)} (x) = E_n^{(\alpha)} (x; 1) \quad \text{and} \quad E_n^{(\alpha)} (\lambda) := 2^n E_n^{(\alpha)} \left(\frac{\alpha}{2}; \lambda \right),
$$

where $E_n (\lambda)$, $E_n^{(\alpha)} (\lambda)$ and $E_n (x; \lambda)$ denote the so-called Apostol-Euler numbers, Apostol-Euler numbers of order α and Apostol-Euler polynomials respectively.

The main object of the present paper is to give some explicit relationships between the Apostol-Euler polynomials and generalized Hurwitz-Lerch Zeta function and to investigate some series representations of the Apostol-Euler polynomials in terms of generalized Hurwitz-Lerch Zeta function.

2. SOME EXPLICIT RELATIONSHIPS BETWEEN THE APOSTOL-EULER POLYNOMIALS AND THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION

A family of the Hurwitz-Lerch Zeta function $\Phi_{\mu,\nu}^{(\rho,\sigma)} (z, s, a)$ defined by (see e.g. [9, p. 727, Eq. (8)]

$$
(2.1) \quad \Phi_{\mu,\nu}^{(\rho,\sigma)} (z, s, a) := \sum_{n=0}^{\infty} \frac{(\mu)_{\rho n}}{(\nu)_{\sigma n}} \frac{z^n}{(n + a)^s}
$$

(\mu, \nu \in \mathbb{C} \setminus \mathbb{Z}_0^-; \rho, \sigma \in \mathbb{R}^+; \rho < \sigma \quad \text{when} \quad s, z \in \mathbb{C}; \rho = \sigma \quad \text{and} \quad s \in \mathbb{C} \quad \text{when} \quad |z| < 1; \rho = \sigma \quad \text{and} \quad \Re(s - \mu + \nu) > 1 \quad \text{when} \quad |z| = 1),
$$

contains, as its special cases, not only the Hurwitz-Lerch Zeta function

$$
(2.2) \quad \Phi_{\mu,\nu}^{(\sigma,\sigma)} (z, s, a) = \Phi_{\mu,\nu}^{(0,0)} (z, s, a) = \Phi (z, s, a) = \sum_{n=0}^{\infty} \frac{z^n}{(n + a)^s}
$$

and the Lipschitz-Lerch Zeta function (cf. [15, p. 122, Eq. 2.5 (11)]):

$$
(2.3) \quad \phi (\xi, a, s) := \Phi \left(e^{2\pi i \xi}; s, a \right) = \sum_{n=0}^{\infty} \frac{e^{2\pi i \xi}}{(n + a)^s}
$$

(a \in \mathbb{C} \setminus \mathbb{Z}_0^-; \Re(s) > 0 \quad \text{when} \quad \xi \in \mathbb{R} \setminus \mathbb{Z}; \Re(s) > 1 \quad \text{when} \quad \xi \in \mathbb{Z}),
$$
but also the following generalized Hurwitz-Lerch Zeta functions introduced and studied earlier by Goyal and Laddha [7, p. 100, Eq. (1.5)]

\[(2.4) \Phi_{\mu,1}^{(1,1)}(z, s, a) = \Phi_{\mu}(z, s, a) := \sum_{n=0}^{\infty} \frac{\mu^n}{n!} \frac{z^n}{(n+a)^s},\]

which, for convenience, are called the Goyal-Laddha-Hurwitz-Lerch Zeta function. Here the symbol \((a)_k\) denotes the Pochhammer symbol or the shifted factorial defined, \(a \in \mathbb{C}\), by

\[(2.5) (a)_k = \frac{\Gamma(a + k)}{\Gamma(a)} = \begin{cases} 1 & (k = 0), \\ a(a+1) \cdots (a+k-1) & (k \in \mathbb{N}), \end{cases}\]

where \(\Gamma(x)\) is the usual Gamma function.

Recently, Garg et al. [6] obtained the following interesting formula:

\[(2.6) B^\ell_n(a; \lambda) = (-n)^\ell \Phi_\ell(-\lambda, \ell - n, a) \quad (n, \ell \in \mathbb{N}; \ n \geq \ell; \ |\lambda| < 1; \ a \in \mathbb{C} \setminus \mathbb{Z}^-_0).\]

Clearly, we have

\[(2.7) B_n(a; \lambda) = -n \Phi(-\lambda, 1 - n, a) \quad (n \in \mathbb{N}; \ |\lambda| \leq 1; \ a \in \mathbb{C} \setminus \mathbb{Z}^-_0).\]

Below we give the following explicit relationships between the a family of Euler polynomials and a family of Zeta function.

Theorem 2.1. \(\text{For } n \in \mathbb{N}; -1 < \lambda \leq 1; \ a \in \mathbb{C}; \ a \in \mathbb{C} \setminus \mathbb{Z}^-_0, \) the following relationship

\[(2.8) E_n^{(\alpha)}(a; \lambda) = 2^\alpha \Phi_n(-\lambda, -n, a)\]

between the Apostol-Euler polynomials of higher order and the Goyal-Laddha-Hurwitz-Lerch Zeta function.

Proof. By (1.9) and the generalized binomial theorem, yields

\[(2.9) \sum_{n=0}^{\infty} E_n^{(\alpha)}(a; \lambda) \frac{z^n}{n!} = \left(\frac{2}{\alpha e^z + 1}\right)^\alpha e^{az} = 2^\alpha \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} (-\lambda)^k e^{(k+a)z} = \sum_{n=0}^{\infty} \left[2^\alpha \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} (-\lambda)^k (k+a)^n \right] \frac{z^n}{n!} = \sum_{n=0}^{\infty} \left[2^\alpha \sum_{k=0}^{\infty} \frac{(\alpha)_k}{k!} \frac{(-\lambda)^k}{(k+a)^n} \right] \frac{z^n}{n!}.

Hence, the formula (2.8) follows. \(\square\)

Corollary 2.2. \(\text{For } n \in \mathbb{N}; -1 < \lambda \leq 1; \ a \in \mathbb{C} \setminus \mathbb{Z}^-_0, \) the following relationship

\[(2.10) E_n(a; \lambda) = 2\Phi(-\lambda, -n, a)\]
holds true between the Apostol-Euler polynomials and the Hurwitz-Lerch Zeta function.

It is well-known that the following relationship between the Bernoulli polynomials and the Hurwitz Zeta function (see Apostol [3, p. 264, Theorem 12.13])

\[
B_n(a) = -n\zeta(1-n, a) \quad (n \in \mathbb{N}),
\]

where \(\zeta(s, a)\) denotes the Hurwitz Zeta function defined by

\[
\zeta(s, a) := \Phi(1, s, a) = \sum_{n=0}^{\infty} \frac{1}{(n + a)^s} \quad (\Re(s) > 1; \quad a \in \mathbb{C} \setminus \mathbb{Z}_{<0}).
\]

An alternating series version of the Hurwitz Zeta function is given as follows:

Definition 2.3. The \(L\)-function is defined by

\[
L(s, a) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(n + a)^s} \quad (\Re(s) > 1; \quad a \in \mathbb{C} \setminus \mathbb{Z}_{<0}).
\]

In the same method, it is not difficult, we give a quasi formula of (2.11) as follows:

Theorem 2.4. For \(n \in \mathbb{N}; \quad a \in \mathbb{C} \setminus \mathbb{Z}_{<0}\), the following relationship

\[
E_n(a) = 2L(-n, a)
\]

holds true between the Euler polynomials and the \(L\)-function.

It is well-known that the following relationship between the Bernoulli numbers and the Riemann Zeta function (see [3, p. 266, Theorem 12.16])

\[
B_n = -n\zeta(1-n) \quad (n \in \mathbb{N}),
\]

where \(\zeta(s)\) denotes the Riemann Zeta function defined by

\[
\zeta(s) := \zeta(s, 1) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

An alternating series version of the Riemann Zeta function is given as follows:

Definition 2.5. For \(\Re(s) > 0\), the \(\ell\)-function is defined by

\[
\ell(s) := \sum_{n=1}^{\infty} \frac{(-1)^n}{n^s}.
\]

Similarly, we give an analogue of the formula (2.14) as follows:

Theorem 2.6. For \(n \in \mathbb{N}\), the following relationship

\[
E_n = 2\ell(-n)
\]

holds true between the Euler numbers and the \(\ell\)-function.
3. EXPLICIT SERIES REPRESENTATIONS FOR THE
APOSTOL-EULER POLYNOMIALS OF ORDER α

It is not difficult, we make use of the elementary series identity:

$$\sum_{k=1}^{\infty} f(k) = \sum_{j=1}^{q} \sum_{k=0}^{\infty} f(qk + j), \quad (q \in \mathbb{N}),$$

to the Hurwitz-Lerch Zeta function (2.2), yields that

$$\Phi(z, s, a) = q^{-s} \sum_{j=1}^{q} \Phi\left(z^q, s, \frac{a + j - 1}{q}\right) z^{j-1}.$$

Obviously, a special case of (3.2) when

$$z = \exp\left(\frac{2p\pi i}{q}\right) \quad (p \in \mathbb{Z}, \ q \in \mathbb{N})$$

is the following summation formula for the Lipschitz-Lerch Zeta function $\phi(\xi, a, s)$ defined by (2.3):

$$\Phi\left(\exp\left(\frac{2p\pi i}{q}\right), s, a\right) = \phi\left(\frac{p}{q}, a, s\right) = q^{-s} \sum_{j=1}^{q} \zeta\left(s, \frac{a + j - 1}{q}\right) \exp\left(\frac{2(j - 1)p\pi i}{q}\right),$$

in terms of the Hurwitz Zeta function $\zeta(s, a)$.

Theorem 3.1. For $n, q \in \mathbb{N}; \ p \in \mathbb{Z}; \ \xi \in \mathbb{R}, \ \alpha \in \mathbb{C}$, the following formula of the Apostol-Euler polynomials of order α

$$E_n^{(\alpha)}\left(p, q; e^{2\pi i \xi}\right) = \frac{i^{2\alpha} \cdot n!}{\Gamma(\alpha)} \sum_{k=0}^{\infty} \left(\frac{\alpha - 1}{k}\right) \left(\frac{k - \frac{p}{q} + 1}{q}\right)_{\alpha - k - 1}$$

$$\times \sum_{j=0}^{k} \binom{k - 1}{j - 1} (n + 1)_j B_{k-j}^{(k)}$$

$$\times (2\pi q)^{-n-j-1} \left\{ \sum_{r=1}^{q} \zeta\left(n + j + 1, \frac{2\xi + 2r - 1}{2q}\right) \right\}$$

$$\times \exp\left[\left(\frac{n + j}{2} - \frac{(2\xi + 2r - 1)p}{2}\right) \pi i\right] - \sum_{r=1}^{q} \zeta\left(n + j + 1, \frac{2r - 2\xi + 1}{2q}\right)$$

$$\times \exp\left[\left(- \frac{n + j}{2} + \frac{2r - 2\xi + 1}{2}\right) \pi i\right].$$
holds true in terms of the Hurwitz Zeta function.

Proof. We now rewrite the result of Lin et al. as follows (see [8, p. 823, Theorem]):

\[
\Phi_{\mu}(z, s, a) = iz^{a} \Gamma(1-s) \sum_{k=0}^{\infty} \frac{(k-a+1)_{\mu-k-1}}{k! \Gamma(\mu-k)} \\
\times \sum_{j=0}^{k} \frac{(k-1)(1-s)_{j} B_{k-j}^{(j)} (2\pi)^{s-j-1}}{\Gamma(1-s+j, \frac{\log z}{2\pi i})} \\
- \exp\left[\left(2a + \frac{1}{2}(s-j)\right) \pi i\right] \Phi\left(e^{2\pi ai}, 1-s+j, 1 - \frac{\log z}{2\pi i}\right) \quad (\mu \in \mathbb{C}).
\]

Setting \(z = -e^{2\pi i \xi}, \quad a = \frac{p}{q}\) and \(s \mapsto -s, \quad \mu \mapsto \alpha\)

and by applying the series identity (3.3), we find that

\[
\Phi_{\alpha}\left(-e^{2\pi i \xi}, -s, \frac{p}{q}\right) = \frac{i \Gamma(s+1)}{\Gamma(\alpha)} \sum_{k=0}^{\infty} \frac{\alpha-1}{k} \left(k - \frac{p}{q} + 1\right)^{\alpha-k-1} \\
\times \left(\sum_{j=0}^{k} \frac{(k-1)(s+1)_{j} B_{k-j}^{(j)}}{(2\pi q)^{s-j-1}} \left(\sum_{r=1}^{q} \zeta\left(s+j+1, \frac{2\xi+2r-1}{2q}\right) - \sum_{r=1}^{q} \zeta\left(s+j+1, \frac{2r-2\xi+1}{2q}\right) \pi i \right) \right) \quad (\alpha \in \mathbb{C}).
\]

Taking \(s = n\) in (3.6) and noting that (2.8) of Theorem 2.1, of course, with \(\lambda = e^{2\pi i \xi}\) and \(a = \frac{p}{q}\),

we obtain the desire (3.4). This proof is complete. \(\square\)

Theorem 3.2. For \(n, q, \ell \in \mathbb{N}; \quad p \in \mathbb{Z}; \quad \xi \in \mathbb{C},\) the following formula of the Apostol-Euler polynomials of order \(\ell\)

\[
E^{(\ell)}_{n}\left(\frac{p}{q} ; e^{2\pi i \xi}\right) = \frac{i 2^{\ell} \cdot n!}{(\ell - 1)!} \sum_{k=0}^{\ell-1} \binom{\ell-1}{k} \left(k - \frac{p}{q} + 1\right)_{\ell-k-1}
\]
\[\times \sum_{j=0}^{k} \binom{k-1}{j} (n+1)_j B_k^{(k)} \]
\[\times (2\pi q)^{-n-j-1} \left\{ \sum_{r=1}^{q} \zeta \left(n+j+1, \frac{2r-2\xi+1}{2q} \right) \right\} \]
\[\times \exp \left[\left(\frac{n+j}{2} - \frac{2\xi+2r-1}{2q} \right) \pi i \right] - \sum_{r=1}^{q} \zeta \left(n+j+1, \frac{2r-2\xi}{2q} \right) \]
\[\times \exp \left[\left(\frac{n+j}{2} + \frac{2r-2\xi+1}{2q} \right) \pi i \right] \]
holds true in terms of the Hurwitz Zeta function.

Proof. Let \(\alpha = \ell (\ell \in \mathbb{N}) \) in (3.6) we may obtain the assertion (3.7). \(\square \)

Theorem 3.3. For \(n, q, \ell \in \mathbb{N}; \, p \in \mathbb{Z}; \, \xi \in \mathbb{C} \), the following formula of the Apostol-Euler polynomials of order \(\ell \)
\[(3.8) \quad E_n^{(\ell)} \left(\frac{p}{q}, e^{2\pi i \xi} \right) = -\frac{i(-2)^{\ell} \cdot n!}{(\ell-1)!} \sum_{k=0}^{\ell-1} \binom{\ell-1}{k} B_{k-1-q}^{(\ell)} n-k-1 \]
\[\times \sum_{j=0}^{k} \binom{k}{j} (-n-1) j! p^{-j} (2\pi)^{-n-j-1} \]
\[\times \left\{ \sum_{r=1}^{q} \zeta \left(n+j+1, \frac{2r+2\xi-1}{2q} \right) \exp \left[\left(\frac{n+j}{2} - \frac{2\xi+2r-1}{2q} \right) \pi i \right] \right\} \]
\[- \sum_{r=1}^{q} \zeta \left(n+j+1, \frac{2r-2\xi+1}{2q} \right) \exp \left[\left(\frac{n+j}{2} + \frac{2r-2\xi+1}{2q} \right) \pi i \right] \]
holds true in terms of the Hurwitz Zeta function.

Proof. Setting \(\mu = m (m \in \mathbb{N}) \) in (3.5), we obtain the following transformation formula:
\[(3.9) \quad \Phi_m(z, s, a) = \frac{i z^{-a} \Gamma(1-s)}{(m-1)!} \sum_{k=0}^{m-1} \binom{m-1}{k} B_{m-k-1}^{(m)} \]
\[\times \sum_{j=0}^{k} (-1)^{m-k+j-1} \binom{k}{j} (s-1) j! (-a)^{k-j} (2\pi)^{s-j-1} \]
\[\times \left[\exp \left(\frac{1}{2} (s-j) \pi i \right) \Phi \left(e^{-2\pi i \xi}, 1-s+j, \log \frac{z}{2\pi i} \right) \right] \]
\[- \exp \left[\left(2a + \frac{1}{2} (s-j) \right) \pi i \right] \Phi \left(e^{2\pi i \xi}, 1-s+j, 1-\frac{\log z}{2\pi i} \right) \quad (m \in \mathbb{N}). \]
Letting
\[z = -e^{2\pi i \xi}, \quad a = \frac{p}{q} \]
and by applying the series identity (3.3), we obtain the following consequence

\[\Phi_{\ell} \left(-e^{2\pi i \xi}, -s, -\frac{p}{q} \right) = \frac{i(-1)^{\ell-1} \Gamma(s+1)}{(\ell-1)!} \sum_{k=0}^{\ell-1} \binom{\ell-1}{k} B_{\ell-k-1} q^{-s-k-1} \]

\[\times \sum_{j=0}^{k} \binom{k}{j} -s-1 j j! \left(p^{k-j} (2\pi)^{-s-j-1} \right) \]

\[\times \left\{ \sum_{r=1}^{q} \zeta \left(s+j+1, \frac{2\xi + 2r - 1}{2q} \right) \exp \left[\left(\frac{s+j}{2} - \frac{(2\xi + 2r - 1)p}{q} \right) \pi i \right] \right. \]

\[- \sum_{r=1}^{q} \zeta \left(s+j+1, \frac{2r - 2\xi + 1}{2q} \right) \exp \left[\left(-\frac{s+j}{2} + \frac{(2r - 2\xi + 1)p}{q} \right) \pi i \right] \}, \]

where \(\ell \in \mathbb{N} \). Further taking \(s = n \) in (3.10) and noting that (2.8) of Theorem 2.1, of course, with

\[\lambda = e^{2\pi i \xi} \quad \text{and} \quad a = \frac{p}{q} \quad (p \in \mathbb{Z}; \ q \in \mathbb{N}; \ \xi \in \mathbb{R}). \]

Therefore, the formula (3.8) follows. This proof is complete. □

4. FURTHER OBSERVATIONS AND CONSEQUENCES

Recently, Srivastava found the following elegant formula for Apostol-Bernoulli polynomials \(B_n(x; \lambda) \) (see [14, p. 84, Eq. (4.6)]):

\[B_n \left(\frac{p}{q}; e^{2\pi i \xi} \right) = -\frac{n!}{(2q\pi)^n} \left\{ \sum_{j=1}^{q} \zeta \left(n, \frac{\xi + j - 1}{q} \right) \exp \left[\left(\frac{n}{2} - \frac{2(\xi + j - 1)p}{q} \right) \pi i \right] \right. \]

\[+ \sum_{j=1}^{q} \zeta \left(n, \frac{j - \xi}{q} \right) \exp \left[\left(-\frac{n}{2} + \frac{2(j - \xi)p}{q} \right) \pi i \right] \} \]

\((n \in \mathbb{N} \setminus \{1\}; \ p \in \mathbb{Z}; \ q \in \mathbb{N}; \ \xi \in \mathbb{R}). \)

When \(\xi \in \mathbb{Z} \) in (4.1), we can deduce a known result given earlier by Cvijović and Klinowski [4, p. 1529, Theorem A]:

\[B_n \left(\frac{p}{q} \right) = -\frac{2 \cdot n!}{(2q\pi)^n} \sum_{j=1}^{q} \zeta \left(n, \frac{j}{q} \right) \cos \left(\frac{2jp\pi}{q} - \frac{n\pi}{2} \right) \]

\((n \in \mathbb{N} \setminus \{1\}; \ p \in \mathbb{Z}; \ q \in \mathbb{N}). \)
It follows that we set $\alpha = 1$ in (3.4), or $\ell = 1$ in (3.7) and (3.8). Then we obtain the following interesting formula for the Apostol-Euler polynomials $E_n(x; \lambda)$.

Theorem 4.1 For $n, q \in \mathbb{N}$; $p \in \mathbb{Z}$; $\xi \in \mathbb{R}$, the following formula of the Apostol-Euler polynomials at rational arguments

\[
E_n \left(\frac{p}{q}; e^{2\pi i \xi} \right) = \frac{2 \cdot n!}{(2q\pi)^{n+1}} \times \left\{ \sum_{j=1}^{q} \zeta \left(n + 1, \frac{2\xi + 2j - 1}{2q} \right) \exp \left[\left(n + 1 \frac{1}{2} - \frac{(2\xi + 2j - 1)p}{q} \right) \pi i \right]
+ \sum_{j=1}^{q} \zeta \left(n + 1, \frac{2j - 2\xi - 1}{2q} \right) \exp \left[\left(n + 1 \frac{1}{2} + \frac{(2j - 2\xi - 1)p}{q} \right) \pi i \right] \right\}
\]

holds true in terms of the Hurwitz Zeta function.

A special case of formula (4.3) when $\xi \in \mathbb{Z}$, is just a known result given earlier by Cvijović and Klinowski:

Corollary 4.2 ([4, p. 1529, Theorem B]) For $n, q \in \mathbb{N}$; $p \in \mathbb{Z}$, the following formula of the classical Euler polynomials

\[
E_n \left(\frac{p}{q} \right) = \frac{4 \cdot n!}{(2q\pi)^{n+1}} \sum_{j=1}^{q} \zeta \left(n + 1, \frac{2j - 1}{2q} \right) \sin \left(\frac{(2j - 1)p\pi}{q} - \frac{n\pi}{2} \right),
\]

holds true in terms of the Hurwitz Zeta function.

Acknowledgements. The author greatly appreciates to the referee for the valuable comments and suggestions.

The present investigation was supported in part by the PCSIRT Project of the Ministry of Education of China under Grant IRT0621 and Innovation Program of Shanghai Municipal Education Committee of China under Grant 08ZZ24 and PhD Program Scholarship Fund of ECNU 2009 of China under Grant #2009041.

REFERENCES

Department of Mathematics, (Received March 2, 2009)
Jiaozuo University, (Revised May 25, 2009)
Henan Jiaozuo 454003,
Department of Mathematics,
Department of Mathematics,
East China Normal University,
Dongchuan Road 500, Shanghai 200241,
P. R. China
E-mail: luomath2007@163.com